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A PROOF OF PROPOSITION 2

Proof. Fix j ∈ {1, . . . , d}, then it holds that β∗
j is iden-

tifiable by (3) if and only if the space B is degenerate
in the j-th coordinate, that is, Bj = {β∗

j }. Next, define
M := Cov(I,X) and v := Cov(I, Y ). Then, denoting the
Moore-Penrose inverse of M by M†, we get that for any
solution β ∈ B there exists w ∈ Null(M) ⊆ Rd such that

β = M†v + w. (20)

Therefore, the space B has a degenerate j-th coordinate if
and only if Null(M)j = {0}. Denoting the Moore-Penrose
inverse by M†, the null space of M can be expressed as

Null(M) = {(Id−M†M)w |w ∈ Rd}.

Next, (1) and the assumption of joint independence of I ,
ξX , and ξY imply that

M = Cov[I,X] = Cov
[
I, (Id−B)−1(AI + ξX)

]
= Cov[I]A⊤(Id−B)−⊤

= Cov[I]C.

Therefore, using the properties of the Moore-Penrose inverse
and that Cov[I] is invertible we get that

M†M = C† Cov[I]−1 Cov[I]C. (21)

Hence, we get that M†M = C†C which implies that
Null(M) = Null(C). This proves the first part of the state-
ment. The second part of the proposition uses (20) together
with Null(M) = Null(C). This completes the proof of
Proposition 2.

B FURTHER RESULTS

Proposition 9. Let A ∈ Rn×m and B ∈ Rn×p be two
matrices satisfying

Rank(B) ≤ Rank(A) and Im(A) ̸= Im(B)

and let W ∈ Rm be a random variable with a distribu-
tion on Rm that is absolutely continuous with respect to
Lebesgue measure. Then it holds that

P(AW ∈ Im(B)) = 0.

Proof. We begin by showing that

Im(B)
⊥ ∩ Im(A) ̸= ∅. (22)

Assume for the sake of contradiction this is not true. Then
it would hold that Im(A) ⊆ Im(B). Moreover, since by
assumption Rank(B) ≤ Rank(A) this would imply that
Im(A) = Im(B), which contradicts the assumptions on A
and B. Hence, (22) is true.

Next, let b1, . . . , bn ∈ Rn be an orthogonal basis of Rn

such that
span(b1, . . . , bk) = Im(B)

⊥

and
span(bk+1, . . . , bn) = Im(B) .

Then, for every ℓ ∈ {1, . . . ,m} there exits unique
αℓ
1, . . . , α

ℓ
n ∈ R such that

Aℓ =

n∑
i=1

αℓ
ibi.

Furthermore, by (22), it holds that there exists at least one
i∗ ∈ {1, . . . , k} and ℓ∗ ∈ {1, . . . ,m} such that αℓ∗

i∗ ̸= 0.
Furthermore, for every w ∈ Rm it holds that

Aw =

m∑
ℓ=1

wℓAℓ =

m∑
ℓ=1

n∑
i=1

wℓαℓ
ibi =

n∑
i=1

(
m∑
ℓ=1

wℓαℓ
i

)
bi.

This implies that Aw ∈ Im(B) if and only if
∑m

ℓ=1 w
ℓαℓ

i =
0 for all i ∈ {1, . . . , ℓ}. Using this we get

P(AW ∈ Im(B)) = P(∀i ∈ {1, . . . , ℓ} :
∑m

ℓ=1 W
ℓαℓ

i = 0)

≤ P(
∑

ℓ̸=ℓ∗ W
ℓαℓ

i∗ = W ℓ∗αℓ∗

i∗ )

= 0,
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where for the last step we used that the distribution of W
is absolutely continuous with respect to Lebesgue measure.
This completes the proof of Proposition 9.

C PROOF OF THEOREM 6

Proof. It is known that for β ∈ Rd \ B with β ̸= β∗ the
Anderson-Rubin test statistic (given Gaussian noise vari-
ables and conditioned on the observations of I and X) satis-
fies

T (β) ∼ χ2

(
1, n

∥Ĉov(I,X)(β∗ − β)∥22
σ2

)
,

where χ2(1, λ) is the non-central χ2-distribution with one
degree of freedom and non-centrality parameter λ, see for
example Moreira [2009].

We first prove (i). Fix s ∈ N such that s < ∥β∗∥0 (if
∥β∗∥0 = 1, the proof simplifies and one can consider
(24) directly). Then, for all β ∈ Rd such that ∥β∥0 =
s, we have by Theorem 3 that Cov

(
I, Y −X⊤β

)
̸=

0. Furthermore, there exists ε > 0 such that for all
β ∈ Rd with ∥β∥0 = s it holds that ∥β − β∗∥22 >
ε. Therefore, since β 7→ ∥Cov

(
I, Y −X⊤β

)
∥22 =

∥Cov
(
I,X⊤(β∗ − β)

)
∥22 is a quadratic form, there exists

c > 0 such that ∥Cov
(
I,X⊤(β∗ − β)

)
∥22 > c.

Conditioning on the observed data of X and I , we have

P

(
inf

β : ∥β∥0=s
T (β) > cα

∣∣ (X1, I1), . . . , (Xn, In)

)
= 1− κ

(
cα, n inf

β : ∥β∥0=s

∥Ĉov(I,X)(β∗ − β)∥22
σ2

)
,

(23)

where κ(·, λ) is the χ2(1, λ)-distribution function; here, we
have exploited that for all x, λ 7→ κ(x, λ) is monotonically
decreasing.

As n tends to infinity, it holds almost surely that
∥Ĉov(I,X)(β∗ − β)∥22 → ∥Cov(I,X)(β∗ − β)∥22 > c.
Hence, since c does not depend on β, the non-centrality
parameter in the χ2-distribution tends to infinity and (23)
converges to 1. Thus,

lim
n→∞

P (ϕs = 1) = 1.

Since this holds for any s ∈ N such that s < ∥β∗∥0, we
have

lim
n→∞

P (∥β̂≤smax
∥0 = ∥β∗∥0)

= lim
n→∞

P

(
min

s<∥β∗∥0

ϕs = 1, ϕ∥β∗∥0
= 0

)
= lim

n→∞
P (ϕ∥β∗∥0

= 0)

= 1− α, (24)

where the last statement follows from the fact that ϕs has
valid level.

Statement (ii) follows with the same argument noting that
for all ε > 0 there exists a c > 0 such that for all β ∈ Rd

satisfying ∥β∥0 < ∥β∗∥0 or ∥β∥0 = ∥β∗∥0 and ∥β −
β∗∥2 ≥ ε, we have Cov

(
I, Y −X⊤β

)
> c > 0, again,

using Theorem 3. This concludes the proof of Theorem 6.

D PROOF OF PROPOSITION 7

Proof. To prove the first statement, we note that{⋂
S:|S|=|PA[Y ]| and

H0(S) accepted
S ⊆ PA[Y ]

}
⊇ {H0(PA[Y ]) accepted} .

But because

T (β∗) ≥ T (β̂LIML(PA[Y ])),

we have

P (H0(PA[Y ]) accepted ) ≥ 1− α.

To prove the second statement, observe that by the definition
of M it holds that{

M ≥ ∥β∗∥0
}
⊇
{

min
s<∥β∗∥0

ϕs = 1

}
and therefore{⋂

S:|S|=M and
H0(S) accepted

S ⊆ PA[Y ]

}

⊇

{{
min

s<∥β∗∥0

ϕs = 1
}

∩ {T (β̂LIML(PA[Y ])) ≤ F−1
n−m,m(1− α)}

}
.

It follows from the first part of Theorem 3 that for all β ∈ Rd

such that ∥β∥0 < ∥β∗∥0, we have Cov
(
I, Y −X⊤β

)
̸= 0.

We can therefore apply the same arguments as in Theorem 6
to argue that for all s < ∥β∗∥0, we have

lim
n→∞

P (ϕs = 1) = 1.

The statement then follows from T (β∗) ≥
T (β̂LIML(PA[Y ])) and the fact that the Anderson-
Rubin test holds level. This completes the proof of
Proposition 7.

E EXAMPLE 1 CONTINUED

Figure 7 discusses the example graph mentioned in Exam-
ple 1.
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Figure 7: Top: Graph copied from Example 1 and Figure 2.
Assumption (B1) holds because of the path 2 → X2, for
example. For S = {1}, (B3) (i) is not satisfied but (B3)
(ii) holds: there is no set T of size one, such that all di-
rected paths from I to PA(Y ) go through T . Therefore, if
(B2) holds, the effect β∗ is identifiable (see Theorem 5). If,
however, we were to remove the second instrument node
from Example 1, (B3)(i) and (ii) would be violated (for set
S = {X1}). Bottom: Marginalized graph GPA(Y ).

F EXAMPLE VIOLATING ASSUMPTION
(A2)

Example 10. Consider an SCM of the following formX1

X2

X3

 :=

0 0 0
0 0 0
1 2 0

X1

X2

X3

+

4 0
0 3
0 0

(
I1

I2

)
+ h(H, εX)

Y :=
(
X1 X2 X3

)1
2
0

+ g(H, εY ), (25)

where I1, I2, H , εY , εX are jointly independent. Figure 8
shows the corresponding graphical representation. In this
case, it holds that

C =

(
1 0 1
0 1 1

)
.

Hence, the set S = {3} violates Assumption (A2). In par-
ticular, the coefficient β̃ = (0, 0, 1)⊤ ∈ B yields a sparser
solution than the causal coefficient (1, 1, 0)⊤. Therefore,
the result of Theorem 3 cannot be valid. Assumption (A2)
is violated in this example because the coefficients can be
matched exactly. If the coefficients are chosen randomly with
a distribution that is absolutely continuous with respect to
Lebesgue measure, this happens with probability zero, see
Proposition 9.
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Figure 8: Example graph for which Assumption (A2) can
be violated if the edge coefficients are fine-tuned to match
each other exactly.

G ADDITIONAL SIMULATION RESULTS
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Figure 9: Same experiment as in Figure 6 but with TSLS
estimator instead of LIML. Results for all 2000 random
models with n = 1600. We split the models into three cases
depending on which of the assumptions (A1) and (A3) are
satisfied (the group ‘(A1)’ contains 88 models, the group
‘(A1) & (A3)’ contains 1871 models and the group ‘none’
contains 41 models). If none of the assumptions are satisfied,
not even the oracle with known parent set works. If only
(A1) is satisfied, multiple sets of size 2 are able to satisfy
the moment equation (3) and spaceIV may not estimate
the correct set. These findings are in par with Theorem 3.
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Figure 10: Same experiment as in Figure 4 but with TSLS
estimator instead of LIML. Results for all random models
that satisfy (A1)-(A3) (in total 1871 out of 2000 models).
The median RSME of the spaceIV estimator converges to
zero as the simple size increases, which does not hold for
OLS-sparse. Note that some of the outliers are cut-off in
this plot.
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Figure 11: Same experiment as in Figure 5 but with TSLS
estimator instead of LIML. Expected fraction of random
models for which spaceIV estimated the correct sparsity
level. Only random models that satisfy (A1)-(A3) are con-
sidered (in total 1871 models). As the sample size increases
the estimation of the sparsity level becomes more accurate.
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