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1 BAYESIAN PRESENTATION

In Bayesian settings, model uncertainties are often decom-
posed across aleatoric and epistemic components that help
scrutinise different aspects in the functioning of a model,
and can facilitate interpretability or fairness assessments
in important machine learning applications [[Awasthi et al.|
2021]]. Hence we may wish to offer attributions that are
representative of isolated types of uncertainties.

On training a neural classifier f : R" x W — Al¢l-1
within an (approximate) Bayesian setting, we commonly
obtain a posterior over the hypothesis space of models,
i.e. a distribution 7 (w|D) over model weights conditioned
on the available train data D = {x;,¢;}i=1 2, .. Popular
approaches to procure such posterior often differ in their
approach to incorporate prior knowledge and include dro-
pout [Srivastava et al., 2014], Bayes-by-Backprop [Blundell
et al.,|2015]] or SG-HMC [Springenberg et al., 2016]. Here,
a model score for a new data point * € R is derived from
the posterior predictive distribution by marginalising over
posterior weights, i.e.

m(@*|D) = /W f(@*, w)m(w|D)dw = Buyplf(z*, w)],

and is easily approximated as + Zfil f(x*, w;), with
weight samples w; ~ w(w|D), ¢ = 1,...,N. This set-
ting is analogue to the presentation in Section [2, however,
the point estimate score must now be averaged over the
posterior, i.e. f(x) = m(x*|D) = Eqyp[f(x*, w)]

The entropy is thus given by

H(z|D) = =Y " Eyplfe(z, w)] - log By p|fe(, w)],
ceC

and may be decomposed through the law of iterated vari-
ances [Kendall and Gall 2017] so as to yield an aleatoric

term
Ha($|D) :Ew\D[H<w7w>]
= - ZEw\D [fc(mvw) : Ingc(wﬂw)]7

ceC

which measures the mean predictive entropy across mod-
els in the posterior hypothesis space, as well as the mu-
tual information or epistemic term, H.(x|D) = H(x|D) —
H,(x|D) that represents model uncertainty projected into
the latent membership vector 7(x|D). Intuitively, aleatoric
uncertainty represents natural stochastic variation in the ob-
servations over repeated experiments; on the other hand,
epistemic uncertainty is descriptive of model unknowns due
to inadequate data or inappropriate modelling choices.

Path integrals. The posterior predictive classifier m(x|D)
accepts a path importance for an arbitrary scalar output
F(x,w) at index i, given by

! IF(6(a), w)] 88, (ax
attr?(:r):/o Ew|D|: éé(i) )} af)é)doz.

This represents a mean-average trajectory over a curve ¢ and
follows from dominated convergence. This easily amends
to the attribution of uncertainties, i.e.

! (o
attr () = — Z/o Ai(a) 8681; )da

ceC

which is defined s.t.
Aj(a) =

(1 +108 Bl fo(5(0), w)]) - Eupyp | L0021 20)]

8(52'(05)

If we wish to only attribute aleatoric uncertainties, we may
replace the above for

2plble).wyy

Ai(a) = Ewﬂ){(l +log fc(é(a)vw)) 052((1)
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Finally, attributions for any variation in epistemic uncer-
tainty is readily shown to be explained as the difference
in attributions between full and aleatoric uncertainties. We
showed an example of this in Figure[I] within Section[2]

2 ROBUSTNESS TO CHANGES IN THE
AUTOENCODER

In Table [I] we show evaluations of performance metrics
for the attribution method proposed in this paper, over res-
ampled Mnist and Fashion validation images. We train mul-
tiple variational autoencoders and use them as the generative
process to define integration paths in our method. These dif-
fer in the dimensionality of the latent space used to encode
reduced representations of images. This is the most impact-
ful layer for the functioning of the attribution method we
have presented, since straight integration lines are defined
in this space and later projected into pixel space. Too small
or large a space could lead to out of distribution images and
integration paths. Additionally, we also experiment with
altering the data augmentation mechanism used for modi-
fying images prior to training the autoencoder (results are
reported at latent space dimension of 32). No significant
changes in performance where noticed as training regimes
and learning rates were modified.

In the table, we notice consistent performance which plat-
eaus after a certain threshold, which is equivalent in these
two data sets. Consistency in performance is a consequence
of the regularisation term in latent space observed in (2).
This tunes fiducial points and integration paths strictly in
distribution, even if large latent spaces overparametrise the
encoding space.

Table 1: Performance metrics for generative attribution
method, for architecture variations in the autoencoder.

Area over EIC Uncertainty Reduction Curve
Setting . . Mnist Fashion
Mnist  Fashion
1% 5% 1% 5%
4 0999 0918 | 0474 0.738 0.165 0.350
8 0999 0916 | 0.661 0.845 0.192 0.374
16 0999 0919 | 0.704 0.846 0.196 0.393
32 0999 0925 | 0.743 0.868 0.204 0.395
-Aug | 0999 0930 | 0.687 0.876 0.184 0.403
64 0999 0922 | 0.752 0.877 0.203 0.392
128 0999 0925 | 0.756 0.879 0.206 0.400
259 0999 0927 | 0.762 0.884 0.204 0.405

3 EXAMPLES

In Figure|[I] we find examples of attributions of aleatoric and
epistemic uncertainty types, applied to dog versus cats im-
ages. Attributions are produced by vanilla integrated gradi-
ents as described in Section 2] Saliency masks are combined
with a Gaussian kernel in order to draw attention to regions
in images associated with different uncertainty types. Simil-
arly, Figure 2] shows attributions of uncertainty types across
selected Mnist images, produced by the generative method
presented in this paper.

Aleatoric attributions

Original image Epistemic attributions

EE Decrease Uncert

BN Increase Uncrt.

Figure 1: Aleatoric and epistemic contributions to uncer-
tainty for a classification task in dogs versus cats data.

3.1 QUALITATIVE EVALUATIONS

Finally, in Figure 3] we show uncertainty attribution masks
across a range of classification tasks, on all the data sets
explored in this paper. In all cases, we note that attributions
relying on counterfactual mechanisms are humanly inter-
pretable. Further integration of counterfactual methods with
path integrals ensures that attributions are isolated to few
pixels. In application to human gestures, these are always
restricted to facial features around the mouth, cheeks or eye-
brows, depending on the classification task. On the contrary,
vanilla attributions through integrated gradients (averaged
over black and white fiducial baselines) are noticeably noisy.
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Figure 2: Aleatoric and epistemic contributions to uncer-
tainty for a classification task with MNIST digits.

Also, segmentation based mechanisms do not perform well
in the data sets we have explored, which do not contain
multiple objects that can be easily segregated.

4 IMPLEMENTATION DETAILS

All of our predictive models are implemented through
Keras. The following is a summary of architectures, hyper-
parameters, training regimes and further details.

4.1 MNIST HANDWRITTEN DIGITS

Our classifier is a convolutional neural network with max-
pooling layers and dropout, structured as:

» Two convolutional layers of kernel size 3 x 3 and relu
activation; filter counts are 32 and 64 for the first and
second layers. We use stride length of 1 followed by
max-pooling layers of pool size 2 x 2.

* The output is flattened and fed through a dense layer
of 128 neurons with relu activation, followed by dro-
pout with deactivation rate of 0.5, and a final softmax
regression layer for categorical outputs.

We train to minimize the categorical cross entropy wrt the
train labels, using the Adam optimizer, over 10 epochs, with
a constant learning rate of 1e~3 and with batch size of 32.

The variational autoencoder relies on convolution and
deconvolution layers. The encoder is structured as:

* Two convolutional layers of kernel size 3 x 3, stride 2
and relu activation; filter counts are 32 and 64 for the
first and second layers.

* A dense layer of 128 neurons, with relu activation.

* Two dense layers mapping the 128 neurons to a dis-
tributional mean vector and a log-standard-deviation
vector, for the latent space for an image. Dimension
of the latent space varies in order to assess robustness,
see Appendix [2| for details.

* A random sampling operation from a normal distribu-
tion, with the afore-defined distributional parameters.

In addition, the decoder is defined as:

* A dense layer with relu activation, mapping a latent
element to a vector of dimensionality 7 x 7 x 64.

» Two deconvolutional layers of kernel size 3 x 3, stride
length 2 and relu activation; the filter counts are 64 and
32 for the first and second layers.

* An output deconvolutional layer of kernel size 3 x 3,
filter counts 1, stride length 1 and sigmoid activation
for pixel values.

The autoencoder is fitted to minimize a custom loss, with a
reconstruction term (through a cross-entropy loss) and the
Kullback-Leibler divergence among latent mappings and a
normal distribution N'(0, I'). We use the Adam optimizer,
over 50 epochs, with a constant learning rate of 1e~3 and
with batch size of 32.

4.2 FASHION-MNIST DATASET

The classifier and autoencoder are defined similarly to the
above example. However, we add two additional dropout
layers (with probability 0.5) after each max-pooling oper-
ation in the classifier. Training proceeds with the Adam
optimizer, at a constant learning rate of 1e =3 with batch size
32. The classifier is trained for 10 epochs using the cross-
entropy as the cost function. The autoencoder is trained for
50 epochs using a combination of binary cross-entropy and
the Kullback-Leibler divergence as a regularisation term.

4.3 CELEBA DATASET

Images are centred around the face and cropped to size
128 x 128, further standardized to pixel values in the range
[0, 1]. During training, we leverage data augmentation with
random rotations; we use a maximum angle of +18 degrees,
random translation by a maximum factor of 0.1 and random
horizontal flip.
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Figure 3: Uncertainty attribution masks across multiple classification tasks and data sets. We display best performing
attribution methods with a counterfactual mechanism.

The classifier is composed of 6 convolutional blocks fol-  with batch normalization, dropout with deactivation probab-
lowed by a dense layer with softmax activation. Each convo- ility of 0.2, relu activation and max-pooling (pool size 2 and
lutional block utilizes a kernel size of 3 and stride 1, along  stride 2). The number of channels in convolutional layers is,



respectively, 32, 64, 128, 128, 256 and 256. The last block
is followed by a flattening operation and a dropout layer
with deactivation probability 0.4.

We train this classifier for 5 epochs using the Adam optim-
izer with batch size 64 and the cross-entropy as cost function.
The learning rate is decreased after each epoch by a factor of
0.8; starting from 1e~* for the smiling and arched eyebrows
classifiers, and 3e =" for the bags under eyes classifier.

The encoder in the variational autoencoder is a series of 5
convolutional blocks. Each block shares the same structure,
with kernel size 3, stride 2, batch normalization and leaky-
relu activation with negative slope coefficient of 0.3. The
number of filters at the output of each block is 32, 64, 128,
256 and 512. After the last block we insert a flattening layer
and two dense layers each with 256 output neurons for the
distributional mapping to the latent space. The decoder is
a fully connected dense layer with 80192 output neurons
(reshaped into a 4 x 4 x 512 activation map) followed by
5 up-sampling blocks. Each block up-samples the input
by a factor 2 and feeds it into a convolutional layer with
kernel size 3 and stride 1, followed by batch normalisation
and leaky-relu activation with 0.3 negative slope coefficient.
The number of channels at the output of each block are
256, 128, 64, 32 and 3 respectively. We apply an additional
convolutional layer with kernel size 3, stride 1, 3 output
channels and sigmoid activation for a final reconstructed
RGB image with values restricted in the [0, 1] interval.

The autoencoder is trained for 100 epochs using the Adam
optimizer, with batch size 64 and a learning rate of 5e =4
which is decreased after each epoch by a factor of 0.98. We
use a perceptual loss function together with the Kullback-
Leibler divergence regularisation term, following details on
[Hou et al., 2017] (VAE-123 model).

4.4 ATTRIBUTION METHODS

We use standard implementations of attribution methods
with recommended parameters in corresponding publica-
tions or public repositories. In all cases, black+white and
counterfactual variants of methods are implemented equi-
valently. For path methods requiring trapezoidal integration,
we use 50 bins with grayscale images and 25 bins with high
resolution images. The process to procure counterfactual
fiducials is explained in Section 3]

Vanilla IG is implemented with a straight line as domain of
integration.

Blur IG is specified with an integration path which de-
creases blurring from a masked image, using successive
Gaussian filters. The maximum standard deviation is set to
the minimum required to maximise the average predictive
entropy across train data.

Guided IG is configured s.t. the subset of pixels traversing

value in each step is the 10% with smallest partial derivatives
of entropy wrt pixel values. We use 50 steps.

LIME is implemented through quickshift segmentation,
with kernel 1, maximum distance 5 and ratio of 0.2. We
use a binomial mask with deactivation probability 0.2, and
Lasso regression to attribute importances.

SHAP proceeds through 2 * (Pixel Count) + 2'! index
perturbations of varying size; masked index points are re-
sampled from their corresponding marginal distributions.
We use Lasso regression to attribute importances.

CLUE attributions are derived as the difference between an
image and its decoded CLUE counterpart [cf.|/Antoran et al.|
2021l Appendix F]. The cost function weighs reconstruction
and uncertainty terms, and is tuned on a validation set.

Xrai is implemented with Felzenszwalb’s segmentation al-
gorithm in order to retrieve masks. We use multiple scale val-
ues of 50, 100, 150, 250, 500 and 1200, as well as a dilation
radius of 5. This is applied to normalised images at range
[—1,1] and size 224 x 224 pixels. Resizing is undertaken
with anti-aliasing. Segments are accepted for appending into
attributions with a required difference of 50 pixels.
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