
Learning Invariant Weights in Neural Networks (Supplementary material)

Tycho F.A. van der Ouderaa1 Mark van der Wilk1

1Imperial College London, UK

APPENDIX A: DETAILED DERIVATION OF VARIATIONAL INVERENCE

Applying Variational Inference (VI) [?], we maximise the marginal likelihood w.r.t. parameters θ = vec(W2) by minimizing
the DKL(·||·)-divergence between approximate posterior q(W2|µ,Σ) and true posterior distribution of weights p(W2|D),
equivalent to maximizing the evidence lower bound (ELBO) denoted by L:

argmin
µ,Σ

DKL(q(W2|µ,Σ)||p(W2|D))

= argmin
µ,Σ

Eq(W2|µ,Σ)

[
log

q(W2|µ,Σ)

p(W2|D)

]
= argmin

µ,Σ
Eq(W2|µ,Σ)

[
log

q(W2|µ,Σ)

p(W2)p(D|W2)

]
+ log p(D)

= argmin
µ,Σ

Eq(W2|µ,Σ)

[
log

q(W2|µ,Σ)

p(W2)p(D|W2)

]
= argmin

µ,Σ
Eq(W2|µ,Σ) [log p(W2|µ,Σ)− log p(W2)− log p(D|W2)]

= argmin
µ,Σ

Eq(W2|µ,Σ) [log p(W2|µ,Σ)− log p(W2)]− Eq(W2|µ,Σ) [log p(D|W2)]

= argmin
µ,Σ

DKL(q(W2|µ,Σ)||p(W2)) + Eq(W2|µ,Σ)[− log p(D|W2)]

= argmax
µ,Σ

Eq(W2|µ,Σ)[log p(D|W2)]−DKL(q(W2|µ,Σ)||p(W2))

= argmax
µ,Σ

L

We independently model the weight wc
2 for each class c with a full co-variance multivariate Gaussian distribution

N (wc
2|µc,Σc), parameterised by mean vector µc and lower-triangular (Cholesky) decomposition of the co-variance

(Lc)TLc = Σc to avoid computational issues, following ?. We can view the variational posterior q(W2|µ,Σ) as multi-
variate Gaussian over all classes with concatenated mean and block-diagonally stacked covariances from which we sample
flattened matrix W2 in one go, or -equivalently- sample row vectors wc

2 for each class and concatenate them to obtain matrix
W2. By sampling L times from variational approximation W

(1)
2 ,W

(2)
2 . . .W

(L)
2 ∼ q(W2|µ,Σ) we obtain a Monte Carlo

estimate of EW := EW2∼q(W2|µ,Σ) required to compute the final ELBO or negative loss L(θ,D):

L(θ,D) = Eq(W2|µ,Σ)[log p(D|W2)]−DKL(p(W2|µ,Σ)||p(W2))

= Eq(W2|µ,Σ)[log p(D|W2)]−
∑
c

DKL(N (wc
2|µc,Σc)||p(wc

2))

= Eq(W2|µ,Σc)[log p(D|W2)]−
∑
c

DKL(N (wc
2|µ,Σc)||N (0;Σp))

= −

Regular Average Cross-entropy︷ ︸︸ ︷
L∑
l

N∑
i

− log σ
y
(i)
c

(
ET∼pη(T)

[
W2 ◦ ϕ

(
W1 ◦ T ◦ x(i)

)])
−

Closed-form KL Regularizer︷ ︸︸ ︷∑
c

1

2

[
log

|Σc|
|Σp|

−D + tr {ΣpΣ
c}+ µTΣ−1

p µ

]

for every input x(i), log soft-argmax output σyc
for class of corresponding label y(i)c , fixed first layer weights W1, prior

weights Σp = Iα, input dimensionality D, and trace tr(·). To allow for mini-batching, we use the Stochastic Variational
Bayes Estimate (SGVB) from ? of the ELBO or negative loss L̃(θ,D):

L̃(θ,D) = −N

Regular Batch Averaged Cross-entropy︷ ︸︸ ︷
1

M

L∑
l

M∑
i

− log σ
y
(i)
c

(
ET∼pη(T)

[
W2 ◦ ϕ

(
W1 ◦ T ◦ x(i)

)])
−

Closed-form KL Regularizer︷ ︸︸ ︷∑
c

1

2

[
log

|Σc|
|Σp|

−D + tr {ΣpΣ
c}+ µTΣ−1

p µ

]
where we can choose L = 1 if we use a sufficiently large batch size.

APPENDIX B: WEIGHT VISUALIZATIONS OF LEARNED ROTATIONAL INVARIANCE

Ep
oc

h
1

Initial Invariance: ±5° Base filter
Ep

oc
h

5

Learned Invariance: ±81°

Ep
oc

h
7

Learned Invariance: ±115°

Fin
al

 E
po

ch

Learned Invariance: ±179°

(a) Feature bank #1 over training iterations

Ep
oc

h
1

Initial Invariance: ±5° Base filter

Ep
oc

h
5

Learned Invariance: ±81°

Ep
oc

h
7

Learned Invariance: ±115°

Fin
al

 E
po

ch

Learned Invariance: ±179°

(b) Feature bank #2 over training iterations

Ep
oc

h
1

Initial Invariance: ±5° Base filter

Ep
oc

h
5

Learned Invariance: ±81°

Ep
oc

h
7

Learned Invariance: ±115°

Fin
al

 E
po

ch

Learned Invariance: ±179°

(c) Feature bank #3 over training iterations

Ep
oc

h
1

Initial Invariance: ±5° Base filter

Ep
oc

h
5

Learned Invariance: ±81°

Ep
oc

h
7

Learned Invariance: ±115°
Fin

al
 E

po
ch

Learned Invariance: ±179°

(d) Feature bank #4 over training iterations

Ep
oc

h
1

Initial Invariance: ±5° Base filter

Ep
oc

h
5

Learned Invariance: ±81°

Ep
oc

h
7

Learned Invariance: ±115°

Fin
al

 E
po

ch

Learned Invariance: ±179°

(e) Feature bank #5 over training iterations

Ep
oc

h
1

Initial Invariance: ±5° Base filter

Ep
oc

h
5

Learned Invariance: ±81°

Ep
oc

h
7

Learned Invariance: ±115°

Fin
al

 E
po

ch

Learned Invariance: ±179°

(f) Feature bank #6 over training iterations

Figure 1: Illustration of the features banks over training iterations. Features are randomly initialised with almost no rotational
invariance and converge to particular filters with full rotational invariance when trained on fully rotated MNIST data.

APPENDIX C.1: ROTATIONAL INVARIANCE IN RFF NEURAL NETWORK

±

±

±

±

±

± ±

Figure 2: Predicted invariance over training iterations for different initial invariances for RFF neural network.

Test Accuracy ELBO

Model
Fully rotated

MNIST
Partially rotated

MNIST
Regular
MNIST

Fully rotated
MNIST

Partially rotated
MNIST

Regular
MNIST

Fixed 5◦ 79.29 86.71 96.00 -1.07 -0.80 -0.36
Fixed 45◦ 87.35 91.13 95.93 -0.63 -0.49 -0.26
Fixed 90◦ 90.33 91.69 94.69 -0.52 -0.44 -0.30

Fixed 135◦ 91.19 91.04 92.13 -0.45 -0.45 -0.36
Fixed 175◦ 91.57 90.47 90.97 -0.43 -0.47 -0.45

Learned (5◦ Init) 91.72 92.34 96.40 -0.43 -0.42 -0.26
Learned (45◦ Init) 91.65 92.31 96.42 -0.43 -0.42 -0.26
Learned (90◦ Init) 91.65 92.37 96.40 -0.43 -0.42 -0.26

Learned (135◦ Init) 91.66 92.37 96.10 -0.43 -0.42 -0.26
Learned (175◦ Init) 91.68 91.69 95.64 -0.43 -0.43 -0.26

Table 1: Table containing Test Accuracy and ELBO scores after training for experiments with RFF network. In bold: the
best scores for fixed invariance and, for learned invariances, all scores that surpass the best score using fixed invariance.

APPENDIX C.2: ROTATIONAL INVARIANCE IN RELU NEURAL NETWORK

±

±

±

±

±

± ±

Figure 3: Predicted invariance over training iterations for different initial invariances of ReLU neural network with both
input and output layer weights trained.

Test Accuracy ELBO

Model
Fully rotated

MNIST
Partially rotated

MNIST
Regular
MNIST

Fully rotated
MNIST

Partially rotated
MNIST

Regular
MNIST

Fixed 5◦ 87.21 90.68 96.76 -0.28 -0.20 -0.02
Fixed 45◦ 95.24 96.46 98.13 -0.09 -0.06 -0.02
Fixed 90◦ 96.50 97.11 98.14 -0.07 -0.06 -0.03

Fixed 135◦ 97.15 97.31 97.79 -0.06 -0.06 -0.04
Fixed 175◦ 97.53 97.30 97.15 -0.07 -0.06 -0.06

Learned (0◦ Init) 97.34 97.13 98.40 -0.07 -0.06 -0.02
Learned (45◦ Init) 97.23 97.36 98.27 -0.07 -0.05 -0.02
Learned (90◦ Init) 97.28 97.22 98.19 -0.07 -0.06 -0.02

Learned (135◦ Init) 97.45 97.29 98.33 -0.06 -0.05 -0.02
Learned (175◦ Init) 97.23 97.23 98.03 -0.06 -0.06 -0.03

Table 2: Table containing Test Accuracy and ELBO scores after training for experiments of ReLU neural network with both
input and output layer weights trained. In bold: the best scores for fixed invariance and, for learned invariances, all scores
that surpass the best score using fixed invariance.

APPENDIX C.3: DIFFERENT TRANSFORMATIONS IN RFF NETWORK

Test Accuracy ELBO

Model
Fully rotated

MNIST
Translated

MNIST
Scaled
MNIST

Regular
MNIST

Fully rotated
MNIST

Translated
MNIST

Scaled
MNIST

Regular
MNIST

Regular MLP 79.29 66.07 89.25 95.16 -1.14 -1.49 -0.69 -0.39
+ Rotation 92.59 75.06 88.66 96.59 -0.43 -1.08 -0.62 -0.26

+ Translation 83.66 87.81 86.15 96.78 -0.82 -0.64 -0.72 -0.24
+ Scale 82.77 75.48 91.31 96.52 -0.84 -1.08 -0.49 -0.26

+ Affine 92.64 87.77 90.58 97.38 -0.43 -0.64 -0.54 -0.21

Table 3: Test Accuracy and ELBO for learned invariance using different transformations in a shallow RFF neural network.

APPENDIX C.4: DIFFERENT TRANSFORMATION IN RELU NETWORK

Test Accuracy ELBO

Model
Fully rotated

MNIST
Translated

MNIST
Scaled
MNIST

Regular
MNIST

Fully rotated
MNIST

Translated
MNIST

Scaled
MNIST

Regular
MNIST

Regular MLP 90.35 89.34 96.61 98.10 -0.06 -0.06 -0.03 -0.02
+ Rotation 98.05 94.08 97.62 98.64 -0.05 -0.06 -0.03 -0.02

+ Translation 93.59 97.87 97.98 98.76 -0.09 -0.06 -0.03 -0.02
+ Scale 93.80 94.30 98.06 98.35 -0.06 -0.06 -0.03 -0.02

+ Affine 98.14 97.66 98.31 98.93 -0.05 -0.06 -0.03 -0.02

Table 4: Test Accuracy and ELBO for learned invariance using different transformations in a shallow ReLU neural network.

APPENDIX C.4: DIFFERENT TRANSFORMATION IN RELU NETWORK ON DATASETS
WITH COMBINATIONS OF TWO INVARIANCES.

Test Accuracy ELBO

Model

Fully rotated
+ Translated

MNIST

Fully rotated
+ Scaled
MNIST

Translated
+ Scaled
MNIST

Regular
MNIST

Fully rotated
+ Translated

MNIST

Fully rotated
+ Scaled
MNIST

Translated
+ Scaled
MNIST

Regular
MNIST

Regular MLP 53.36 80.71 75.50 98.10 -0.26 -0.10 -0.12 -0.02
+ Rotation 85.35 95.66 85.42 98.64 -0.31 -0.10 -0.27 -0.02

+ Translation 83.84 83.40 91.77 98.76 -0.42 -0.16 -0.19 -0.02
+ Scale 55.63 89.81 86.04 98.35 -0.39 -0.12 -0.17 -0.02

+ Affine 89.37 95.88 91.95 98.93 -0.37 -0.09 -0.18 -0.02

Table 5: Test Accuracy and ELBO for learned invariance using different transformations in a shallow ReLU neural network
on datasets augmented by two subsequent transformations (rotation+translation, rotation+scaling and translation+scaling).
Surprisingly, the regular MLP ends up with the best ELBO in this experiment. We did not consistently observe the best
ELBO for the regular MLP throughout optimization, and find that we can still use our method and the ELBO to learn
invariances in this case. Again, we observe that models with learned invariances achieve the highest test accuracy.

APPENDIX D: DATASET DETAILS

All datasets have 60000 training examples and 10000 test examples and are created by taking regular MNIST or CIFAR-10
and applying random transformations:

Regular MNIST Dataset: MNIST handwritten digit database [?].
Regular CIFAR-10 Dataset: CIFAR-10 dataset with 10 classes [?].
Partially rotated dataset: Every sample rotated by radian angle θ, sampled from θ ∼ U [−π

2 ,
π
2].

Fully rotated dataset: Every sample rotated by radian angle θ, sampled from θ ∼ U [−π, π].
Translated dataset: Translated samples relatively by dx and dy pixels, sampled from dx, dy ∼ U [−8, 8].
Scaled dataset: Every sample scaled around center with exp(s), sampled from s ∼ U [− log(2), log(2)].

APPENDIX E: LIE GROUP GENERATORS

We follow ? and, similarly, utilise six matrix generators:

Gtransx = G1 =

 0 0 1
0 0 0
0 0 0

, Gtransy = G2 =

 0 0 0
0 0 1
0 0 0

, Grot = G3 =

 0 −1 0
1 0 0
0 0 0



Gscalex = G4 =

 1 0 0
0 0 0
0 0 0

, Gscaley = G5 =

 0 0 0
0 1 0
0 0 0

, Gshear = G6 =

 0 1 0
1 0 0
0 0 0


To parameterise affine transformations we compute the following matrix exponential [?]:

Tϵ = exp

(∑
i

ϵiηiGi

)
, ϵ ∼ U [−1, 1]k (1)

Optionally, the values of η can be constrained to a positive range by passing them through a ‘softplus’-function, or in case
of η3 = ηrot to [−π, π] using a scaled ‘tanh’ function, preventing double coverage on the unit circle. In practice, however,
we did not find such constraints necessary as long as ηrot is reasonably initialised (e.g. η = 0).

By fixing certain ηi at 0, subsets of the generator matrices parameterise rotation, translation and scaling:

For rotation only:
Learn η3.
Fix ηi = 0 for all i ̸= 3.

T (rot)
ϵ = exp

(∑
i

ϵiηiGi

)
= exp (ϵ3η3G3)

= exp

 0 −ϵ3η3 0
ϵ3η3 0 0
0 0 0


=

cos(ϵ3η3) − sin(ϵ3η3) 0
sin(ϵ3η3) cos(ϵ3η3) 0

0 0 1



For translation only:
Learn η1 and η2.
Fix ηi = 0 for all i > 2.

T (trans)
ϵ = exp

(∑
i

ϵiηiGi

)
= exp (ϵ1η1G1 + ϵ2η2G2)

= exp

0 0 η1
0 0 η2
0 0 0


=

1 0 ϵ1η1
0 1 ϵ2η2
0 0 1



For scaling only:
Learn η4 and η5.
Fix ηi = 0 for all i ̸∈ {4, 5}.

T (scale)
ϵ = exp

(∑
i

ϵiηiGi

)
= exp (ϵ4η4G4 + ϵ5η5G5)

= exp

η4 0 0
0 η5 0
0 0 0


=

exp(ϵ4η4) 0 0
0 exp(ϵ5η5) 0
0 0 1



