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1 NOTATION AND DEFINITIONS

M: A CPD graphical model for computing the K*MAP. More formally,M = 〈X,D,F 〉 where:

• X is the set of all variables in the model

• D is the set of domains for all respective variables in the model

• F is the set of all functions over the variables in the model

X:

• the set of all variables of the model

• X = R ∪C

· R
· "residue variables" - the set of variables corresponding to the protein residues

· the set of variables that will be maximized over (ie. the MAP variables)

· C
· "conformation variables" - each C ∈ C indexes the rotamer conformation of a particular R ∈ R
· the set of variables that will be summed over (ie. the SUM variables)

· there can be several C ∈ C that correspond to the same R ∈ R. These different C’s capture the rotamer
conformations of their particular R when the protein is in different structural states.

· C = ∪γ∈ϕCγ
· ϕ represents the set of all different substructures the protein’s subunits can exist as

· ϕ = B ∪ U
· B is the set of substructures corresponding to bound (ie. complexed) subunits corresponding to the

numerator of the K∗ ratio

· U is the set of substructures corresponding to the unbound (ie. dissociate) subunits corresponding to the
denominator of the K∗ ratio

· thus Cγ is the set of conformation variables corresponding to residues of substructure γ ∈ ϕ
· Cγ(i) is the conformation variable for residue i when residue i’s subunit is in substructure γ

• Xγ = R ∪Cγ

D:

• the set of domains for each variable inX

• Dγ is the set of domains for the variables inXγ

• for all Ri ∈ R, the respective Di = { ALA, VAL, LEU, ILE, PHE, TYR, TRP, CYS, MET, SER, THR, LYS, ARG,
HIP, HIE, HID, ASP, GLU, ASN, GLN, GLY}

• for all Cγ(i) ∈ C,

· Formulation 1

· DCγ(i) = {1, 2, ...,Mi}, where Mi is the maximum number of rotamers for any possible amino acid
assignment to Ri in state γ ∈ ϕ.

· the assignment to Cγ(i) acts as an index to the possible side chain conformations of the amino acid assigned
to Ri.

· Formulation 2

· DCγ(i) = {c | c is a rotamer in substructure γ for one of the possible amino acids of residue Ri}.



F :

• the set of all functions over the model

• F = ∪γ∈ϕFγ
· Formulation 1
· Fγ = Esbγ ∪Epwγ
· Esbγ are the set of all single bodied energies over the residues and their conformations for substructure γ
· Epwγ are the set of all pair-wise energies for all pairs of residues and their conformations that interact in

substructure γ
· Formulation 2
· Fγ = Esbγ ∪Epwγ ∪ Cγ
· Cγ are constraints ensuring that the assigned rotamer to Cγ(i) belongs to the amino acid assigned to Ri.

Mγ: The CPD graphical model M modified to include only components corresponding to substructure γ. Namely,
Mγ = 〈Xγ ,Dγ ,Fγ〉

T : Pseudo tree forM constrained for K*MAP computation and providing decomposition of the various substructures
γ ∈ ϕ.

Tγ: Pseudo tree forMγ based on a modified T such that nodes corresponding to Cγ′ , where γ′ 6= γ, have been removed.

T : Full AND/OR search tree based on T .

Tγ: Full AND/OR search tree ofMγ based on Tγ .

π: Currently expanded path in T .

πn: Path from the root to n in T .

tip(π): The last node in π that was expanded to.

ORR, ORC , etc.: The set of OR nodes whose corresponding variables belong to the variable set denoted by the superscript.
(Absence of superscript corresponds to all OR nodes).

ANDR, ANDC , etc.: The set of AND nodes of T whose corresponding variables belong to the variable set denoted by
the superscript. (Absence of superscript corresponds to all AND nodes).

LEAFT : The set of AND nodes that are leaves in T .

nX : Search tree node n corresponding to a particular variable X ∈X .

chT (n): Children nodes of n in the search tree indicated by its subscript.

chπ(n): Child of n along the π.

chunexpT (n): Children nodes of n in the search tree indicated by its subscript that have yet to be expanded to (ie. explored)
by the algorithm.

chsolvedT (n): Children nodes of n in the search tree indicated by its subscript who have been returned to after exploration
of all of their children and provably with lbK∗(n) = ubK∗(n) = v∗(n), v∗(n) being the exact K*MAP value for the
subproblem rooted at n (described futher below).

chunsolvedT (n): Children nodes of n in the search tree indicated by its subscript whose lbK∗(n) and ubK∗(n) values
are not yet known to be exact because not all their children have been expanded to and returned from. chunsolvedT (n) =
chT (n) \ chsolvedT (n).



ancOR(n), ancAND(n), etc.: Ordered ancestors of n in T , from most recent to eldest, that also belong to the set described
by the superscript.

c(n): Edge cost into n in T .

g(n): Path cost from the root into n in T . Namely, c(n) ·
∏
m∈ancAND(n) c(m).

v∗(nX): For X ∈ R, v∗(nX) is the K*MAP value (ie. the optimal K* value) for the problem rooted at n. For X ∈ C,
v∗(nX) is the partition function value of the problem rooted at n. Namely,

v∗(n) =



maxm∈chT (n) v
∗(m), n ∈ ORR

(
∏
m∈chR

T
(n)

v∗(m))(
∏
γ∈B

∏
m′∈ch

Cγ
T

(n)
v∗(m′))

(
∏
γ∈U

∏
m”∈ch

Cγ
T
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∗(m), n ∈ ANDC \ LEAFT

1, n ∈ LEAFT

v(n): A progressively accumulated quantity based on processing of fully solved and returned children fo a node n. v(n)
converges to the exact K*MAP value of the subproblem rooted at n once all of its children have been expanded to, solved,
and returned from. Namely, if chsolvedT (n) = chT (n), then v(n) = v∗(n). Formally,

v(n) =



maxm∈chsolvedT (n) v(m), n ∈ ORR
(
∏
m∈chsolved,R

T
(n)

v(m))(
∏
γ∈B

∏
m′∈ch

solved,Cγ
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(n)
v(m′))
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1, n ∈ LEAFT

µ∗γ(nX): ForX ∈ R, µ∗γ(nX) is the MMAP value for the problem rooted at n in Tγ . For X ∈ Cγ , v∗(nX) is the partition
function value of the problem rooted at n in Tγ .

µ∗γ(n) =


maxm∈chTγ (n) µ

∗
γ(m), n ∈ ORR∑

m∈chTγ (n)
µ∗γ(m) · c(m), n ∈ ORC∏

m∈chTγ (n)
µ∗γ(m), n ∈ AND \ LEAFT

1, n ∈ LEAFT

µγ(n): A progressively accumulated quantity based on the fully solved and returned children of node n in Tγ . µγ(n)
converges to the exact MMAP value of the γ-subproblem rooted at n once all of its children in Tγ have been expanded to,
solved, and returned from. Namely, if chsolvedTγ

(n) = chTγ (n), then µγ(n) = µ∗γ(n). Formally,

µγ(n) =



maxm∈ch
Tsolvedγ

(n) µγ(m), n ∈ ORR∑
m∈ch

Tsolvedγ
(n) µγ(m) · c(m), n ∈ ORC∏

m∈ch
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(n) µγ(m), n ∈ AND \ LEAFT

1, n ∈ LEAFT

hK∗(n): Precompiled WMBE-K*MAP heuristic for the problem rooted at n.

hZγ (n): Precompiled WMBE-MMAP heuristic for the problem rooted at n considering only X ∈Xγ = R ∪Cγ .



ubK∗(n): Progressively updated upper bound heuristic of the K*MAP problem rooted at n. Formally,

ubK∗(n) =



max(v(n),maxm∈chunsolvedT (n)hK∗(m)), n ∈ ORR

v(n) ·
(
∏
m′∈chunsolved,R

T
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ubK∗(n, π): Progressively updated upper bound heuristic of the K*MAP problem rooted at n consistent with the partial
search tree π. Formally,

ubK∗(n, π) =


ubK∗(n), n ∈ ORR ∩ tip(π)

ubK∗(chπ(n), π), n ∈ ORR ∩ π \ tip(π)

ubK∗(n) ·
∏
m∈chπ(n)

ubK∗ (m,π)
hK∗ (m) n ∈ ANDR ∩ π

ubZγ (n): Progressively updated upper bound of the MMAP problem for substructure γ rooted at n. Formally,

ubZγ (n) =


max(µγ(n),maxm∈chunsolvedTγ

(n)hZγ (m)), n ∈ ORR

µγ(n) +
∑
m∈chunsolvedTγ

(n) c(m) · hZγ (m)), n ∈ ORCγ

µγ(n) ·
∏
chunsolvedTγ

(n) hZγ (m), n ∈ AND

MMAPγ(n): The marginal map value of subunit γ conditioned on residue assignments consistent with the path from the
root to n. Formally,

MMAPγ(n) =

{
µ∗γ(n) ·

∏
m∈ancAND(n)

∏
m′∈chTγ (m)\πn µ

∗
γ(m′), n ∈ R

µ∗γ(n) ·
∏
m∈ancANDR (n)

∏
m′∈chTγ (m)\πn µ

∗
γ(m′), n ∈ Cγ

A×∗Zγ (n): Called the multiplicative ancestral branching mass, A×∗Zγ (n) captures the portion of MMAPγ(n) due to OR
branchings off of n’s AND ancestors. The product of A×∗Zγ and the partition function of the subtree consisting of πn and the
subtree of Tγ rooted at n is the contribution to Zγ from all full configurations consistent with πn. Formally,

A×∗Zγ (n) =
∏

m∈ancAND(n)

∏
m′∈chTγ (m)\πn

v∗Zγ (m′)

A×Zγ (n): Upper bound of A×∗Zγ for node n.

A×Zγ (n) =
∏

m∈ancAND(n)

vZγ (m) ·
∏

m′∈chunexpTγ
(m)

hZγ (m′)

S∗Zγ(n): The contribution to Zγ from all configurations not consistent with πn.

S∗Zγ(n) =
∑

m∈ancOR(n)

R∗Zγ(m) · g(m) ·
∑

m′∈chTγ (m)\πn

c(m′) · µ∗γ(m)

SZγ(n): Upper bound of S∗Zγ .

SZγ(n) =
∑

m∈ancOR(n)

A×Zγ (m) · g(m) · (µγ(m) +
∑

m′∈chunexpTγ
(m)

c(m′) · hZγ (m′))

UBZγ (n): Progressively updated upper bound heuristic on the entire partition function of the substructure γ ∈ Φ.
Formally,

UBZγ (n) =
{
A×Zγ (n) · g(n) · ubZγ (n) + SZγ(n), n ∈ tip(π)



2 AOBB-K*MAP ALGORITHM DETAILS

Algorithm 1: AOBB-K*MAP

input :CPD graphical modelM; pseudo-tree T ; K∗ upper-bounding heuristic function hubK∗(.); Zγ upper-bounding
heuristic function hubZγ (.); and subunit stability threshold threshold(γ) for each subunit γ ∈ ϕ

output :K∗MAP (M)

1 begin
2 Initialize MiniSat with constraints fromM // MiniSat initialization
3 and generate literals via constraint propagation

4 π ← dummy AND node nD // initialize DFS to start from dummy root node, nD
5 ubK∗(nD)←

∏
m∈chT (nD) hK∗(m) // initialize nD with global UB on K*

6 lbK∗(nD)← −inf // no solution yet found as a lower bound
7 g(nD)← 1
8 foreach γ ∈ ϕ do // initialize nD with subunit-specific UB values
9 A×Zγ (nD)← 1

10 A+
Zγ

(nD)← 0

11 ubZγ (nD)←
∏
m∈chTγ (nD) hZγ (m) // initialize ubZγ (nD) to the MMAPγ global UB value

12 end
13 while nX ← EXPAND(π) do // DFS Branch-and-Bound

14 if MiniSat(π) = false then // Constraint-Propagation Pruning (CPP)
15 PRUNE(π)

16 else if ∃γ ∈ ϕ s.t. UBZγ (nX) < threshold(γ) then // Subunit-Stability Pruning (SSP)
17 PRUNE(π)

18 else if X ∈ R then
19 if ∃a ∈ ancOR(n) s.t. ubK∗(a, π) < lbK∗(a) then // K*MAP Upper-Bound Pruning (UBP)
20 PRUNE(π)

21 end

22 else if chunexpT (n) = ∅ then // DFS Backtracking Step
23 BACKTRACK(π)

24 end
25 return ubK∗(nD) = lbK∗(nD) = K∗MAP (M)

26 end



Algorithm 2: AOBB-K*MAP subroutine, EXPAND
input :partial search tree π
output :newly expanded node nX of π

1 begin
2 if π = ∅ then // signals end of DFS search
3 return null
4 else
5 nW ← tip(π) // nW is the node to be expanded

6 nX ← next unexplored child of nW // nX is the next node in the DFS
7 chunexpT (nW )← chunexpT (nW ) \ nX
8 if nX ∈ OR then
9 foreach γ ∈ ϕ associated with X do

10 A×Zγ (nX)← A×Zγ (nW ) · ubZγ (nW )/hZγ (nX) // update RZγ to include siblings of nX
11 A+

Zγ
(nX)← A+

Zγ
(nW ) // no new additive ancestral branching

12 end
13 if X ∈ R then // for OR MAP nodes...
14 ubK∗(nX)← maxm∈chT (nX) hK∗(m)
15 foreach γ ∈ ϕ associated with X do
16 ubZγ (nX)← maxm∈chTγ (nX) hZγ (m)

17 end
18 else if X ∈ Cγ then // for OR SUM nodes of subunit γ...
19 ubK∗(nX)←

∑
m∈chT (nX) c(m) · hK∗(m)

20 ubZγ (nX)←
∑
m∈chT (nX) c(m) · hZγ (m)

21 end

22 else if nX ∈ AND then // for SUM or MAP AND nodes...
23 foreach γ ∈ ϕ do
24 A×Zγ (nX)← A×Zγ (nW )

25 ubZγ (nX)←
∏
m∈chTγ (nX) hZγ (m)

26 end
27 if X ∈ R then

28 ubK∗(nX)←
(
∏
m∈chR

T
(n)

hK∗ (m))(
∏
γ∈B

∏
m′∈ch

Cγ
T

(n)
hZγ (m

′))

(
∏
γ∈U

∏
m”∈ch

Cγ
T

(n)
hZγ (m”))

// ubK∗(nX) initialized by combining UB heuristic values of its
// children, dividing values corresponding to dissociate subunits

29 foreach γ ∈ ϕ associated with X do
30 A+

Zγ
(nX)← A+

Zγ
(nW ) // no new additive ancestral branching

31 end
32 else if X ∈ Cγ then
33 A+

Zγ
(nX)← A+

Zγ
(nW ) +A×Zγ (nW ) · g(nW ) · (ubZγ (nW )− c(nX) · hZγ (nX))

// update A+
Zγ

to include siblings of nX
34 end
35 end
36 chunexpT (nX)← chT (nX)
37 π ← π ∪ nX
38 return nX ;

39 end
40 end



Algorithm 3: AOBB-K*MAP subroutine, BACKTRACK
input :partial search tree π
output :None

1 begin
2 if π = ∅ then // backtracked all the way through root
3 return
4 else
5 nX ← tip(π) // nX is the node we’re backtracking from
6 nW ← parT (nX) // nW is the node we’re backtracking to
7 π ← π \ nX
8 if nW ∈ AND then // backtracking from OR node nX to AND node nW
9 if X ∈ Cγ s.t. γ ∈ U and W ∈ R then

10 ubK∗(nW )← ubK∗(nW ) · hK∗(nX)/ubK∗(nX) // tighten ubK∗(nW ) via update of
// denominator term nX contributes to

11 else
12 ubK∗(nW )← ubK∗(nW )/hK∗(nX) · ubK∗(nX) // tighten ubK∗(nW ) via update of

// numerator term nX contributes to
13 end
14 foreach γ ∈ ϕ associated with X do
15 ubZγ (nW )← ubZγ (nW )/hZγ (nX) · ubZγ (nX) // update upper-bound bound on Zγ at nW
16 end
17 else if nW ∈ OR then // backtracking from AND node nX to OR node nW
18 if W ∈ R then
19 ubK∗(nW )← maxm∈chT (nW )ubK∗(m) // tighten ubK∗(nW ) via reevaluation of its children
20 foreach γ ∈ ϕ associated with W do
21 ubZγ (nW )← maxchT (nW )ubZγ (m) // update upper-bound bound on Zγ at nW
22 end
23 else if W ∈ Cγ then
24 ubK∗(nW )← ubK∗(nW )− c(nX) · (hK∗(nX)− ubK∗(nX)) // tighten ubK∗(nW ) via update

// of ubK∗(nX) of summed AND child nX
25 ubZγ (nW )← ubZγ (nW )− c(nX) · (hZγ (nX)− ubZγ (nX)) // tighten ubZγ (nW ) via update

// of ubZγ (nX) of summed AND child nX
26 end
27 end
28 if chunexpT (nW ) = ∅ then // Continue Backtracking
29 BACKTRACK(π)

30 else if ∃γ ∈ ϕ s.t. UBZγ (nW ) < threshold(γ) then // Subunit-Stability Pruning (SSP)
31 PRUNE(π)

32 else if W ∈ R then
33 if ∃a ∈ ancOR(nW ) s.t. ubK∗(a, π) < lbK∗(a) then // K*MAP Upper-Bound Pruning (UBP)
34 PRUNE(π)
35 end
36 end
37 end



Algorithm 4: AOBB-K*MAP subroutine, PRUNE
input :partial search tree π
output :None

1 begin
2 if π = ∅ then // pruned all the way through root
3 return
4 else
5 nX ← tip(π) // nX is the node we’re pruning
6 nW ← parT (nX) // nW is the node we’re backtracking to
7 π ← π \ nX // explicitly prunes nX from π

8 if nW ∈ AND then // also prune AND parent nW which will be missing pruned OR child nX
9 PRUNE(π)

10 else if nW ∈ OR then
11 if W ∈ R then
12 ubK∗(nX)← −inf // implicitly marks nX as having been pruned
13 ubK∗(nW )← maxm∈chT (nW )ubK∗(m) // recompute ubK∗(nW ) excluding pruned child
14 foreach γ ∈ ϕ associated with W do
15 ubZγ (nX)← −inf // implicitly marks nX as having been pruned
16 ubZγ (nW )← maxchT (nW )ubZγ (m) // recompute ubZγ (nW ) excluding pruned child
17 end
18 else if W ∈ Cγ then
19 PRUNE(π) // invalidity of a portion of the SUM search space implies

// invalidity of the entire corresponding SUM search space
20 end
21 if chunexpT (nW ) = ∅ then // Continue Backtracking
22 BACKTRACK(π)

23 else if ∃γ ∈ ϕ s.t. UBZγ (nW ) < threshold(γ) then // Subunit-Stability Pruning
24 PRUNE(π)

25 else if W ∈ R then
26 if ∃a ∈ ancOR(nW ) s.t. ubK∗(a, π) < lbK∗(a) then // K*MAP Pruning
27 PRUNE(π)
28 end
29 end
30 end
31 end
32 end



1 INTRODUCTION

Graphical models provide a powerful framework for reasoning about conditional dependency structures over many variables.
The Marginal MAP (MMAP) query asks for the optimal configuration of a subset of variables, called MAP variables, that
have the highest marginal probability. We define a new related task, K*MAP, which instead asks for the configuration of
MAP variables that maximizes a quotient of the marginalization of conditionally disjoint subsets of the remaining variables.
This ratio is known as K*. In the context of computational protein design (CPD), K* estimates binding affinity between
interacting subunits. Thus, maximizing K* corresponds to maximizing the likelihood that the subunits will associate Hallen
and Donald [2019].

Like MMAP, K*MAP distinguishes between maximization (MAP) variables and summation (SUM) variables. Moreover,
the SUM variables are further partitioned into a subset whose marginal corresponds to the numerator of the K* ratio and a
subset corresponding to the denominator. Like MMAP, the K*MAP problem is a mixed inference task and more difficult
than either pure max- or sum- inference tasks as its summation and maximization operations do not commute. In terms of
processing of variables for inference, this forces constrained variable orderings that may have significantly higher induced
widths Dechter [1999, 2019]. This in turn also implies larger search spaces when using search algorithms or larger messages
when using message-passing schemes. Even the simpler case of MMAP is NPPP-complete and it can be NP-hard even on
tree structured models Park [2002]. In terms of bounded approximations, bounding the K* ratio requires both upper and
lower bounding of marginals, producing an additional challenge over bounding of a MMAP value.

Nevertheless, over the last several years, there have been several advances in algorithms for solving the MMAP task
Marinescu et al. [2018], many of which have potential for being adapted for the K*MAP query. In order to set the framework
for leveraging these advances for K*MAP, this work presents four main contributions:

1. Two formulations of K*MAP as a graphical model
2. A Weighted Mini-Bucket Elimination K*MAP heuristic, wMBE-K*

3. Proof-of-concept for Domain-Partitioned Weighted Mini-Bucket Elimination K*MAP heuristic
4. AOBB-K*, a depth-first branch-and-bound algorithm over AND/OR search spaces for solving CPD formulated

as a K*MAP problem
5. A thresholding scheme to exploit determinism accompanied with performance guarantees



2 BACKGROUND

2.1 COMPUTATIONAL PROTEIN DESIGN

Computational Protein Design (CPD) is the task of mutating a known protein’s amino acid sequence in hopes of achieving a
desired objective such as improving the protein’s energetics, improving protein-ligand interactions, or reducing interactions
of a protein with inhibitors. In CPD, certain amino acid positions (or residues) of a protein-of-interest are deemed as mutable
- these are amino acid positions where different amino acid mutations will be considered - and through a computational
process, a preferred sequence is determined.

Typically, throughout the computational process, various sets of mutations are explored, each comprising a particular amino
acid sequence. Given a particular sequence (or in some methods, even partial sequence) an estimate of the resulting protein’s
goodness can be determined. This goodness is determined by considering the possible conformations of the resulting
protein, namely considering possible positioning of its backbone and side-chains. The state space for these conformations is
continuous (and even when discretized, is extremely large) leading to an intractable problem.

As such, many simplifications can be made to allow for a more tractable problem:

• Consider a subset of Mutable Residues: consideration of only a subset of the residues involved in the interactions as
mutable.

• Predetermined Side-Chain Rotamers: discretization of side-chain conformations as rotamers.

• Fixed Backbone Structure: assumption of a fixed protein backbone conformation.

With these simplifying assumptions, many algorithms have been designed to find mutations that can potentially result in
improved protein functionality Hallen and Donald [2019], Zhou et al. [2016].

2.2 K* AND K*MAP

The affinity between two interacting protein subunits P and L is correlated to an equilibrium of the chemical reaction
forming their complexed state PL:

P + L
 PL (1)

This said equilibrium is associated with a constant, Ka, and can be determined in vivo by observing the persisting
concentrations of each species defined by

Ka =
[PL]

[P ][L]
(2)

However, in order to compare Ka values of various designs in vivo, it is necessary to synthesize the interacting subunits
through molecular processes that are both timely and costly.

Ka can also be approximated as

K
∫

=
Z

∫
PL

Z
∫
PZ

∫
L

, Z
∫
γ =

∫
C

e−
Eγ (c)

RT dc (3)

where Z
∫
PL, Z

∫
P , and Z

∫
L are partition functions of the bound and unbound states that capture the entropic contributions

of their various conformations C. (Eγ(c) represents the energy of a particular conformation c of state γ ∈ ϕ where
ϕ = {P,L, PL}, R is the universal gas constant, and T is temperature (in Kelvin). We can further use a model that
discretizes the conformation space. This computed estimate is denoted as K* Ojewole et al. [2018]:

K∗ =
ZPL
ZPZL

, Zγ =
∑

c∈D(C)

e−
Eγ (c)

RT (4)



Due to the independence between the interaction of residues with each other across the dissociate subunits, we can generalize
further expressing K* as:

K∗ =
ZB
ZU

, (5)

where B respresents the bound (complexed) state(s) and U represents the unbound (dissociate) states. (For the two-subunit
system in our example, B = {PL} and U = {P} ∪ {L}). This more generalized representation, can be used directly for K*

computations involving more than two subunits.

A common goal in protein design is to maximize protein-ligand interaction. Previously, this was done by minimizing an
objective called the GMEC (global minimum energy conformation) over only the complexed protein state PL Ruffini et al.
[2021], Hallen and Donald [2019], Zhou et al. [2016]. The GMEC, being a pure minimum over the energies of the complex’s
conformations, ignores the realization that protein structures are dynamic. Furthermore, by the GMEC focusing only on
the protein’s complexed state, it ignores the dynamicity of the subunit interactions. However, since minimizing the GMEC
results in a pure optimization task - a task much easier than that of mixed inference, many solvers use this objective. On
the other hand, the stronger K* objective captures both the dynamicity of protein conformations and subunit interactions.
K*MAP is the formalization of computational protein design as a task to maximize K*,

K∗MAP = argmax
R

K∗(r) (6)

where we look for amino acid assignmentsR=r that maximize K*. Thus, the goal of recent work and the work presented
here is to develop efficient algorithms for computing K*MAP, from which one can predict a small set of promising sequences
to experiment on in vivo, saving great time and cost. Our work taps into recent algorithms developed for the marginal map
task defined over graphical models.

2.3 GRAPHICAL MODELS

A graphical model, such as a Bayesian or a Markov network Pearl [1988], Darwiche [2009], Dechter [2013], can be defined
by a 3-tupleM=(X,D,F), where X={Xi : i∈V } is a set of variables indexed by a set V and U={Di : i∈D} is the
set of finite domains of values for each Xi. Each function fα ∈ F is defined over a subset of the variables called its scope,
Xα, where α ⊆ V are the indices of variables in its scope and Dα denotes the Cartesian product of their domains, so that
fα : Dα→ R≥0. The primal graph G=(V,E) of a graphical model associates each variable with a node (V=X), while
arcs e∈E connect nodes whose variables appear in the scope of the same local function. Graphical models can be used to
represent a global function, often a probability distribution, defined by Pr(X) ∝

∏
α fα(Xα).

2.4 AND/OR SEARCH SPACE FOR MIXED INFERENCE

A graphical model can be transformed into a weighted state space graph. In an OR search space, which is constructed
layer-by-layer relative to a variable ordering, paths from the root to the leaves represent full configurations - or assignments
to all variables - where each successive level corresponds to an assignment of the next variable in the ordering. A more
compact AND/OR search space can also be constructed by capturing conditional independencies, thus facilitating more
effective algorithms Dechter and Mateescu [2007].

An AND/OR search space is defined relative to a pseudo tree of a primal graph which can capture conditional independences.
A pseudo tree T =(V,E′) of a primal graph G=(V,E) is a directed rooted tree that spans G such that every arc of G not
in E′ is a back-arc in T connecting a node to one of its ancestors (Figure 1(a),(b)). For mixed inference problems where a
subset of variables are to be maximized (MAP variables) and the remaining variables (SUM variables) marginalized, the
pseudo tree must be constrained such that the MAP variables precede SUM variables in the variable ordering Lee et al.
[2016], Marinescu et al. [2018].

Given a pseudo tree T of a primal graph G, the AND/OR search tree TT guided by T has alternating levels of OR nodes
corresponding to variables, and AND nodes corresponding to assignments from its domain with edge costs extracted from
the original functions Dechter and Mateescu [2007]. Each arc into an AND node n has a cost c(n) defined to be the product
of all factors fα inM that are instantiated at n but not before.

A solution tree is a subtree of TT satisfying: (1) it contains the root of TT ; (2) if an OR node is in the solution tree, exactly
one of its AND child nodes is in the solution tree; (3) if an AND node is in the tree then all of its OR children are in the
solution tree. Dechter and Mateescu [2007].



Figure 1: A full AND/OR tree representing all 16 solutions.
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(a) A primal graph.

(b) Bucket elimination example

Figure 2: (a) A primal graph of a graphical model with 7 variables. (b) Illustration of BE with an ordering A B C E D F G.

2.5 BUCKET ELIMINATION

Given a variable ordering d, Bucket Elimination Dechter [1999], or BE, is an inference scheme that processes variables
one by one with respect to the reverse of d. For any next variable Xp, all the functions in bucket Bp - namely the original
functions in the graphical model and any messages passed to Bp from previous buckets - are processed by marginalizing Xp

from the product of the functions. This generates a new bucket function or message, denoted λp→a, or λp for short.

λp→a =
∑
Xp

∏
fα∈Bi

fα (7)

where Xa is the latest variable in λ’s scope along d. The λ function is placed in the bucket of Xa, Ba. Once all the variables
are processed, BE outputs all the messages and the exact value of Z by taking the product of all the functions present in the
bucket of the first variable. Figure 2a shows a primal graph of a graphical model with variables indexed from A to G with
functions over pairs of variables that are connected by an edge. In this particular example F = {f(A), f(A,B), f(A,D),
f(A,G), f(B,C), f(B,D), f(B,E), f(B,F ), f(C,D), f(C,E), f(F,G)}.

Bucket-Elimination can be viewed as a 1-iteration message-passing algorithm along its bucket-tree (bottom-up). The nodes
of the tree are the different buckets. Each bucket of a variable contains a set of the model’s functions depending on the given
order of processing. There is an arc from bucket Bp to a parent bucket Ba, if the function created at bucket Bp is placed in
bucket Ba. We illustrate BE message flow on our example problem in Figure 2b.



Complexity. Both the time and space complexity of BE are exponential in the induced-width, which can be computed as
a graph parameter based on the ordered primal graph Dechter [2019]. The induced width is the size of the largest number of
variables, in the scope of any message. BE becomes impractical if the induced-width is large and approximation schemes
have been developed to address this Dechter and Rish [2002], Liu and Ihler [2011].



3 GRAPHICAL MODEL FOR K*MAP COMPUTATION

As the first main contribution of this work, we describe two formulations of CPD problems as graphical models for use in
computing K*MAP. These build upon previous work from MMAP (see Marinescu et al. [2018]) and CPD graphical model
formulations for optimizing a weaker objective called the GMEC Zhou et al. [2016].

3.1 FORMULATION 1 (F1)

Formulation 1 distinguishes itself by using an indexing scheme for identifying residue rotamers. For any amino acid
assignment to a residue i, Ri = aa, the assignment to its associated conformation variable, Cγ(i) = c, indexes the particular
rotamer of amino acid aa that is being considered. We elaborate below.

Variables and Domains We introduce a set of residue variables, R = {Ri | i ∈ {1, 2, ..., N}}, representing the N
different residues (ie. positions) of the proteins. Each Ri has corresponding domain DRi = {aa | aa is a possible amino
acid assignment to residue i}. For residues that are being considered for mutation (mutable residues), each Ri considers
one of ∼20 possible amino acid assignments. These are the MAP variables maximized over in the K*MAP task.

We also introduce a set of conformation variables, Cγ = {Cγ(i) | i ∈ {1, 2, ..., N}}, each indexing discretized spacial
conformations (ie. rotamers) of the amino acid at residue Ri when the protein is in state γ ∈ ϕ, where ϕ = B ∪ U . Each
Cγ(i) has corresponding domain DCγ(i) = {1, 2, ...,Mi}, where Mi is the maximum number of rotamers for any possible
amino acid assignment to Ri in state γ. Since each amino acid assignment to Ri has a different side chain with different
possible rotamers, the assignment to Cγ(i) acts as an index to the possible side chain conformations of the amino acid
assigned to Ri. The Cγ are the SUM variables which we marginalize over.

Functions There are two sets of functions in F1.

Esbγ = {Esbγ(i)(Ri, Cγ(i)) | i ∈ {1, 2, ..., N}} is a set of functions that captures the energies of interaction of the amino acid
at each residue i with itself and the surrounding backbone. For any assignment to Cγ(i) (which corresponds to an index for
the rotamers of the amino acid assigned to Ri) that is out of range of the assigned amino acid’s possible rotamers, an infinite
energy value is assigned as an implicit constraint.

Epwγ = {Epwγ(ij)(Ri, Cγ(i), Rj , Cγ(j)) | for i, j s.t.Ri and Rj interact} is a set of functions that captures the pair-wise
energies of interaction between the amino acids of residues that are in close spacial proximity. For any assignment to Cγ(i)
(which corresponds to an index for the rotamers of the amino acid assigned to Ri) that is out of the range of its residue’s
assigned amino acid’s possible rotamers, an infinite energy value is assigned as an implicit constraint.

Objective Function The K* objective can thus be expressed as K∗(R1...RN ) = ZB(R1...RN )
ZU (R1...RN ) , where we assume temper-

ature T in Kelvin and Universal Gas Constant R where

Zγ(R1...RN ) =
∑

Cγ(1),...,Cγ(N)

∏
Esb
γ(i)
∈Esbγ

e−
Esb
γ(i)

(Ri,Cγ(i))

RT

·
∏

Epw
γ(ij)
∈Epwγ

e−
E
pw
γ(ij)

(Ri,Cγ(i),Rj,Cγ(j))

RT

(8)

F1’s graphical formulation can be seen in Figure 3.



Figure 3: Illustration of F1.



3.2 FORMULATION 2 (F2)

Formulation 2 was inspired by the works of Viricel et al. [2018] and Vucinic et al. [2019] and distinguishes itself by using
explicit constraints to restrict invalid amino acid - rotamer combinations. For each corresponding residue - conformation
variable pair, there exists a constraint to ensure the assignment to the residue variable matches the rotamer assignment of its
conformation variable. We elaborate below.

Variables and Domains As in F1, we introduce a set of residue variables, R = {Ri | i ∈ {1, 2, ..., N}}, representing the
N different residues (ie. positions) of the proteins. Each Ri has corresponding domain DRi = {aa | aa is a possible amino
acid assignment to residue i}. For mutable residues, each Ri considers one of ∼20 possible amino acid assignments. As
before, these are the MAP variables maximized over in the K*MAP task.

We also introduce a set of conformation variables, Cγ = {Cγ(i) | i ∈ {1, 2, ..., N}}, this time each representing the
specific amino acid and conformation of the N different residues. Namely, each each Cγ(i) has corresponding domain
DCγ(i) = {c | c is a rotamer for one of the possible amino acids of residue Ri}. Since each amino acid (ie. assignment to
Ri) has a different side chain with different possible rotamers, the amino acid assignment to Ri will act as a selector into the
possible assignments to Cγ(i). These are the SUM variables which we marginalize over.

Functions There are three sets of functions in F2.

C = {Cγ(i)(Ri, Cγ(i)) | i ∈ {1, 2, ..., N}, γ ∈ ϕ } is a set of constraints ensuring that the assigned rotamer to Cγ(i) belongs
to the amino acid assigned to Ri.

Esbγ = {Esbγ(i)(Cγ(i)) | i ∈ {1, 2, ..., N}} is a set of functions that captures the energies of interaction of the amino acid at
each residue i with itself and the surrounding backbone.

Epwγ = {Epwγ(ij)(Cγ(i), Cγ(j)) | for i, j s.t.Ri and Rj interact} is a set of functions that captures the pair-wise energies of
interaction between the amino acids of residues that are in close spacial proximity.

Objective Function As before, the K* objective can be expressed as K∗(R1...RN ) = ZB(R1...RN )
ZU (R1...RN ) , where we assume

temperature T and Universal Gas Constant R where

Zγ(R1...RN ) =
∑

C1,...,CN

∏
Cγ(i)∈C

Cγ(i)(Ri, Cγ(i))

·
∏

Esb
γ(i)
∈Esbγ

e−
Esb
γ(i)

(Cγ(i))

RT ·
∏

Epw
γ(ij)
∈Epwγ

e−
E
pw
γ(ij)

(Cγ(i),Cγ(j))

RT

(9)

A general schematic for a guiding pseudo tree that results from both F1 and F2 formulations showing the decomposition that
results can be seen in Figure 4.

Figure 4: Schematic of resulting pseudo tree for CPD formulated as F1 or F2.



4 WMBE-K*

We present a weighted mini-bucket scheme for K∗, which is an adaptation of the mini-bucket scheme to the new K∗

objective. The algorithm, called wMBE-K*, is described in Algorithm 5.

Algorithm 5: wMBE-K*

input :Graphical model M = {X,D,F }; evidence e; constrained variable order o = [X1, ..., Xn] with MAP
variables first; a partition ofX . an i-bound i

output :upper bound on the K*MAP value

1 begin
2 Condition each f ∈ F according to the provided evidence e and remove the corresponding variables from the

scopes of the functions.
3 Partition the conditioned fs into buckets Bn, ..., B1 s.t. each function is placed in the greatest bucket corresponding

to a variable in its scope.
4 foreach k = n...1 do
5 Generate a mini-bucket partitioning of the bucket functionsMBk = {MB1

k, ...,MBTk } s.t. the number of
variables in the scopes of the functions of any mini bucket MBtk ∈MBk is ≤ i

6 if Xk ∈MAP then
7 foreach MBtk ∈MBk do
8 λtk ← maxXk

∏
f∈MBtk

f

9 end
10 else
11 if Xk ∈ CB then
12 Select a set of positive weights w = {w1, ..., wT } s.t.

∑
wt∈w wt = 1

13 foreach MBtk ∈MBk do
14 λtk ← (

∑
Xk

∏
f∈MBtk

fwt)1/wt

15 end
16 else if Xk ∈ CU then
17 Select a negative weight for w1

18 Select a set of positive weights w = {w2, ..., wT } s.t.
∑
wt∈w wt = 1

19 foreach MBtk ∈MBk do
20 λtk ← (

∑
Xk

∏
f∈MBtk

fwt)1/wt

21 if scope(λtk) ∩CU = ∅ then
22 λtk ← 1/λtk
23 end
24 end
25 end
26 end
27 Add each λtk to the bucket of the highest-index variable in its scope.
28 end
29 return λ1
30 end

wMBE-K* operates similarly to wMBE-MMAP Dechter and Rish [2002], Ping et al. [2015], ?. Two key similarities
are that (1) it takes a variable ordering that constrains buckets of MAP variables to be processed last (line 4) for which
maximization (instead of summation) occurs, and (2) for any bucket that has a width larger than a provided i-bound, a
bounded approximation is made by partitioning the bucket functions into mini-buckets (line 5) and taking the product of
their power-sums over the bucket variable (lines 11-15, 16-20), leveraging Holder’s Inequality Hardy et al. [1988]. The
power sum is defined as follows:

w∑
x

f(x) = (
∑
x

f(x)
1
w )w (10)



The power sum reduces to a standard summation when w = 1 and approaches max when w → 0+.

Proposition 4.1 (Holder inequality). Let fi(x), i = 1..r be a set of functions and w1, ..., wr be a set of positive weights,
s.t., w =

∑r
i=1 wi then,

w∑
x

r∏
i=1

fi(x) ≤
r∏
i=1

wi∑
x

fi(x) (11)

In order to adapt wMBE-MMAP for K*MAP, two key innovations are required: (1) buckets corresponding to variables in
CU , whose marginal belongs to the denominator of the K* expression, are lower-bounded (to lead to an upper bound on K*)
by using a modification to Holder’s inequality that incorporates negative weights Liu and Ihler [2011] (lines 16-20), and
(2) when messages are passed from buckets corresponding to variables in CU to that of R, the messages are inverted to
accommodate being part of the denominator (line 22).

Although details are omitted here, wMBE-K* can also employ cost shifting to tighten its bounds (see Liu and Ihler [2011]).
In our empirical evaluation cost-shifting is implemented as well.

Complexity. Like wMBE-MMAP Dechter and Rish [2002], Ping et al. [2015], ?, wMBE-K* is exponential in the i-bound
parameter both in time and memory.

Challenges in the Quality of the Bound. As can be expected, bounding a ratio of functions (as in the case for K*) is
particularly challenging, relying on both upper and lower bounds. Lower bounding of functions is particularly challenging.
For larger problems and low i-bounds, this can often yield relatively weak bounds. We provide an improvement to help
remedy this next.



5 DOMAIN-PARTITIONED MBE

Until now, we have been using a [weighted] mini-bucket heuristic that is blind to explicit hard constraints and any consistency
issues. This can be potentially handicapping when lower-bounding given that constraints are represented as zero’s in functions
and can cause premature deflation of lower bounds. In particular, in mini-bucket elimination Dechter and Rish [2003] where
lower bounds are created via minimizing over function values any zeros in the functions being minimized will cause the
resulting lower bound itself to drop to zero. However in the CPD domain, where functions represent protein energetics,
we can guarantee that the partition function for every subunit is positive (ie. every configuration is "satisfiable"), we can
guarantee a positive lower bound by using the following simple remedy.

Given variables X , Y , and Z, and objective

obj =
∑
X

f(x, y) · g(x, z)

.

Lets identify a set
X ′ = {x ∈ X|g(x, z) 6= 0}

and
εX′ = minx∈X′g(x, z)

Clearly εX′ > 0. Therefore we can derive:

obj =
∑
x∈X′

f(x, y) · g(x, z) +
∑

x∈X\X′
f(x, y) · g(x, z) =

∑
X∈X′

f(x, y) · g(x, z) >=

∑
X∈X′

f(x, y) ·minx∈X′g(x, z) = εX′ ·
∑
X∈X′

f(x, y) > 0.

The last quantity is greater than zero unless f(x,z) is identically zero over X ′.



6 AOBB-K*

We now present the key algorithmic contribution of this work: AOBB-K* (Algorithm 6), a depth-first AND/OR branch-
and-bound (BnB) scheme for solving the K*MAP task. With state-of-the-art K* optimizers employing memory intensive
best-first search Ojewole et al. [2018], Hallen et al. [2018], depth-first algorithms provide a search methodology linear in
space allowing for solving problems unable to be solved by best-first methodologies due to memory Zhou et al. [2016].

At a high level, AOBB-K* adapts AOBB-MMAP ? for the K*MAP task for CPD by (1) guiding search using a K*

upper-bounding heuristic such as wMBE-K*, (2) adjusting computations to be appropriate for computing K* values, (3)
incorporating subunit-stability constraints (SSC’s) which enforce the partition function of each protein subunit, Zγ , to be
greater than an inputted biologically-relevant threshold Sγ Ojewole et al. [2018], and (4) by using the SAT-solver MiniSat
Eén and Sörensson [2004] to identify, and avoid searching, provably invalid configurations such as those with inconsistent
amino-acid - rotamer pairs.

AOBB-K* traverses the underlying AND/OR search tree guided by the provided pseudo tree T , expanding nodes in
a depth-first manner (line 11), and pruning whenever any of three conditions are triggered: (1) the resulting variable
assignments violate a constraint established by MiniSat (constraint-propagation pruning, CPP) (line 12), (2) a subunit-
stability constraint is violated (subunit-stability pruning, SSP) (line 14), or (3) it can be asserted that the current amino acid
configuration cannot produce a K* better than any previously found (upper-bound pruning, UBP) (line 17). Backtracking
occurs when all of the node’s children have been explored and returned from (line 20), at which point the K* value of the
sub problem the node roots is known exactly and the bounds of its parents are tightened accordingly.

The algorithm progresses in this manner until it finally returns to, and updates, the dummy root of the tree with the maximal
K* value corresponding to an amino acid configuration that also satisfies the subunit-stability thresholds.

More specifically, the algorithm begins with a two-step initialization. First, constraint literals are generated by MiniSat
through applying full constraint propagation to the problem (line 3). Second, the depth-first search is initialized to start at a
dummy AND node that roots the AND/OR search space corresponding to T (line 4).

Throughout search, each node n maintains a progressive upper bound ubK∗(n) on the K*MAP of the sub problem it roots1.
When a node is first expanded, this value is initialized based on upper-bounding heuristic function hubK∗(.) (line 5). As search
progresses, ubK∗(n) decreases, converging towards the K*MAP of the sub problem rooted at n.

Each node n also maintains a progressively improved upper bound on the partition function of each subunit γ consistent
with the path to n, UBZγ (n)1, (line 9). At each step in the search, UBZγ (n) is recomputed to ensure that it is greater than
the given Sγ , thus satisfying the SSC’s) and enforcing consideration of only biologically relevant solutions Ojewole et al.
[2018].

Theorem 6.1 (AOBB-K* Correctness and Completeness). AOBB-K* is sound and complete, returning the optimal K* value
of all amino-acid configurations that do not violate the inputted subunit-stability constraints.

Complexity. The algorithm is linear in space and exponential in time with respect to the height of T . (However a powerful
guiding heuristic can lead to early UBP, reducing time greatly in practice).

Exploiting Depth-First Branch-and-Bound Properties. As the core of AOBB-K* is a depth-first BnB algorithm, well
known properties can also be exploited such as (1) the ability to extract anytime-solutions (ie. intermediate solutions that
satisfy the subunit-stability constraints) and (2) the ability to apply bounded approximations.

Although best-first search algorithms, such as those used in current state-of-the-art software OSPREY 3.0 Hallen et al.
[2018], can begin exploring potential solutions quickly, they may take a long time completing the exploration of any one
solution as search is spread among a breadth of optimistic contenders. On the other hand, AOBB-K* is sure to compute the
K* of its most optimistic solutions immediately, yielding K* values for potential designs early on.

Furthermore, the search can easily be relaxed to an ε-approximation (for ε ∈ [0, 1)) by multiplying hK∗ by a factor of
(1 − ε). It can be shown that the resulting solution will be at worst (1 − ε) ·K∗MAP . We explore the performance of
applying such approximations in Section 8.

It is worthy to note that this ε-approximation framework can also be extended to the summation space and also to the
estimation of Zγ , though this is beyond the scope of this work and left for future exploration.

1 Additional details provided in the supplemental materials



Algorithm 6: AOBB-K*

input :CPD graphical modelM; pseudo-tree T ; K∗ upper-bounding heuristic function hK∗(.); Zγ upper-bounding
heuristic function hZγ (.); and subunit stability threshold Sγ for each subunit γ

output :K∗MAP (M)

1 begin
2 Initialize MiniSat with constraints fromM
3 and generate literals via constraint propagation

4 π ← dummy AND node nD
5 ubK∗(nD)←

∏
m∈chT (nD) hK∗(m)

6 lbK∗(nD)← −inf
7 g(nD)← 1
8 foreach γ ∈ ϕ do
9 UBZγ (nD)←

∏
m∈chTγ (nD) hZγ (m)

10 end
11 while nX ← EXPAND(π) do
12 if MiniSat(π) = false then
13 PRUNE(π)

14 else if ∃γ ∈ ϕ s.t. UBZγ (nX) < Sγ then
15 PRUNE(π)

16 else if X ∈ R then
17 if ∃a ∈ ancOR(n) s.t. ubK∗(a, π) < lbK∗(a) then
18 PRUNE(π)

19 end

20 else if chunexpT (n) = ∅ then
21 BACKTRACK(π)

22 end
23 return ubK∗(nD) = lbK∗(nD) = K∗MAP (M)

24 end



7 INFUSING DETERMINISM VIA THRESHOLDED UNDERFLOWS

During search in the presence of determinism, constraint propagation (CP) can be a powerful tool by helping to prune
invalid configurations. In the context of protein design, such invalid configurations correspond to inconsistent amino acid -
rotamer pairs or configurations that will have no contribution to the a subunit’s partition function. The more determinism
that is present, the more CP can be leveraged to speed up search. Until now, problems were formulated as accurately as
possible using 64-bit floating point values. However, some function values can be extremely small, corresponding to very
unfavorable side-chain conformations that would not appear in feasible solutions. By underflowing these values, namely
replacing them with zero, we can allow CP to exclude configurations containing those tuples and, thus, speed up search.

Definition 7.1 (Thresholded-underflow of a function). Given a non-negative function f , and a non-negative real number τ ,
we define the τ -underflow of a function f as

fτ (x) =

{
f(x), f(x) >= τ

0, otherwise

Definition 7.2 (Thresholded-underflow of a problem). Given a graphical modelM=〈X,D,F〉, and a non-negative real
number τ , we define the τ -underflow of aM as

Mτ = 〈X,D,Fτ 〉, where Fτ = {fτ | f ∈ F }

In the next subsections, we describe conditions such that K∗MAP (Mτ ) = K∗MAP (M). In Section 8 we demonstrate
the speed up that results empirically. Furthermore, these conditions can be trivially extended to the tasks of MMAP task and
computing the partition. We now elaborate.

7.1 VALIDITY OF THRESHOLDED UNDERFLOWS

Definitions.

tuplesγ(τ, r): the set of all tuples of assignments [to all variables in Cγ ] that are consistent withR = r and that will
be affected by a τ -underflow

fmaxγ (r): the maximum value in the functions associated with subunit γ consistent with configurationR = r

|fγ |: denotes the number of functions included in the partition function computation for the protein subunit γ, excluding
explicit constraints

|τγ(cγ , r)|: the number of functions associated with subunit γ whose function values are less than τ given the
assignment Cγ = cγ andR = r

|Cγ(r)|: the cardinality of the Cartesian product of assignments to the variables in Cγ that are consistent with the
assignmentR = r

|Cγ |⇑: the cardinality of the Cartesian product of greatest number of assignments to each variable in Cγ that are
individually consistent with any assignmentR = r′

ZminB : the smallest ZB that can lead to a valid K∗ > K∗(wt). Formally, ZminB = K∗(wt) ·
∏
γ∈U Sγ)

precison(x): the smallest decimal place for which the value of x is recorded

Noting that underflows can only potentially decrease partition function values (and never increase them), intuitively there
are two sufficient conditions that, when upheld, allow us to assert K∗MAP (Mτ ) = K∗MAP (M):

1. τ -underflows do not alter subunit partition functions that satisfy SSC’s. Namely,
∀r ∈ R s.t. ZMγ (r) ≥ Sγ , ZMγ (r) = ZM

τ

γ (r)

2. τ -underflows do not alter any ZB > ZminB . More formally, ∀r ∈ R s.t. ZMB (r) ≥ ZminB , ZMB (r) = ZM
τ

B (r)



Verifying τ satisfies condition 1

Theorem 7.1 (τ that will not violate SSC’s). A problem created via τ -underflows such that, for everyR = r and ∀γ ∈ ϕ,∑
cγ∈tuplesγ(τ)

[ (fmaxγ (r))(|fγ |−|τγ(cγ ,r)| ] · [ (τ)|τγ(cγ ,r)| ]

< 0.5 · precision(Sγ)

will not violate any subunit stability constraints.

Complexity. Testing the condition in Theorem 7.1 is exponential in the number of variables inR ∪CB .

Corollary 7.2. A problem created with underflows using an underflow threshold τ such that for everyR = r and ∀γ ∈ ϕ

τ ≤ 1, |Cγ(r)| · (fmaxγ (r))|fγ | · (τ)

τ > 1, |Cγ(r)| · (fmaxγ (r))|fγ | · (τ)|fγ |

}
< 0.5 · precision(Sγ)

will not violate any subunit stability constraints.

Complexity. Testing the condition in Corollary 7.2 is exponential in the number of variables inR.

Corollary 7.3. A problem created with underflows using an underflow threshold τ and ∀γ ∈ ϕ

τ ≤ 1, |Cγ |⇑ · (fmaxγ )|fγ | · (τ)

τ > 1, |Cγ |⇑ · (fmaxγ )|fγ | · (τ)|fγ |

}
< 0.5 · precision(Sγ)

will not violate any subunit stability constraints.

Complexity. Testing the condition in Corollary 7.3 is can be done in linear time.

Verifying τ satisfies condition 2

Theorem 7.4 (τ that will not alter K*MAP). A problem created with underflows using an underflow threshold τ such that τ
is known not to violate the SSC’s and such that for everyR = r∑

cB∈tuplesB(τ,r)

[ (fmaxB (r))|fB |−|τB(cB ,r)| ] · [ (τ)|τB(cB ,r)| ]

< 0.5 · precision(ZminB )

will also not alter the K*MAP solution.

Complexity. Testing the condition in Theorem 7.4 is exponential in the number of variables inR ∪CB .

Corollary 7.5. A problem created with underflows using an underflow threshold τ such that τ is known not to violate the
SSC’s and such that for everyR = r

τ ≤ 1, |CB(r)| · (fmaxB (r))|fB | · (τ)

τ > 1, |CB(r)| · (fmaxB (r))|fB | · (τ)|fB |

}
< 0.5 · precision(ZminB )

will also not alter the K*MAP solution.



Complexity. Testing the condition in Corollary 7.5 is exponential in the number of variables inR.

Corollary 7.6. A problem created with underflows using an underflow threshold τ such that τ is known not to violate the
SSC’s and such that

τ ≤ 1, |CB|⇑ · (fmaxB )|fB | · (τ)

τ > 1, |CB|⇑ · (fmaxB )|fB | · (τ)|fB |

}
< 0.5 · precision(ZminB )

will also not alter the K*MAP solution.

Complexity. Testing the condition in Corollary 7.6 is can be done in linear time.

Conclusion.

If a chosen τ satisfies Theorem 7.1 and Theorem 7.4 (or any of their corollaries), then it is a valid underflow threshold and
AOBB-K* is guaranteed to find the optimal K*MAP given the τ -underflowed problem.



8 EMPIRICAL EVALUATION

8.1 METHODS

Benchmarks. We experimented on a total of 48 protein design benchmark problems, 30 of which encoded two mutable
residues (provided by ANONYMOUS and denoted "original") and 12 of which were made harder by expanding to three
mutable residues (denoted "expanded"), and six modified to have four mutable residues (denoted "hard"). CPD problems
were then generated using OSPREY 3.0 Hallen et al. [2018] to compute interaction energies and then formulated into both
F1 and F2 in UAI format for AOBB-K* to be run on. Each UAI problem was also formulated with underflows using a
threshold of 1× 10−5.

Algorithms. Experiments were run using AOBB-K* (implemented in C++) using a BnB-factor of 1 and 0.001 (corre-
sponding to ε 0 and 0.999, respectively). For comparison, problems were also run using BBK* Ojewole et al. [2018], a
state-of-the-art best-first search algorithm as part of the comprehensive protein design software package OSPREY 3.0 Hallen
et al. [2018] that has been developed for over a decade. BBK* (implemented in Java) was used with rigid side chains and a
bound-tightness parameter of 1× 10−200. Being native to OSPREY, BBK* used OSPREY’s native problem formulation.
Experiments were run for a maximum of 1hr on a 2.66 GHz processor with 4 GB of memory with the same subunit-stability
threshold as BBK* of Sγ = Z

(wt)
γ · e− 5

RT where Z(wt)
γ is the partition function given the wild-type amino acid sequence.

As BBK* can take advantage of parallelism, it was also run with access to 4 CPU cores.

Heuristic. AOBB-K* was run using wMBE-K* with moment matching Liu and Ihler [2011]) for guiding and bounding
search on all problems. For hard problems, versions of MBE-K* and wMBE-K* were tested that avoided consideration of
zeros during lower-bounding approximations (MBE+-K* and wMBE+-K*, respectively). For all experiments, wMBE-MMAP
was used to upper-bound the partition function of each subunit. BBK* uses a dynamic greedy heuristic based on the most
optimistic values for all variables not yet instantiatedOjewole et al. [2018].

8.2 RESULTS

Data Tables. Table 1 displays aggregated results from experiments across all benchmarks using AOBB-K*1 (with wMBE-
K*, run on F1 and F2) compared to BBK*. K*≥ counts the number of times the K* value found by AOBB-K* was greater
than that of BBK*, K*> counts the number of times the K* value found by AOBB-K* was strictly greater than that of BBK*,
and ttotal< counts the number of times AOBB-K* found its solution faster than BBK*.

Table 2 shows select results2 on original benchmarks and Table 3 on the expanded benchmarks. F denotes the UAI
formulation type, ω is the weight multiplied to the K*MAP heuristic, τ currently f< is the underflow-threshold used, iB is
the i-bound used, w* is the induced width due to the generated constrained variable ordering, d is the depth of the resulting
pseudo tree, |X| is the total number of variables, UB is the wMBE-K* bound (with empty cells representing no finite bound),
ORR and ANDR display the number of each type of each type of node visited in the MAP search space,ORall and ANDall

display the total number of each type of node visited, CPP are the number of nodes pruned due being deemed a deadend
by MiniSat, UBP are nodes pruned due to K* bounding, SSP are the nodes pruned due to subunit-stability constraint
violations, EH counts the number of times an exact heuristic was used instead of search, tpre is the pre-processing time
of the algorithm (in seconds) - the majority of which is for compiling the heuristic, tsearch is the time spend during search,
ttotal is the total elapsed algorithm time, K*MAP is the returned K*MAP solution (in log10), BBK* t is BBK*’s runtime (in
seconds), and BBK* sln is BBK*’s highest valid K* value found (in log10). Missing rows indicate the inability to solve
the problem within the hour limit. Highlighted UB’s indicate when the fastest way to solve the problem was by using the
exactly computed K*MAP via BE. Highlighted ttotal indicate when AOBB-K*’s runtime was faster than BBK*’s. Highlighted
K*MAP values indicate when AOBB-K*’s reported K*MAP value is greater than the solution reported by BBK*.

Table 11 show sample results2 on a hard benchmarks using modified [w]MBE-BBK* heuristics. The columns are labeled as
before with the addition of H denoting the type of K* heuristic used, and Anytime-K* denoting the best valid K* value found.

Domain Sizes. Each mutable residues considers 21 different amino acid assignments. Conformation variables corre-
sponding to non-mutable residues had a domain size of 2-14 rotamers (with most having domain sizes 4-9). Conformation

1AOBB-K* without use of a weighted heuristic and without added determinism through thresholded-underflows
2Additional results available in the supplementary materials.



variables corresponding to mutable residues had a domain size of 34-35 when formulated as F1 and 203-205 when
formulated as F2.



Table 1: Aggregated Statistics on F1,F2 (exact) vs. BBK*.

Dataset K*≥ K*> ttotal<

Original (30) 30,30 2,2 23,28
Expanded (12) 11,12 1,4 2,4
Hard (6) 2,3 0,2 0,0

Table 2: Original problems with two MAP variables.

benchmark F ω τ iB w* |X| UB ORR ANDR ORall ANDall CPP UBP SSP EH tpre tsearch ttotal K*MAP BBK* t BBK* sln
1 0 3 8 16 12 23 300184 1784305 1243743 0 151 1 0.9 226.0 226.9
1 1E-05 3 8 16 12 23 8886 18057 105692 0 44 1 1.1 4.9 5.9

0.001 0 7 8 16 10.17 2 3 12379 72187 57871 22 4 2 146.2 10.4 156.5
0.001 1E-05 3 8 16 12 23 8886 18057 105692 0 44 1 1.3 4.9 6.2

1 0 3 6 16 2 12 304309 1798801 937451 0 52 1 0.7 92.3 93.0
1 1E-05 3 6 16 2 12 9066 18310 78238 0 19 1 0.7 0.8 1.5

0.001 0 5 6 16 9.95 2 3 11777 71585 33739 21 5 2 23.8 4.6 28.4
0.001 1E-05 3 6 16 2 12 9066 18310 78238 0 19 1 0.6 0.7 1.3

1 0 6 6 12 10.28 4 9 41049 158841 378716 76 0 6 69.2 32.0 101.2
1 1E-05 6 6 12 10.28 4 9 2511 7875 39530 66 0 6 68.0 2.0 70.1

0.001 0 6 6 12 10.28 2 3 3282 9492 52507 40 0 2 69.3 1.9 71.2
0.001 1E-05 6 6 12 10.28 2 3 255 579 5700 34 0 2 67.5 0.2 67.7

1 0 4 4 12 10.29 3 7 28766 134930 77823 55 2 5 6.8 8.9 15.7
1 1E-05 4 4 12 10.23 3 7 1259 5687 7234 46 1 5 6.2 0.3 6.5

0.001 0 4 4 12 10.29 2 3 7289 34775 19392 39 1 2 6.8 2.2 8.9
0.001 1E-05 4 4 12 10.23 2 3 279 1251 1862 34 0 2 6.2 0.1 6.3

1 0 5 5 10 11.60 2 3 2385 43767 1978 40 0 2 2.5 3.3 5.9
1 1E-05 4 5 10 12.03 4 7 232 2077 2532 71 0 4 1.0 0.3 1.2

0.001 0 4 5 10 12.03 2 3 2385 43767 1978 40 0 2 1.0 3.3 4.3
0.001 1E-05 4 5 10 12.03 2 3 48 393 574 37 0 2 1.3 0.1 1.4

1 0 4 3 10 11.16 2 3 2 3 0 40 0 3 2.6 0.0 2.6
1 1E-05 3 3 10 11.59 2 3 47 392 1387 37 0 2 0.7 0.0 0.7

0.001 0 5 3 10 11.16 2 3 2 3 0 40 0 3 2.6 0.0 2.6
0.001 1E-05 3 3 10 11.59 2 3 47 392 1387 37 0 2 1.0 0.0 1.0

11.16 261.9 9.46

7.88 109.1 7.88

9.79

152.3 9.79
9.76

9.79

1gwc_00021
P=4, L=1,

PL=5

1a0r_00031
P=5, L=2, 

PL=7

F1

F2

2rl0_00008
P=2, L=2,

PL=4

F1

F2

F1

F2



Table 3: Expanded problems with three MAP variables.

benchmark F ω τ iB w* |X| UB ORR ANDR ORall ANDall CPP UBP SSP EH tpre tsearch ttotal K*MAP BBK* t BBK* sln

1 0 4 4 13 12.51 20 27 33881 590621 473189 388 6 8 123.8 81.3 205.1
1 1E-05 4 4 13 12.51 20 27 3194 25973 110351 362 6 8 117.1 3.5 120.7

0.001 0 4 4 13 12.51 3 4 4882 84496 75745 60 0 2 124.3 12.1 136.4
0.001 1E-05 4 4 13 12.51 3 4 349 2698 15569 54 0 2 116.8 0.4 117.2

1 0 6 8 15 12.28 35 64 425512 2552281 7259396 652 226 30 122.0 653.2 775.2
1 1E-05 6 8 15 12.28 35 64 66457 186650 1324450 652 109 30 121.1 62.0 183.1

0.001 0 6 8 15 12.28 3 4 13639 81575 233365 60 0 2 121.3 14.4 135.7
0.001 1E-05 6 8 15 12.28 3 4 2351 6575 46989 60 0 2 121.2 1.5 122.7

1 0 5 5 15 11.39 3 22 398102 2383318 7422285 42 0 20 81.8 278.9 360.7
1 1E-05 4 5 15 11.83 3 24 66355 185683 1579935 40 0 22 60.1 23.8 83.9

0.001 0 4 5 15 11.83 3 4 13627 81563 254094 60 0 2 60.4 8.2 68.6
0.001 1E-05 4 5 15 11.83 3 4 2352 6576 55979 60 0 2 61.1 0.8 61.9

1 0 6 8 15 16.93 152 303 1257591 4864928 2446418 2672 865 152 119.6 1375.4 1494.9
1 1E-05 6 8 15 219 530 90584 188534 480735 3232 2035 312 118.8 74.7 193.5

0.001 0 6 8 15 16.93 3 4 8047 30727 16189 59 1 2 119.4 5.2 124.6
0.001 1E-05 6 8 15 87 92 859 1686 4419 1547 35 6 119.1 1.3 120.4

1 0 5 5 15 16.05 11 15 22945 87485 91677 176 75 5 169.2 12.1 181.3
1 1E-05 4 5 15 25 56 17779 35282 396450 397 84 32 54.2 8.4 62.7

0.001 0 4 5 15 16.48 5 8 14938 57354 54826 59 105 4 62.0 7.2 69.2
0.001 1E-05 4 5 15 5 8 893 1774 19843 54 61 4 61.9 0.5 62.4

14.99

10.96

11.92

1388.1 10.96

34.0 14.99

551.3 11.72
1gwc_00021*

P=4, L=1,
PL=5

4wwi_00019*
P=3, L=3,

PL=6

2xgy_00020*
P=3, L=3,

PL=6

F2

F2

F1

F2

F1

Table 4: Modified [w]MBE run on hard problems with 4 MAP variables.

benchmark H F iB ω τ w* d |X| UB ttotal Anytime-K* K*MAP BBK* t BBK* sln
wMBE F1 6 0.001 1E-05 8 8 14 timeout 11.72
MBE* F1 6 0.001 1E-05 8 8 14 20.53 2090.5 11.92 11.92
wMBE* F1 6 0.001 1E-05 8 8 14 19.92 1511.9 11.92 11.92
wMBE F2 3 0.001 1E-05 4 8 14 timeout 6.24

1gwc_00021**
P=4,L=1,
PL=5

625.4 11.72



benchmark F bnb f< iB w* d |X| UB OR* AND* OR-all AND-all CPP UBP SSP EH pre-t Time K*MAP BBK* t BBK* sln
1 0 3 8 8 16 12 23 300184 1784305 1243743 0 151 1 0.9 226.9
1 1E-05 3 8 8 16 12 23 8886 18057 105692 0 44 1 1.1 5.9

0.001 0 7 8 8 16 10.17 2 3 12379 72187 57871 22 4 2 146.2 156.5
0.001 1E-05 3 8 8 16 12 23 8886 18057 105692 0 44 1 1.3 6.2

1 0 3 6 8 16 2 12 304309 1798801 937451 0 52 1 0.7 93.0
1 1E-05 3 6 8 16 2 12 9066 18310 78238 0 19 1 0.7 1.5

0.001 0 5 6 8 16 9.95 2 3 11777 71585 33739 21 5 2 23.8 28.4
0.001 1E-05 3 6 8 16 2 12 9066 18310 78238 0 19 1 0.6 1.3

1 0 6 6 6 12 10.28 4 9 41049 158841 378716 76 0 6 69.2 101.2
1 1E-05 6 6 6 12 10.28 4 9 2511 7875 39530 66 0 6 68.0 70.1

0.001 0 6 6 6 12 10.28 2 3 3282 9492 52507 40 0 2 69.3 71.2
0.001 1E-05 6 6 6 12 10.28 2 3 255 579 5700 34 0 2 67.5 67.7

1 0 4 4 6 12 10.29 3 7 28766 134930 77823 55 2 5 6.8 15.7
1 1E-05 4 4 6 12 10.23 3 7 1259 5687 7234 46 1 5 6.2 6.5

0.001 0 4 4 6 12 10.29 2 3 7289 34775 19392 39 1 2 6.8 8.9
0.001 1E-05 4 4 6 12 10.23 2 3 279 1251 1862 34 0 2 6.2 6.3

1 0 3 9 9 18 4 7 46660 183409 321999 0 47 1 1.0 30.2
1 1E-05 4 9 9 18 4 7 14176 26101 140121 0 0 1 1.4 5.6

0.001 0 3 9 9 18 4 7 46660 183409 321999 0 47 1 1.1 34.5
0.001 1E-05 3 9 9 18 4 7 14176 26101 140121 0 0 1 1.1 5.4

1 0 3 7 9 18 2 5 56498 193247 178597 0 19 1 1.3 12.3
1 1E-05 3 7 9 18 2 5 18176 30101 100362 0 0 1 1.5 2.8

0.001 0 3 7 9 18 2 5 56498 193247 178597 0 19 1 1.3 12.4
0.001 1E-05 3 7 9 18 2 5 18176 30101 100362 0 0 1 1.2 2.5

1 0 6 7 7 14 15.18 4 8 20896 104681 72450 77 37 5 14.6 25.0
1 1E-05 6 7 7 14 15.18 4 8 4702 15353 25692 48 13 5 14.7 16.5

0.001 0 6 7 7 14 15.18 2 3 8686 42886 30172 40 0 2 14.7 16.5
0.001 1E-05 6 7 7 14 15.18 2 3 1592 5204 8640 30 0 2 14.4 14.7

1 0 4 5 7 14 15.08 2 5 22010 105458 76657 38 0 4 1.7 7.3
1 1E-05 4 5 7 14 15.08 2 5 4972 15584 29869 30 0 4 1.8 2.6

0.001 0 4 5 7 14 15.08 2 3 9250 43450 33091 40 0 2 1.7 3.8
0.001 1E-05 4 5 7 14 15.08 2 3 1696 5308 10143 32 0 2 1.6 1.8

1 0 6 8 8 16 14.97 4 7 128010 332754 87628 78 0 4 15.6 45.8
1 1E-05 6 8 8 16 14.97 4 7 11242 26138 22473 53 0 4 15.3 18.1

0.001 0 6 8 8 16 14.97 2 3 59796 155100 41420 40 0 2 15.6 22.8
0.001 1E-05 6 8 8 16 14.97 2 3 4140 9572 8415 30 0 2 15.3 15.9

1 0 4 6 8 16 15.04 2 4 115194 297138 84882 39 0 3 1.7 16.6
1 1E-05 4 6 8 16 15.04 2 4 9383 21423 22246 33 0 3 1.6 2.6

0.001 0 4 6 8 16 15.04 2 3 60606 155910 46451 40 0 2 1.7 8.8
0.001 1E-05 4 6 8 16 15.04 2 3 4278 9710 10479 34 0 2 1.6 2.0

1 0 7 9 9 18 17 33 111674 380720 453549 0 410 1 3.0 74.6
1 1E-05 5 9 9 18 18 35 45551 103794 273804 0 32 1 1.3 21.9

0.001 0 7 9 9 18 17 33 111674 380720 453549 0 410 1 3.0 74.6
0.001 1E-05 7 9 9 18 17 33 43248 99153 254219 0 39 1 2.6 19.6

1 0 6 7 9 18 14.52 2 3 4264 11559 9772 36 5 1 4.1 4.7
1 1E-05 3 7 9 18 2 19 52616 109733 123399 0 31 1 0.5 4.1

0.001 0 6 7 9 18 14.52 2 3 4264 11559 9772 41 0 1 4.1 4.6
0.001 1E-05 3 7 9 18 2 19 52616 109733 123399 0 31 1 0.5 4.1

1 0 6 8 8 16 14.57 3 5 4074 19034 15979 61 0 3 6.6 9.0
1 1E-05 3 8 8 16 22 43 7668 12012 47855 0 20 1 1.1 3.2

0.001 0 6 8 8 16 14.57 2 3 1691 7851 6697 41 0 2 5.9 6.5
0.001 1E-05 3 8 8 16 22 43 7668 12012 47855 0 20 1 1.0 3.2

1 0 5 6 8 16 14.12 2 3 1691 7851 7275 41 0 2 1.4 1.9
1 1E-05 4 6 8 16 14.57 2 4 619 931 5204 19 0 3 0.8 0.8

0.001 0 4 6 8 16 14.57 2 3 1691 7851 7275 41 0 2 0.8 1.4
0.001 1E-05 4 6 8 16 14.57 2 3 153 225 1411 20 0 2 0.8 0.8

1 0 8 9 9 18 16.68 2 5 19927 84823 98124 39 0 4 66.5 76.1
1 1E-05 4 9 9 18 2 20 32834 78293 278613 0 68 1 1.3 15.5

0.001 0 8 9 9 18 16.68 2 3 7241 28745 37652 41 0 2 66.5 69.6
0.001 1E-05 3 9 9 18 3 24 34358 82814 293945 0 104 1 0.9 14.0

1 0 6 7 9 18 16.68 4 7 20137 85033 87306 78 0 4 8.4 15.1
1 1E-05 3 7 9 18 18 35 45584 99045 218730 0 269 1 0.7 6.8

0.001 0 6 7 9 18 16.68 2 3 7323 28827 33772 40 0 2 8.4 10.5
0.001 1E-05 3 7 9 18 18 35 45584 99045 218730 0 269 1 0.7 6.8

1 0 7 11 11 22 2 8 459950 2342453 1816775 0 77 1 4.3 307.5
1 1E-05 5 11 11 22 2 9 31661 53664 241548 0 35 1 1.6 8.9

0.001 0 7 11 11 22 2 8 459950 2342453 1816775 0 77 1 4.9 352.0
0.001 1E-05 5 11 11 22 2 9 31661 53664 241548 0 35 1 1.7 9.0

1 0 6 9 11 22 6 11 366672 1835478 1320278 0 162 1 15.8 148.8
1 1E-05 3 9 11 22 8 15 32902 55385 195925 0 22 1 1.0 3.0

F1

F2

2rf9_00042

F1

F2

2rf9_00018

F1

F2

2rf9_00013

F1

F2

1gwc_00033

1gwc_00021

F1

F2

F1

F2

13.25

13.65

1a0r_00031

F1

F2

2rf9_00007

F1

F2

2hnv_00025

F1

F2

2hnu_00026

22.65897.1

15.79187.215.79

13.2511.8

14.0845.514.08

22.65

7.88109.17.88

13.65962.1

13.18436.913.18

10.48512.5

9.79

10.48

9.79

9.79

152.3
9.76

Table 5: Small problems (two mutable residues, ie. MAP variables).



0.001 0 6 9 11 22 6 11 366672 1835478 1320278 0 162 1 15.7 151.0
0.001 1E-05 4 9 11 22 7 13 26784 44980 160623 0 30 1 1.3 2.7

1 0 7 8 8 16 18.14 7 13 1136806 5390146 4229817 142 0 7 188.1 818.6
1 1E-05 7 8 8 16 18.14 7 13 275481 1126929 1163732 136 0 7 182.5 311.1

0.001 0 6 8 8 16 18.57 2 3 94839 448619 364423 42 0 2 38.3 81.4
0.001 1E-05 6 8 8 16 18.57 2 3 23511 95635 103770 41 0 2 33.7 41.8

1 0 6 6 8 16 17.70 2 5 896239 4253159 3273123 40 0 4 80.1 379.8
1 1E-05 5 6 8 16 18.17 2 8 275669 1127117 1152311 36 0 7 17.7 93.1

0.001 0 4 6 8 16 18.61 2 3 94321 448101 344311 42 0 2 3.9 31.1
0.001 1E-05 4 6 8 16 18.61 2 3 23372 95496 97779 41 0 2 3.6 9.3

1 0 5 7 7 14 15.23 4 7 4930 15982 26937 72 0 4 3.5 5.2
1 1E-05 3 7 7 14 21 41 5621 11767 41873 0 33 1 1.0 3.0

0.001 0 5 7 7 14 15.23 2 3 636 2040 3675 38 0 2 3.5 3.7
0.001 1E-05 4 7 7 14 19 37 5591 11688 41054 0 29 1 1.1 3.0

1 0 4 5 7 14 14.80 2 4 3126 10002 21164 37 0 3 0.8 1.5
1 1E-05 3 5 7 14 15.23 2 5 1816 3496 15378 18 0 4 0.5 0.7

0.001 0 3 5 7 14 15.23 2 3 640 2044 4382 38 0 2 0.5 0.7
0.001 1E-05 3 5 7 14 15.23 2 3 204 384 1922 20 0 2 0.5 0.5

1 0 5 7 7 14 15.66 4 7 6821 22109 37197 72 0 4 3.5 5.4
1 1E-05 4 7 7 14 22 43 4656 10472 36297 0 27 1 1.1 2.9

0.001 0 5 7 7 14 15.66 2 3 3250 10546 17526 38 0 2 3.5 4.0
0.001 1E-05 3 7 7 14 22 43 4666 10493 36353 0 25 1 1.0 2.9

1 0 4 5 7 14 15.23 2 4 4086 13086 26801 37 0 3 0.8 1.7
1 1E-05 3 5 7 14 15.66 2 5 1479 3063 12951 18 0 4 0.5 0.6

0.001 0 3 5 7 14 15.66 2 3 3304 10600 21476 38 0 2 0.5 1.3
0.001 1E-05 3 5 7 14 15.66 2 3 740 1532 6374 20 0 2 0.5 0.6

1 0 7 7 7 14 10.96 5 10 13061 54335 292185 82 2 6 16.3 22.4
1 1E-05 6 7 7 14 11.39 9 27 1871 3862 37844 102 5 19 10.3 11.0

0.001 0 6 7 7 14 11.39 2 3 5303 22475 118890 37 0 2 10.4 12.4
0.001 1E-05 6 7 7 14 11.39 2 3 305 641 6090 30 0 2 10.3 10.4

1 0 5 5 7 14 10.96 3 8 13148 54422 300675 49 4 6 1.7 7.0
1 1E-05 4 5 7 14 11.39 6 24 1917 3908 51904 80 4 19 0.7 1.1

0.001 0 4 5 7 14 11.39 2 3 5366 22538 122621 37 0 2 0.8 2.8
0.001 1E-05 4 5 7 14 11.39 2 3 318 654 7583 30 0 2 0.8 0.9

1 0 6 7 7 14 11.56 6 12 19405 160026 391901 101 37 7 28.9 60.1
1 1E-05 5 7 7 14 18 68 8074 56199 171959 0 409 1 6.3 19.9

0.001 0 6 7 7 14 11.56 2 3 2499 18711 52966 38 0 2 28.8 32.1
0.001 1E-05 5 7 7 14 18 68 8074 56199 171959 0 409 1 6.3 19.9

1 0 4 5 7 14 11.53 5 11 20393 164126 359007 87 40 7 6.9 18.9
1 1E-05 3 5 7 14 12 72 9466 65490 252486 0 378 1 0.7 5.7

0.001 0 4 5 7 14 11.53 2 3 2344 18556 41009 38 0 2 6.8 8.2
0.001 1E-05 3 5 7 14 12 72 9466 65490 252486 0 378 1 0.7 5.7

1 0 8 9 9 18 6 19 1784746 5246734 29278970 0 552 1 212.4 2477.2
1 1E-05 7 9 9 18 7 23 217800 511839 3687164 0 419 1 113.5 331.3

0.001 0 8 9 9 18 6 19 1784746 5246734 29278970 0 552 1 213.5 2481.5
0.001 1E-05 7 9 9 18 7 23 217800 511839 3687164 0 419 1 113.4 331.1

1 0 5 7 9 18 13 29 1909509 5483503 3336192 0 533 1 48.1 401.7
1 1E-05 4 7 9 18 15 38 262067 579851 579770 0 441 1 4.3 34.4

0.001 0 5 7 9 18 13 29 1909509 5483503 3336192 0 533 1 46.3 403.1
0.001 1E-05 4 7 9 18 15 38 262067 579851 579770 0 441 1 4.2 34.3

1 0 5 8 8 16 13 44 308739 1146880 8281137 0 614 1 4.2 231.6
1 1E-05 4 8 8 16 13 51 36691 168262 863934 0 402 1 1.1 34.7

0.001 0 7 8 8 16 18.91 2 3 15123 40023 419424 37 0 2 188.9 193.6
0.001 1E-05 4 8 8 16 13 51 36691 168262 863934 0 402 1 1.1 35.0

1 0 6 6 8 16 18.48 2 5 15390 40297 422357 34 43 4 75.5 79.4
1 1E-05 4 6 8 16 7 32 41371 165735 989647 0 225 1 2.9 15.7

0.001 0 5 6 8 16 18.91 2 3 15378 40278 421535 37 0 2 52.7 56.5
0.001 1E-05 4 6 8 16 7 32 41371 165735 989647 0 225 1 2.9 15.7

1 0 7 8 8 16 19.06 14 29 236159 625979 6568520 222 5 16 211.4 319.6
1 1E-05 6 8 8 16 14 70 65114 310015 1571020 0 407 1 14.5 75.7

0.001 0 7 8 8 16 19.06 2 3 15258 40338 422759 37 0 2 211.8 217.3
0.001 1E-05 6 8 8 16 14 70 65114 310015 1571020 0 407 1 14.5 75.8

1 0 6 6 8 16 18.62 2 7 37887 99927 1047107 30 3 6 75.2 85.6
1 1E-05 4 6 8 16 7 63 77546 334512 1890564 0 338 1 2.9 26.2

0.001 0 5 6 8 16 19.06 2 3 15483 40563 424391 37 0 2 52.6 56.8
0.001 1E-05 4 6 8 16 7 63 77546 334512 1890564 0 338 1 2.9 26.1

1 0 5 9 9 18 2 7 265870 1106761 1516836 0 37 1 3.5 187.9
1 1E-05 4 9 9 18 2 9 29098 66231 259146 0 31 1 1.2 9.9

0.001 0 5 9 9 18 2 7 265870 1106761 1516836 0 37 1 3.5 187.9
0.001 1E-05 4 9 9 18 2 9 29098 66231 259146 0 31 1 1.2 9.9

1 0 3 7 9 18 6 11 258709 1099600 1056935 0 121 1 0.7 88.3

F1

2rfe_00047

F1

F2

2rfe_00044

F1

F2

2rfe_00043

F1

F2

2rfe_00041

F1

F2

2rfe_00030

F1

F2

2rfe_00017

F1

F2

2rfe_00014

F1

F2

2rfe_00012

F1

F2

2rfd_00035

F2

22.70348.922.70

18.1974.518.19

18.0450.518.04

22.731181.5

10.50181.510.50

10.5229.210.52

22.73

14.3631.414.36

13.9311.113.93

16.771242.317.27

Table 6: Small problems (two mutable residues, ie. MAP variables).



1 1E-05 3 7 9 18 6 11 25081 55130 131962 0 13 1 0.7 2.6
0.001 0 6 7 9 18 23.57 2 3 46488 171288 230173 41 0 2 60.6 73.2
0.001 1E-05 3 7 9 18 6 11 25081 55130 131962 0 13 1 0.7 2.6

1 0 6 10 10 20 2 9 410749 1668173 2542598 0 102 1 4.8 297.6
1 1E-05 5 10 10 20 2 11 44592 109012 408214 0 76 1 2.0 16.8

0.001 0 6 10 10 20 2 9 410749 1668173 2542598 0 102 1 4.9 298.2
0.001 1E-05 5 10 10 20 2 11 44592 109012 408214 0 76 1 2.3 17.1

1 0 4 8 10 20 8 15 477523 1933600 1813547 0 219 1 2.8 158.7
1 1E-05 3 8 10 20 9 17 49248 116219 204465 0 59 1 1.0 4.7

0.001 0 3 8 10 20 9 17 506753 2046164 1841727 0 259 1 0.9 146.8
0.001 1E-05 3 8 10 20 9 17 49248 116219 204465 0 59 1 1.0 4.7

1 0 5 5 5 10 11.60 2 3 2385 43767 1978 40 0 2 2.5 5.9
1 1E-05 4 5 5 10 12.03 4 7 232 2077 2532 71 0 4 1.0 1.2

0.001 0 4 5 5 10 12.03 2 3 2385 43767 1978 40 0 2 1.0 4.3
0.001 1E-05 4 5 5 10 12.03 2 3 48 393 574 37 0 2 1.3 1.4

1 0 4 3 5 10 11.16 2 3 2 3 0 40 0 3 2.6 2.6
1 1E-05 3 3 5 10 11.59 2 3 47 392 1387 37 0 2 0.7 0.7

0.001 0 5 3 5 10 11.16 2 3 2 3 0 40 0 3 2.6 2.6
0.001 1E-05 3 3 5 10 11.59 2 3 47 392 1387 37 0 2 1.0 1.0

1 0 5 7 7 14 12.34 3 7 58141 350035 986465 55 111 5 8.3 35.4
1 1E-05 5 7 7 14 12.34 3 7 9977 28095 195848 55 59 5 8.2 10.9

0.001 0 5 7 7 14 12.34 2 3 43630 262510 739882 40 0 2 8.3 27.6
0.001 1E-05 5 7 7 14 12.34 2 3 7516 21244 148161 40 0 2 7.3 8.9

1 0 4 5 7 14 11.47 2 3 43643 262523 743860 40 0 2 1.9 16.4
1 1E-05 4 5 7 14 11.47 2 3 7523 21251 150589 40 0 2 1.8 3.2

0.001 0 4 5 7 14 11.47 2 3 43643 262523 743860 40 0 2 1.9 16.3
0.001 1E-05 3 5 7 14 12.40 2 3 7523 21251 150589 38 2 2 1.1 2.5

1 0 8 8 8 16 47.77 6 9 286785 1220353 8408660 71 47 4 221.2 751.7
1 1E-05 5 8 8 16 17 40 12053 45040 343587 0 670 1 1.7 16.5

0.001 0 7 8 8 16 49.01 4 5 95597 373997 2835676 35 45 2 83.9 265.7
0.001 1E-05 5 8 8 16 17 40 12053 45040 343587 0 670 1 1.7 16.6

1 0 6 6 8 16 13.38 2 5 133851 1067419 531976 32 6 4 59.5 125.3
1 1E-05 3 6 8 16 3 17 8452 40467 74780 0 143 1 0.8 4.0

0.001 0 5 6 8 16 14.36 3 4 45209 369081 177421 33 27 2 20.2 46.6
0.001 1E-05 3 6 8 16 3 17 8452 40467 74780 0 143 1 0.9 4.0

1 0 5 7 7 14 13.82 14 23 21915 64035 91516 62 223 10 2.3 10.8
1 1E-05 3 7 7 14 14 27 5520 9931 39870 0 6 1 1.0 2.8

0.001 0 5 7 7 14 13.82 14 15 4459 12875 18348 215 78 2 2.3 3.5 7.37
0.001 1E-05 5 7 7 14 9.69 2 3 259 403 1873 14 0 2 2.3 2.3

1 0 4 5 7 14 13.39 2 7 12471 37071 57964 16 21 6 0.7 3.5
1 1E-05 3 5 7 14 9.69 2 10 4684 7396 35187 7 0 9 0.4 0.9

0.001 0 4 5 7 14 13.39 2 3 611 1811 2981 21 20 2 0.7 0.9
0.001 1E-05 3 5 7 14 9.69 2 3 251 395 1949 14 0 2 0.4 0.5

1 0 6 6 6 12 4.96 13 36 33137 212545 134394 232 6 24 8.1 37.7
1 1E-05 6 6 6 12 4.96 13 36 5984 28798 40072 232 3 24 8.0 12.6

0.001 0 5 6 6 12 5.39 2 3 2586 16256 11107 40 0 2 1.8 3.1
0.001 1E-05 5 6 6 12 5.39 2 3 521 2457 3426 37 0 2 2.0 2.3

1 0 6 4 6 12 4.51 2 3 2 3 0 40 0 3 5.7 5.7
1 1E-05 4 4 6 12 4.95 7 32 6832 31470 55724 88 3 26 0.9 3.1

0.001 0 3 4 6 12 5.39 2 3 2647 16317 10988 40 0 2 0.5 1.2
0.001 1E-05 3 4 6 12 5.39 2 3 553 2489 3744 36 0 2 0.5 0.6

1 0 5 6 6 12 12.72 5 9 5714 16064 34855 96 0 5 2.5 4.8
1 1E-05 5 6 6 12 12.72 5 9 1075 1837 10834 89 0 5 2.4 2.7

0.001 0 5 6 6 12 12.72 2 3 248 644 2299 39 0 2 2.5 2.6
0.001 1E-05 5 6 6 12 12.72 2 3 55 85 766 33 0 2 2.4 2.5

1 0 3 4 6 12 12.72 2 6 5757 16107 37892 36 0 5 0.5 2.0
1 1E-05 3 4 6 12 12.72 2 6 1172 1934 15745 28 0 5 0.5 0.7

0.001 0 3 4 6 12 12.72 2 3 220 616 1593 39 0 2 0.5 0.6
0.001 1E-05 3 4 6 12 12.72 2 3 49 79 810 31 0 2 0.5 0.5

1 0 3 8 8 16 2 4 5499 12643 49235 0 42 1 1.1 3.3
1 1E-05 3 8 8 16 2 4 2075 4259 19973 0 3 1 1.1 1.9

0.001 0 3 8 8 16 2 4 5499 12643 49235 0 42 1 1.1 3.2
0.001 1E-05 3 8 8 16 2 4 2075 4259 19973 0 3 1 1.1 1.9

1 0 3 6 8 16 3 5 4467 11460 18378 0 45 1 1.0 2.0
1 1E-05 3 6 8 16 3 5 1639 3720 8771 0 4 1 0.9 1.0

0.001 0 3 6 8 16 3 5 4467 11460 18378 0 45 1 1.3 2.4
0.001 1E-05 3 6 8 16 3 5 1639 3720 8771 0 4 1 0.9 1.0

1 0 3 8 8 16 2 4 3587 12104 24106 0 56 1 1.1 2.5
1 1E-05 3 8 8 16 2 4 1809 4206 15090 0 13 1 1.1 1.5

0.001 0 3 8 8 16 2 4 3587 12104 24106 0 56 1 1.1 2.5
F1

F1

F2

4hem_00027

F1

F2

3u7y_00011

F1

F2

3u7y_00009

F1

F2

3ma2_00016

F1

F2
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F1

F2

2xgy_00020

F1

F2

2rl0_00008

F1

F2

2rfe_00048

F2

15.4839.915.48

11.8527.811.85

4.51190.84.51

8.389.6

11.621428.9

10.60887.510.60

11.62

8.38

8.38

9.46261.9

22.81387.722.81

11.16

Table 7: Small problems (two mutable residues, ie. MAP variables).



0.001 1E-05 3 8 8 16 2 4 1809 4206 15090 0 13 1 1.1 1.5
1 0 3 6 8 16 3 5 3177 11537 13051 0 41 1 0.9 1.8
1 1E-05 3 6 8 16 3 5 1589 3981 9282 0 2 1 0.9 1.0

0.001 0 3 6 8 16 3 5 3177 11537 13051 0 41 1 0.9 1.8
0.001 1E-05 3 6 8 16 3 5 1589 3981 9282 0 2 1 0.9 1.0

1 0 7 8 8 16 18.24 10 12 17300 58100 363924 168 28 3 20.7 40.7
1 1E-05 6 8 8 16 14.80 10 13 5251 10171 117045 41 31 4 11.1 16.6

0.001 0 6 8 8 16 18.68 2 3 8647 22567 188442 33 4 2 11.3 19.5
0.001 1E-05 6 8 8 16 14.80 2 3 1749 2709 39669 16 2 2 11.0 12.5

1 0 4 6 8 16 14.80 2 5 38186 101546 23877 16 19 4 2.1 7.3
1 1E-05 4 6 8 16 14.80 2 5 3163 8083 4889 9 7 4 2.0 2.3

0.001 0 4 6 8 16 14.80 2 3 8388 22308 5231 35 2 2 2.1 2.9
0.001 1E-05 4 6 8 16 14.80 2 3 618 1578 999 16 2 2 2.0 2.1

1 0 7 8 8 16 19.87 4 5 8649 22569 188442 52 25 2 20.8 29.7
1 1E-05 6 8 8 16 16.94 8 10 4174 8782 92775 18 13 3 11.1 15.1

0.001 0 6 8 8 16 20.30 2 3 8647 22567 188442 27 10 2 11.3 20.8
0.001 1E-05 6 8 8 16 16.94 2 3 2085 3237 47497 12 2 2 11.0 12.7

1 0 4 6 8 16 14.87 2 4 21980 58460 13622 17 19 3 2.1 5.1
1 1E-05 4 6 8 16 14.87 2 4 2848 7456 3193 10 3 3 2.0 2.3

0.001 0 4 6 8 16 14.87 2 3 8388 22308 5231 34 3 2 2.1 3.0
0.001 1E-05 4 6 8 16 14.87 2 3 714 1866 902 13 1 2 2.0 2.1

1 0 7 7 7 14 15.43 2 3 8046 30726 16164 40 0 2 58.4 61.0
1 1E-05 5 7 7 14 16.30 21 87 25831 53574 133265 273 19 67 3.2 11.9

0.001 0 5 7 7 14 16.30 2 3 8046 30726 16164 40 0 2 3.0 5.6
0.001 1E-05 5 7 7 14 16.30 2 3 475 964 2493 36 0 2 3.2 3.4

1 0 5 5 7 14 15.43 2 3 8094 30774 17888 40 0 2 5.6 7.9
1 1E-05 4 5 7 14 15.86 6 26 10670 20946 100937 97 0 21 1.0 3.3

0.001 0 3 5 7 14 16.30 2 3 8094 30774 17888 40 0 2 0.5 2.8
0.001 1E-05 3 5 7 14 16.30 2 3 521 1010 4649 36 0 2 0.5 0.6

F1

F2

4wwi_00019

F1

F2

4kt6_00024

F1

F2

4kt6_00023

F2

4hem_00028 15.2734.515.27

14.9926.314.99

12.93120.712.93

12.69136.512.69

Table 8: Small problems (two mutable residues, ie. MAP variables).



benchmark F bnb f< iB w* d |X| UB OR* AND* OR-all AND-all CPP UBP SSP EH pre-t Time K*MAP BBK* t BBK* sln
1 0 4 4 7 13 12.51 20 27 33881 590621 473189 388 6 8 123.8 205.1
1 1E-05 4 4 7 13 12.51 20 27 3194 25973 110351 362 6 8 117.1 120.7

0.001 0 4 4 7 13 12.51 3 4 4882 84496 75745 60 0 2 124.3 136.4
0.001 1E-05 4 4 7 13 12.51 3 4 349 2698 15569 54 0 2 116.8 117.2

1 1E-05 5 9 9 17 247 1029 1001206 2687713 6118892 0 7839 1 11.9 1433.6
0.001 1E-05 5 9 9 17 247 1029 1001206 2687713 6118892 0 7839 1 11.9 1430.7

1 0 4 6 9 17 18.38 4 7 215171 550559 220825 77 0 4 109.8 153.8
1 1E-05 4 6 9 17 18.38 4 7 11158 25046 44795 63 0 4 100.8 102.4

0.001 0 4 6 9 17 18.38 3 4 72135 184463 74753 59 0 2 109.3 121.5
0.001 1E-05 4 6 9 17 18.38 3 4 3539 7907 14703 46 0 2 100.7 101.2

F1 0.001 1E-05 8 10 10 19 379 738 1694883 6536479 24664824 0 529 1 57.9 3611.5
1 1E-05 3 7 10 19 22 442 4353727 9503674 15149348 0 659 1 6.0 725.8

0.001 1E-05 3 7 10 19 22 442 4353727 9503674 15149348 0 659 1 6.0 733.9
1 1E-05 3 9 9 17 441 881 427301 783693 3444343 21 317 1 3.0 408.5

0.001 1E-05 3 9 9 17 441 881 427301 783693 3444343 21 317 1 3.0 407.1
1 0 4 6 9 17 16.36 3 10 36574 172094 184989 55 0 8 83.0 100.8
1 1E-05 4 6 9 17 16.36 3 10 2638 3934 38141 34 0 8 71.4 71.8

0.001 0 4 6 9 17 16.36 3 4 3328 15648 16891 61 0 2 82.8 84.4
0.001 1E-05 4 6 9 17 16.36 3 4 296 440 4283 40 0 2 80.3 80.4

1 0 3 8 8 15 21 77 17726 60980 112686 1 518 1 2.9 24.5
1 1E-05 3 8 8 15 21 77 5402 12005 48249 1 397 1 2.9 8.8

0.001 0 3 8 8 15 21 77 17726 60980 112686 1 518 1 2.9 24.4
0.001 1E-05 3 8 8 15 21 77 5402 12005 48249 1 397 1 2.9 8.8

1 0 4 5 8 15 14.80 5 9 5239 18227 58358 96 0 5 58.3 60.9
1 1E-05 3 5 8 15 35 321 18964 44087 1487077 0 1180 1 5.5 20.3

0.001 0 4 5 8 15 14.80 3 4 641 2045 6710 58 0 2 58.6 58.9
0.001 1E-05 3 5 8 15 35 321 18964 44087 1487077 0 1180 1 5.4 21.0

1 0 3 8 8 15 22 85 27154 90364 170428 1 532 1 3.0 34.3
1 1E-05 3 8 8 15 22 85 5243 12262 48900 1 449 1 2.9 9.2

0.001 0 3 8 8 15 22 85 27154 90364 170428 1 532 1 2.9 34.3
0.001 1E-05 3 8 8 15 22 85 5243 12262 48900 1 449 1 2.9 9.3

1 0 4 5 8 15 15.23 5 8 5882 18770 62846 94 0 4 58.2 60.6
1 1E-05 3 5 8 15 41 381 19834 46560 1681191 0 1413 1 4.9 20.0

0.001 0 4 5 8 15 15.23 3 4 3305 10601 31370 58 0 2 58.2 59.4
0.001 1E-05 3 5 8 15 41 381 19834 46560 1681191 0 1413 1 5.5 22.9

1 1E-05 6 8 8 15 292 1951 372617 1038706 10337795 0 6797 1 37.6 1041.4
0.001 1E-05 6 8 8 15 292 1951 372617 1038706 10337795 0 6797 1 38.0 1063.2

1 0 5 5 8 15 11.46 16 58 245894 1063198 6389737 227 25 43 166.8 334.6
1 1E-05 4 5 8 15 11.89 39 189 15748 32709 606708 411 141 151 85.7 92.8

0.001 0 4 5 8 15 11.89 4 17 7328 31941 194059 57 151 14 89.1 94.1
0.001 1E-05 4 5 8 15 11.89 4 17 480 871 24031 50 51 14 85.7 86.0

1 1E-05 6 8 8 15 245 1002 134024 432910 3963332 0 5708 1 117.2 613.3
0.001 1E-05 6 8 8 15 245 1002 134024 432910 3963332 0 5708 1 117.0 617.5

1 0 4 5 8 15 13.61 48 124 256957 1327425 2816050 726 83 77 115.2 276.6
1 1E-05 4 5 8 15 13.21 30 106 5948 14903 245173 355 27 77 105.4 108.9

0.001 0 4 5 8 15 13.61 3 4 890 4082 11901 54 2 2 101.4 101.9 10.95
0.001 1E-05 4 5 8 15 13.21 3 4 18 36 1128 45 1 2 106.0 106.0 11.03

1 0 6 8 8 15 12.28 35 64 425512 2552281 7259396 652 226 30 122.0 775.2
1 1E-05 6 8 8 15 12.28 35 64 66457 186650 1324450 652 109 30 121.1 183.1

0.001 0 6 8 8 15 12.28 3 4 13639 81575 233365 60 0 2 121.3 135.7
0.001 1E-05 6 8 8 15 12.28 3 4 2351 6575 46989 60 0 2 121.2 122.7

1 0 5 5 8 15 11.39 3 22 398102 2383318 7422285 42 0 20 81.8 360.7
1 1E-05 4 5 8 15 11.83 3 24 66355 185683 1579935 40 0 22 60.1 83.9

0.001 0 4 5 8 15 11.83 3 4 13627 81563 254094 60 0 2 60.4 68.6
0.001 1E-05 4 5 8 15 11.83 3 4 2352 6576 55979 60 0 2 61.1 61.9

1 0 6 7 7 13 5.39 118 325 221684 1419747 921627 1792 175 208 118.6 574.4
1 1E-05 6 7 7 13 129 382 45828 231276 302283 1322 252 254 118.1 191.0

0.001 0 6 7 7 13 5.39 3 4 2587 16257 11133 57 0 2 119.5 122.2
0.001 1E-05 6 7 7 13 3 4 40 232 254 48 1 2 118.1 118.2 3.07

1 0 4 4 7 13 4.95 12 39 36760 228568 564654 204 7 28 62.6 99.5
1 1E-05 4 4 7 13 12 39 7147 32753 222131 169 4 28 61.3 66.4

0.001 0 4 4 7 13 4.95 3 4 2648 16318 37313 57 0 2 62.5 64.7
0.001 1E-05 4 4 7 13 3 4 554 2490 15834 47 1 2 61.2 61.5

1 0 5 7 7 13 41 77 23893 81707 183381 0 939 1 12.9 45.1
1 1E-05 4 7 7 13 58 111 8367 30329 124844 0 904 1 2.9 21.3

0.001 0 5 7 7 13 41 77 23893 81707 183381 0 939 1 12.8 45.1
0.001 1E-05 4 7 7 13 58 111 8367 30329 124844 0 904 1 2.9 21.4

1 0 4 4 7 13 12.29 3 7 5758 16108 68579 50 0 5 74.0 76.1
1 1E-05 4 4 7 13 12.29 3 7 1173 1935 40256 39 0 5 80.7 81.2

0.001 0 4 4 7 13 12.29 3 4 221 617 2751 53 0 2 83.4 83.5
0.001 1E-05 4 4 7 13 12.29 3 4 50 80 1775 42 0 2 80.8 80.8

1 0 6 8 8 15 16.93 152 303 1257591 4864928 2446418 2672 865 152 119.6 1494.9
1 1E-05 6 8 8 15 219 530 90584 188534 480735 3232 2035 312 118.8 193.5

0.001 0 6 8 8 15 16.93 3 4 8047 30727 16189 59 1 2 119.4 124.6
0.001 1E-05 6 8 8 15 87 92 859 1686 4419 1547 35 6 119.1 120.4

1 0 5 5 8 15 16.05 11 15 22945 87485 91677 176 75 5 169.2 181.3
1 1E-05 4 5 8 15 25 56 17779 35282 396450 397 84 32 54.2 62.7

0.001 0 4 5 8 15 16.48 5 8 14938 57354 54826 59 105 4 62.0 69.2
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Table 9: Expanded problems (three mutable residues, ie. MAP variables).



0.001 1E-05 4 5 8 15 5 8 893 1774 19843 54 61 4 61.9 62.4

Table 10: Expanded problems (three mutable residues, ie. MAP variables).

benchmark H F iB bnb f< w* d |X| UB Time Anytime-K* K*MAP BBK* t BBK* sln
wMBE F1 6 0.001 1E-05 8 8 14 timeout 11.72
MBE* F1 6 0.001 1E-05 8 8 14 20.53 2090.5 11.92 11.92
wMBE* F1 6 0.001 1E-05 8 8 14 19.92 1511.9 11.92 11.92
wMBE F2 3 0.001 1E-05 4 8 14 timeout 6.24
wMBE F1 6 0.001 1E-05 10 10 18 timeout 11.52
MBE* F1 6 0.001 1E-05 10 10 18 21.91 2038.1 16.18 16.18
wMBE* F1 6 0.001 1E-05 10 10 18 21.81 2085.6 16.18 16.18
wMBE F2 4 0.001 1E-05 6 10 18 3384.4 16.18 16.18
MBE* F2 4 0.001 0 6 10 18 1017.56 timeout 14.32
wMBE* F2 4 0.001 0 6 10 18 1016.46 timeout 14.32
wMBE F1 8 0.001 0 11 11 20 timeout 12.02
MBE* F1 8 0.001 0 11 11 20 516.51 timeout 13.41
wMBE* F1 8 0.001 0 11 11 20 515.99 timeout 13.41
wMBE F2 3 0.001 0 7 11 20 timeout
wMBE F1 6 0.001 1E-05 10 10 18 1686.5 15.03 15.03
MBE* F1 5 0.001 1E-05 10 10 18 17.78 105.1 15.03 15.03
wMBE* F1 5 0.001 1E-05 10 10 18 17.68 62.3 15.03 15.03
wMBE F2 4 0.001 1E-05 6 10 18 timeout 15.03
wMBE F1 5 0.001 1E-05 9 9 16 timeout 10.33
MBE* F1 5 0.001 1E-05 9 9 16 22.70 timeout 10.86
wMBE* F1 5 0.001 1E-05 9 9 16 23.00 timeout 10.86
wMBE F2 4 0.001 1E-05 5 9 16 timeout 10.86
wMBE F1 6 0.001 0 9 9 16 timeout 10.27
MBE* F1 6 0.001 0 9 9 16 515.44 timeout 10.29
wMBE* F1 6 0.001 0 9 9 16 515.23 timeout 10.29
wMBE F2 3 0.001 0 5 9 16 timeout

10.80

10.97248.3

91.2

625.4

43.8

399.6

1013.2

11.72

13.65

14.73

15.03

2rfe_00017_2_0_4_4

2rfe_00030_4_4_2_0

2rf9_00007_1_0_7_4

2rf9_00013_3_0_4_4

1gwc_00021_1_0_4_4

2hnv_00025_3_0_4_4

Table 11: Adjusted [w]MBE on Large problems (4 mutable residues, ie. MAP variables).



8.3 ANALYSIS

Formulation 1 vs. Formulation 2. The aggregated statistics in Table 1 show that F2 is generally superior to F1. One
aspect of F1 that is particularly handicapping is that, due to it using an indexing scheme between amino-acids and their
rotamers, all interaction functions need to include both residue and conformation variables, thus leeding to a more densely
connected graph (as can seen by the greater w* for F1 in Tables 2-4). That being said, a strength of F1 vs. F2 is its smaller
domain sizes in the presence of MAP variables, which comes into play during the heuristic evaluation. When looking at
the highest iB able to be used for each formulation (not explicitly shown) across the different expansions of a benchmark,
the highest iB possible by F2 drops more quickly as MAP variables are added (due to the great increase in domain sizes
incurred by adding additional MAP variables). An open question is how to combine the strengths of both formulations,
perhaps in conjunction with other potential innovations (as will be highlighted).

AOBB-K*1 vs BBK*: K* solution. AOBB-K* and BBK* find the same K* solution for all but two of the original problems
solved. However, as problems are expanded, the frequency that the two algorithms find different solutions increases. In each
exception, AOBB-K* outputted a K* solution was greater than that outputted by BBK*. These results are captured in Table 1
and concrete examples can be seen in Tables 2 and 3 where cases where the K* solution differ are highlighted in the K*MAP
columns. Through further analysis, AOBB-K*’s solutions were verified to be valid based on the problem formulations.

AOBB-K*1 vs BBK*: Speed. AOBB-K* showed powerful performance on the original benchmarks solving nearly every
problem faster than BBK*. As the problems were expanded, however, we see AOBB-K*’s performance begin to drop
more rapidly than BBK*’s. In the expanded problems, AOBB-K* was able to surpass BBK* on four problems, but not the
other eight. For the hard problems, AOBB-K* was only able to confirm a K*MAP value on one problem in the allotted
hour (not explicitly shown). These results are captured in Table 1. Concrete examples can be seen in Tables 2, 3, and 4
where we can also see AOBB-K* taking advantage of wMBE-K*, using the heuristic value when it is known to be exact
rather than searching the underlying subspace (see column EH). That being said, it is important to note that: (1) AOBB-K*

finds solutions greater than that of BBK* (which may partially account for the increased time) and (2) AOBB-K* returns
intermediate anytime solutions, some of which exceeded the K* value returned by BBK*. Nevertheless, improving scalability
is an important future direction, and potential directions illuminated by this work will be discussed in the final section.

Weighted Heuristic Search. As an initial venture into an approximate version of AOBB-K* we modified the algorithm
to employ a weighted heuristic (see Tables 2, 3, ω = 0.001 vs. ω = 1). In nearly all cases, moving to approximate search
reduced the MAP search space and thus improved the time. As would be expected however, applying a weighted heuristic did
not help as much when the heuristic was particularly weak or few MAP nodes were already being searched. In some cases,
it was more beneficial to spend longer computing a more accurate heuristic so that it could be taken advantage of during
search when using a weighted heuristic (notice the increase in iB used for benchmark 2rl0_00008 when using ω = 0.001).

Infusing Determinism. To observe the effects of infusing determinism, we applied thresholded-underflow using a
τ = 1 × 10−5 and compared to base problems (τ = 0). In all cases, we see that the thresholded-underflows improved
search times (see columns tsearch in Tables 2 and 3), sometimes so much so that the best time corresponded to allowing
for a more crudely computed heuristic to enter search more quickly (notice the iB drop, yet shorter tsearch, on benchmarks
2rl0_00008, 2xyg_00020*, and 4wwi_00019*). Even when the same iB is used, interestingly, the speedup due to underflows
does not always correspond to a reduced search of the MAP space (see OR 4wwi_00019*). Here we see that the heuristic is
adversely affected by the underflow (see Section 5) resulting in less efficient pruning of the MAP space. Next we present
initial exploration into a potential remedy.

MBE+-K* and wMBE+-K*. As described in Section 5, bounding a ratio of functions such as K* is especially difficult
- particularly because it relies on lower-bounding, which can be especially problematic in the presence of determinism.
However, in domains such as CPD where we are guaranteed non-zero solutions for the lower bounded portions, it can be
safe to ignore certain tuples that correspond to zeros in computations. To empirically test the effects of such a modification,
we applied MBE+-K* and wMBE+-K* to particularly large F1 problems for which wMBE-K* was unbounded (Table 4). In
every case, the modified heuristics were able to provide a bounded estimate, in four of the six problems enabling AOBB-K*

to find an anytime solution better than BBK*, and in two of the five problem that previously could not be solved exactly,
allowing the algorithm to find a solution within the hour. As we will outline further in the conclusion, these results, motivate
incorporating constraints into the heuristic evaluation and exploring new internal representations.



9 CONCLUSION

Conclusion. In summary, this work provides (1) two distinct graphical model formulations (with strengths and weaknesses
explored) for use with K*MAP-adapted algorithms over AND/OR search spaces. (2) a new wMBE-K* heuristic and
exploration into innovations to improve the quality of K*MAP heuristic bounds by considering constraints. (3) AOBB-K*, a
depth-first AND/OR branch-and-bound algorithm for optimizing K* (and an accompanying approximate ω-AOBB-K*), that
shows great promise - outperforming the state-of-the-art BBK* on many problems - yet leaves room for advancement to
address scaling to larger problems. And (4) a scheme to exploit determinism safely introducing underflows into problem
formulations with theoretical guarantees, which provided significant speed-up.

As a foundation. Although it is rewarding that our algorithms and modifications performed well on modest problems,
the purpose of this work is foundational and lays an initial framework from which to explore new innovations. From this
initial exploration, three directions that have immediately illuminated are: (1) research into methodologies and problem
representations that exploiting determinism applicable to the K*MAP task such as the work of Larkin and Dechter [2003],
(2) generation of new schemes to incorporate constraints - both local and global - into the K* heuristic or new heuristic
schemes in general (such as using an alternate bucket elimination methods such as Deep Bucket Elimination Razeghi et al.
[2021]), and (3) adaptation of advanced state-of-the-art mixed-inference algorithms to solving the K*MAP query, including
sophisticated exact algorithms such as Recursive Best-First AND/OR Search Marinescu et al. [2018], anytime approximation
schemes such as Learning Depth-First or Stochastic Best-First AND/OR Search Marinescu et al. [2018], and incorporating
state-of-the-art sampling methods such as Dynamic Importance Sampling Lou et al. [2019] or Abstraction Sampling Kask
et al. [2020].

More applicably, this framework can now be tuned more specifically for the protein domain by: (1) forming designs
containing independencies that can be exploited by an AND/OR scheme, (2) integrating the many optimizations present in
well established optimized CPD software, such as BBK* via OSPREY, and extending the complexity of problems addressed,
such as to include backbone ensembles.
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