Voronoi Density Estimator for High-Dimensional Data: Computation, Compactification and Convergence (Supplementary Material)

¹School of Electrical Engineering and Computer Science, Royal Institute of Technology (KTH), Stockholm, Sweden

We provide here a proof of our main theoretical result with full details.

Theorem 4.1. Suppose that ρ has support in the whole \mathbb{R}^n . For any $K \in L^1(\mathbb{R}^n \times \mathbb{R}^n)$ the sequence of random probability *measures* $\mathbb{P}_m = f dx$ *defined by the CVDE with* m *generators converges to* \mathbb{P} *in distribution w.r.t.* x *and in probability w.r.t.* P. Namely, for any measurable set $E \subseteq \mathbb{R}^n$ the sequence $\mathbb{P}_m(E)$ of random variables over P sampled from ρ converges in *probability to the constant* $\mathbb{P}(E)$ *.*

We shall first build up some machinery necessary for the proof. First of all, the following fact on higher-dimensional Euclidean geometry will come in hand.

Proposition 4.2. (Gibbs and Chen [2020,](#page-3-0) Lemma 5.3) *Let* $x \in \mathbb{R}^n$, $\delta > 0$. *There exist constants* $1 < c_1 < c_2 - 1 < 31$ *such that for any open cone* $K \subseteq \mathbb{R}^n$ *centered at x of solid angle* $\frac{\pi}{12}$ *and any* $p, q, z \in K$ *, if*

$$
d(x, p) < \delta, \ c_1 \delta \le d(x, q) < c_2 \delta, \ d(x, z) \ge 32\delta
$$

then $d(z, q) < d(z, p)$ *.*

Figure 1: Graphical depiction of sets and points appearing in the proof of Proposition [4.3.](#page-0-0)

We can now deduce the following.

Proposition 4.3. Let $\emptyset \neq E \subseteq \mathbb{R}^n$ be a bounded measurable set. There exists a bounded measurable set $B \supseteq E$ such that $as\ m=|P|$ *tends to* ∞ , *the probability with respect to* $P\sim \rho^m$ *that every Voronoi cell intersecting* E *is contained in* B *tends to* 1*.*

*Equal contribution.

Proof. Let $\delta = 2$ diam $E = 2 \sup_{x,y \in E} d(x,y)$ be twice the diameter of E. For $L > 0$, consider the L-neighbourhood of E

$$
E_L = \{ x \in X \mid d(x, E) < L \}.
$$

First of all, if E has vanishing measure, we can replace it without loss of generality by some E_L , which has nonempty interior.

We claim that $B = E_{32\delta}$ is as desired. To see that, consider an arbitrary $x \in E$ and let $\{K_j\}_j$ be a finite minimal set of open cones centered at x of solid angle $\frac{\pi}{12}$ whose closures cover \mathbb{R}^n . As m tends to ∞ , since ρ has support in the whole \mathbb{R}^n , by the law of large numbers the probability of the following tends to 1:

- P intersects E (recall that E has non-vanishing measure),
- for every j, P intersects $(E_{(c_2-\frac{1}{2})\delta} \setminus E_{c_1\delta}) \cap K_j$, where c_1, c_2 are the constants from Proposition [4.2.](#page-0-1)

To prove our claim, we can thus conditionally assume the above. Consider now a Voronoi cell intersecting E and suppose by contradiction that z is an element of the cell not contained in B. Let $q \in P$ be a generator in $(E_{(c_2-\frac{1}{2})\delta} \setminus E_{c_1\delta}) \cap K_j$ where K_j is the cone containing z. Since P intersects E, the generator p of the cell lies in $E_{\text{diam}(E)} = E_{\frac{\delta}{2}}$ and consequently $d(x, p) < \delta$. If $p \notin K_j$, then one can replace it with its orthogonal projection on the line passing through x and z. The hypotheses of Proposition [4.2](#page-0-1) are then satisfied and we conclude that $d(z, q) < d(z, p)$. This is absurd since p is the generator of $C(z)$. \Box

For a bounded measurable set $E \subseteq \mathbb{R}^n$, denote by

$$
D_E = \max_{\substack{p \in P \\ C(p) \cap E \neq \emptyset}} \text{diam } C(p)
$$

the maximum diameter of a Voronoi cell intersecting E.

Proposition 4.4. D_E , thought as a random variable in P, converges in probability to 0 as $m = |P|$ tends to ∞ .

Proof. The proof is inspired by Theorem 4 in Devroye et al. [2015.](#page-3-1) Consider a finite minimal set of open cones $\{K_i\}_i$ centered at 0 of solid angle $\frac{\pi}{12}$ whose closures cover \mathbb{R}^n . Then there is a constant $c > 0$ such that for each $p \in P$

$$
\text{diam } C(p) \leq c \max_j R_{p,j}
$$

where $R_{p,j} = \min_{q \in P \cap (p+K_j)} d(p,q)$ denotes the distance from p to its closest neighbour in the cone K_j centered in p (and $R_{p,j} = \infty$ if $P \cap (p + K_j) = \emptyset$. This follows from Proposition [4.2](#page-0-1) applied with $x = p$ to all the cones centered at the generators, with an opportune δ for each of them. For each $\varepsilon > 0$ we thus have an inclusion of events

$$
\{D_E > \varepsilon\} \subseteq \left\{\max_{\substack{p,j\\C(p) \cap E \neq \emptyset}} R_{p,j} > \frac{\varepsilon}{c} \right\} \subseteq \bigcup_{i,j} \left\{ P \cap (p_i + K_j) \cap B\left(p_i, \frac{\varepsilon}{c}\right) = \emptyset \text{ and } C(p_i) \cap E \neq \emptyset \right\}
$$

where $B(x, r)$ is the open ball centered in x of radius r. In the above, we assumed that the set P is equipped with an ordering. For $x \in \mathbb{R}^n$ denote by $E_{x,j}$ the event appearing at the right member of the above expression for $x = p_i$. We can then bound the probability with respect to a random $P \sim \rho^m$, with $m = |P|$ fixed, as

$$
\mathbb{P}_{P \sim \rho^m}(D_E > \varepsilon) \leq \sum_{i,j} \mathbb{P}_{P \sim \rho^m}(E_{p_i,j}) = m \sum_j \int_{\mathbb{R}^n} \rho(x) \mathbb{P}_{P \sim \rho^m}(E_{x,j} \mid p_1 = x) dx.
$$

Since the points in P are sampled independently we have

$$
\mathbb{P}_{P \sim \rho^m}(E_{x,j} \mid p_1 = x, \ C(x) \cap E \neq \emptyset) = \left(1 - \mathbb{P}\left((x + K_j) \cap B\left(x, \frac{\varepsilon}{c}\right)\right)\right)^{m-1} := (1 - M(x))^{m-1}.
$$

Pick the set B guaranteed by Proposition [4.3.](#page-0-0) We can then conditionally assume that every Voronoi cell intersecting E is contained in B, which implies $\mathbb{P}_{P\sim\rho^m}(E_{x,j})=0$ for $x \notin B$. The limit we wish to estimate reduces to

$$
\lim_{m \to \infty} m \sum_{j} \int_{\mathbb{R}^n} \rho(x) \mathbb{P}_{P \sim \rho^m}(E_{x,j} \mid p_1 = x) dx = \sum_{j} \lim_{m \to \infty} \int_B \rho(x) m (1 - M(x))^{m-1} dx.
$$

Since B is bounded and ρ has support in the whole \mathbb{R}^n , $M(x)$ is (essentially) bounded from below by a strictly positive constant as x varies in B . The limit can thus be brought under the integral and putting everything together we get:

$$
\lim_{m \to \infty} \mathbb{P}_{P \sim \rho^m}(D_E > \varepsilon) \le \sum_j \int_B \rho(x) \lim_{m \to \infty} m(1 - M(x))^{m-1} dx = 0.
$$

We are now ready to prove Theorem [4.1.](#page-0-2)

Proof. By the Portmanteau Lemma (Van der Vaart [2000\)](#page-3-2), it is sufficient to that $\mathbb{P}_m(E)$ converges to $\mathbb{P}(E)$ in probability for any bounded measurable set $E \subseteq \mathbb{R}^n$ which is a continuity set for \mathbb{P} i.e., $\mathbb{P}(\partial E) = 0$ where ∂E is the (topological) boundary of E. Pick such E. By definition of the CVDE, for a fixed set P of generators we have that

$$
\mathbb{P}_m(E) = \frac{1}{m} |\{p \in P \mid C(p) \subseteq E\}| + \frac{1}{m} \sum_{\substack{p \in P \\ C(p) \subseteq E \\ C(p) \cap E \neq \emptyset}} \frac{\text{Vol}_p(C(p) \cap E)}{\text{Vol}_p(C(p))}
$$
\n
$$
= \frac{1}{m} |P \cap E| + \overline{R} - \frac{1}{m} |\{p \in P \cap E \mid C(p) \nsubseteq E\}|.
$$
\n(1)

Since the Voronoi cells are closed, any cell intersecting E not contained in E intersects ∂E . Thus $\left|\overline{R} - \frac{1}{m}|\{p \in P \cap E \mid C(p) \not\subseteq E\}|\right| \leq 2R$ where $R := \frac{1}{m}|\{p \in P \mid C(p) \cap \partial E \neq \emptyset\}|$. Now, the random variable $\frac{1}{m}|P \cap E|$ tends to $\mathbb{P}(E)$ in probability as m tends to ∞ by the law of large numbers. In or that R tends to 0 in probability.

Fix $\varepsilon > 0$. For $L > 0$, consider the L-neighbour $\partial E_L = \{x \in X \mid d(x, \partial E) < L\}$ of the boundary ∂E . If the diameter of the Voronoi cells intersecting ∂E is less than L then all such cells are contained in ∂E_L . Thus:

$$
\mathbb{P}_{P \sim \rho^m} (R > \varepsilon) \leq \mathbb{P}_{P \sim \rho^m} \left(\frac{1}{m} |P \cap \partial E_L| > \varepsilon \text{ and } D_{\partial E} < L \right) + \mathbb{P}_{P \sim \rho^m} (D_{\partial E} \geq L)
$$

\n
$$
\leq \mathbb{P}_{P \sim \rho^m} \left(\frac{1}{m} |P \cap \partial E_L| > \varepsilon \right) + \mathbb{P}_{P \sim \rho^m} (D_{\partial E} \geq L)
$$

\n
$$
\leq \mathbb{P}_{P \sim \rho^m} \left(\left| \mathbb{P} (\partial E_L) - \frac{1}{m} |P \cap \partial E_L| \right| > \varepsilon - \mathbb{P} (\partial E_L) \right) + \mathbb{P}_{P \sim \rho^m} (D_{\partial E} \geq L).
$$
\n(2)

Since ∂E is closed, $\partial E = \cap_{L>0} \partial E_L$ and thus $\lim_{L\to 0} \mathbb{P}(\partial E_L) = \mathbb{P}(\cap_L \partial E_L) = \mathbb{P}(\partial E) = 0$ since E is a continuity set. This implies that there is an L such that $\varepsilon > \mathbb{P}(\partial E_L)$. The right hand side of Equation [2](#page-2-0) tends then to 0 by the law of large numbers and Proposition [4.4,](#page-1-0) which concludes the proof.

 \Box

REFERENCES

Devroye, Luc et al. (Dec. 2015). "On the measure of Voronoi cells." In: *Journal of Applied Probability* 54. DOI: [10.1017/](https://doi.org/10.1017/jpr.2017.7) [jpr.2017.7](https://doi.org/10.1017/jpr.2017.7).

Gibbs, Isaac and Linan Chen (2020). "Asymptotic properties of random Voronoi cells with arbitrary underlying density." In: *Advances in Applied Probability* 52.2, pp. 655–680.

Van der Vaart, Aad W (2000). *Asymptotic statistics*. Vol. 3. Cambridge university press.