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1 SUPPLEMENTARY MATERIAL:
CALCULATION OF Q-GIBBON

We derive here the analytical form of our proposed Q-
GIBBON acquisition function. For simplicity, we focus on
the quantile setting, but the expectile case only requires a
straightforward modification of the following derivation.

Recall that Q-GIBBON is defined as
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2
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where |C| is the determinant of the B × B predictive co-
variance matrix with elements Ci,j = Cov(yxi

, yxj
|Dn)

and V (g∗) denotes the conditional variances Vi(g
∗) =

Var(yxi |g∗,Dn). Therefore, calculating Q-GIBBON boils
down to being able to calculate Vi(g

∗) and Ci,j across any
candidate batch of points (i.e. for all i, j ∈ {1, .., B}). We
now derive closed-form expressions for Vi(g

∗) and Ci,j .

1.1 REQUIRED PREDICTIVE QUANTITIES

For ease of notation, we will consider just a single pair
of input values of x1 and x2 and show how to calculate
V1(g

∗) and C1,2. Denote the quantiles, scales and (noisy)
observations at these two location as g1 = g(x1)|Dn,
g2 = g(x2)|Dn, σ1 = σ(x1)|Dn, σ2 = σ(x2)|Dn, y1 =
y(x1)|Dn and y2 = y(x2)|Dn, respectively. Then, from our
underlying GP models we can extract our current beliefs
about these random variables:(
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For closed form expressions of µg
1, σg

1 , ... see any GP text-
book, e.g. Rasmussen [2003].

Before deriving expressions for V1(g
∗) and C1,2, it is con-

venient to write the conditional mean and variance of our
noisy observations y1 and y2. Following Yu and Moyeed
[2001], we have

E[y1|g1, σ1] = g1 +
1− 2τ

τ(1− τ)
σ1, (1)

Var(y1|g1, σ1) =
1− 2τ + 2τ2

τ2(1− τ)2
σ2
1 , (2)

with similar expressions for the moments of y2|g2, σ2

1.2 CALCULATING THE CONDITIONAL
VARIANCE V

We now have all the quantities required to calculate
V1(g

∗) = Var(y|g∗). Recall that g∗ denotes the maximal
value obtained by the quantile (i.e. g(x)). First, we use the
law of total variance to decompose V1 into two terms:

V1 =Varg1,σ|g∗ (E[y1|g1, σ1, g
∗])

+ Eg1,σ|g∗ [Var (y1|g1, σ1, g
∗)] . (3)

Note that conditioning on g1, σ, g
∗ is equivalent to condi-

tioning on g1, σ only, as knowing that g∗ = max g(x) does
not provide additional information over knowing g1 itself.
Therefore, we can insert our expressions for the moments
of the asymmetric Laplace (1) and (2) into (3) which, after
simple manipulation provides:

V1(g
∗) = Varg1|g∗(g1) +

3(1− 2τ)2 + 1

2τ2(1− τ)2
e2(µ

σ
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1 )2)

+
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2τ2(1− τ)2
e2µ

σ
1+(σσ

1 )2 . (4)

All that remains for the calculation of V (g∗)1 is an expres-
sion for Varg1|g∗(g1). Fortunately, as shown by Wang and
Jegelka [2017], g|g∗ is simply an upper truncated Gaussian
variable. Therefore, using the well-known expression for
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the variance of a truncated Gaussian, we have

Varg1|g∗(g1) = (σg
1)

2

(
1 +

ϕ(γg∗)

Ψ(γg∗)

(
γg∗ − ϕ(γg∗)

Ψ(γg∗)

))
,

(5)

where γg∗ =
g∗−µg

1

σg
1

, and ϕ and Ψ are the probability density
functions and cumulative density functions of a standard
Gaussian variable, respectively.

Finally, inserting (5) into (4) yields a closed form expression
for V1(g

∗).

1.3 CALCULATING THE PREDICTIVE
COVARIANCE C

Just like when calculating the conditional variance V1, we
begin our decomposition of C1,2 = Cov(y1, y2) by apply-
ing the law of total variance to get the following two term
expansion:

C1,2 =Covg1,g2,σ1,σ2
(E [y1|g1, σ1] ,E [y2, g2, σ2])

+ Eg1,g2,σ1,σ2
[Cov(y1, y2|g1, g2, σ1, σ2)] . (6)

Now, as y1|g1, σ1 and y2|g2, σ2 are independent (all that
remains after this conditioning is observation noise), the
second term of (6) is in fact zero (at least for unique x1 and
x2).

To calculate the first term of (6), we insert the expression for
the first moment of y|g, σ ( i.e. Equation (1)) which, after
recalling the independence of g and σ, yields

C1,2 = Covg1,g2(g1, g2)

+
(1− 2τ)2

τ2(1− τ)2
Covσ1,σ2

(σ1, σ2). (7)

Finally, we can extract Cov(g1, g2) and Cov(σ1, σ2)
from our underlying GP models as Σg

1,2 and
eµ

σ
1+µσ

2+0.5(σσ
1 +σσ

2 )(eΣ
σ
1,2 − 1) (using the formulae

for the covariance of joint log Gaussian variables). Inserting
these two covariances into (7) provides a closed-from
expression for C1,2.

2 SUPPLEMENTARY MATERIAL: RFF
FOR MATERN KERNELS

We present in this section how to use RFFs to generate
samples from d-dimensional Matern kernels with regularity
ν, variance σ2 and lengthscales θ ∈ Rd. First of all, we start
from the spectral density of a Matérn kernel:

s(w) = σ2|Λ|1/2
Γ(d2 + ν)

Γ(ν)

(2
√
π)d

(1 + wTΛw)
d
2+ν

,

where Λ = diag(θ1, · · · , θd) is the diagonal matrix con-
taining the length scale hyperparameters. Using the change
of variable Λ′ = 2ν × Λ and introducing rescaling factor
σ2(

√
2π)d, one can recognise here the probability density

function of the multivariate t-distribution:

p(w) = |Λ|1/2
Γ(d2 + ν)

Γ(ν)πd/2νd/2
1

(1 + 1
2νw

TΛw)
d
2+ν

.

As a consequence, prior samples can be generated by com-
puting

g(x) = σ

√
2(
√
2π)d/m

m∑
i=1

ωi cos(w
T
i x+ bi)

where ωi ∼ N (0, 1), wi ∼ p, bi ∼ U(0, 2π), and m is the
number of features.

3 SUPPLEMENTARY MATERIAL:
DESCRIPTION OF THE GLD
SYNTHETIC CASE

Several formulations of the GLD exist, we use here the pa-
rameterisation of Freimer et al. [1988]. The GLD is defined
by its quantile function:

Q(u) = λ0 + λ1 (T1 − T2) , (8)

with:

T1 =

{
uλ2−1

λ2
if λ2 ̸= 0

log(u) if λ2 = 0

T2 =

{
(1−u)λ3−1

λ3
if λ3 ̸= 0

log(1− u) if λ3 = 0
.

Here, the only constraint for the parameter values is λ1 > 0.

To define an experiment, each λj is a realisation of a GP,
except for λ1 for which we use a softplus transform to ensure
positivity:

λj(x) ∼ GP
(
0, k(·, ·)

)
, j ∈ {0, 2, 3},

ϕ(λ1(x)) ∼ GP
(
0, k(·, ·)

)
,

with ϕ−1(w) = log(1+ew). All GPs have a Matern 5/2 ker-
nel k with unit variance. We add to λ0(x) a small quadratic
mean function to avoid having the optimum located on the
edges of the domain. We use a lengthscale of 0.5 in dimen-
sion 3 and 1.0 in dimension 6. These settings ensure that the
6-dimensional test cases do not have too many local optima.
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