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1 SUPPLEMENTARY MATERIAL:
CALCULATION OF Q-GIBBON

We derive here the analytical form of our proposed Q-
GIBBON acquisition function. For simplicity, we focus on
the quantile setting, but the expectile case only requires a
straightforward modification of the following derivation.

Recall that Q-GIBBON is defined as
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where |C] is the determinant of the B x B predictive co-
variance matrix with elements C; ; = CoV(Yz,, Yz, |Dn)
and V(g*) denotes the conditional variances V;(g*) =
Var(y.,|g*, Dy). Therefore, calculating Q-GIBBON boils
down to being able to calculate V;(¢g*) and C; ; across any
candidate batch of points (i.e. for all i, j € {1, .., B}). We
now derive closed-form expressions for V;(g*) and C; ;.

1.1 REQUIRED PREDICTIVE QUANTITIES

For ease of notation, we will consider just a single pair
of input values of z; and x5 and show how to calculate
Vi(g*) and C 2. Denote the quantiles, scales and (noisy)
observations at these two location as g1 = g(x1)|Dp,
g2 = g(x2)|Dp, 01 = 0(x1)|Dy, 02 = 0(22)|Dp> y1 =
y(x1)|Dy, and y2 = y(x2)| Dy, respectively. Then, from our
underlying GP models we can extract our current beliefs
about these random variables:
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For closed form expressions of u, of, ... see any GP text-
book, e.g. Rasmussen| [2003]].

Before deriving expressions for V4 (¢*) and C} o, it is con-
venient to write the conditional mean and variance of our
noisy observations y; and ys. Following [Yu and Moyeed
[2001]], we have
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with similar expressions for the moments of y2|g2, o2

1.2 CALCULATING THE CONDITIONAL
VARIANCE V

We now have all the quantities required to calculate
Vi(g*) = Var(y|g*). Recall that g* denotes the maximal
value obtained by the quantile (i.e. g(z)). First, we use the
law of total variance to decompose V7 into two terms:

Vi =Varg, 54+ (E[y1lg1,01,97])

+Eg1,a|g* [Var (y1|g1,01,g*)] : (3)
Note that conditioning on g1, g, g* is equivalent to condi-
tioning on g1, o only, as knowing that g* = max g(z) does
not provide additional information over knowing g; itself.
Therefore, we can insert our expressions for the moments
of the asymmetric Laplace (I)) and (2)) into (3) which, after
simple manipulation provides:
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All that remains for the calculation of V'(¢g*); is an expres-
sion for Varg, |4+ (g1). Fortunately, as shown by Wang and
Jegelkal[2017]], g|g* is simply an upper truncated Gaussian
variable. Therefore, using the well-known expression for
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the variance of a truncated Gaussian, we have
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where g+ = ,and ¢ and ¥ are the probability density
functions and cumulative density functions of a standard

Gaussian variable, respectively.

Finally, inserting (5) into (@) yields a closed form expression
for V1(g*).

1.3 CALCULATING THE PREDICTIVE
COVARIANCE C

Just like when calculating the conditional variance Vi, we
begin our decomposition of C 5 = Cov(y1, y2) by apply-
ing the law of total variance to get the following two term
expansion:
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Now, as y1|g1,01 and y2|ga, 02 are independent (all that
remains after this conditioning is observation noise), the
second term of () is in fact zero (at least for unique z; and
.%‘2).

To calculate the first term of (6)), we insert the expression for

the first moment of y|g, o (i.e. Equation ) which, after
recalling the independence of g and o, yields

C1,2 = Covg, g, (91, g2)
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Finally, we can extract Cov(g1,g2) and Cov(oq,02)
from our underlying GP models as X, and
et TH3 t05(eT+03) (e¥12 — 1) (using the formulae
for the covariance of joint log Gaussian variables). Inserting
these two covariances into (7) provides a closed-from
expression for C ».

2 SUPPLEMENTARY MATERIAL: RFF
FOR MATERN KERNELS

We present in this section how to use RFFs to generate
samples from d-dimensional Matern kernels with regularity
v, variance o2 and lengthscales 6 € RY. First of all, we start
from the spectral density of a Matérn kernel:
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where A = diag(0y,--- ,6,) is the diagonal matrix con-
taining the length scale hyperparameters. Using the change
of variable A’ = 2v x A and introducing rescaling factor
0?(v/27)?, one can recognise here the probability density
function of the multivariate t-distribution:
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As a consequence, prior samples can be generated by com-
puting

g(z) = o4/ 2(\[277)‘1/7712% cos(wl'z + b;)

where w; ~ N(0,1), w; ~ p, b; ~ U(0,27), and m is the
number of features.

3 SUPPLEMENTARY MATERIAL:
DESCRIPTION OF THE GLD
SYNTHETIC CASE

Several formulations of the GLD exist, we use here the pa-
rameterisation of |[Freimer et al.|[1988]]. The GLD is defined
by its quantile function:
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Here, the only constraint for the parameter values is A; > 0.

To define an experiment, each )\; is a realisation of a GP,
except for \; for which we use a softplus transform to ensure
positivity:

Aj(z) ~GP(0,k(-,-)),
d(A(x)) ~ GP(0,k(-,-)),

with =1 (w) = log(1+e®). All GPs have a Matern 5/2 ker-
nel k& with unit variance. We add to Ao(x) a small quadratic
mean function to avoid having the optimum located on the
edges of the domain. We use a lengthscale of 0.5 in dimen-
sion 3 and 1.0 in dimension 6. These settings ensure that the
6-dimensional test cases do not have too many local optima.

j€{0,2,3},
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