Voronoi Density Estimator for High-Dimensional Data: Computation, Compactification and Convergence (Supplementary Material)

Vladislav Polianskii* ¹	Giovanni Luca Marchetti*1	Alexander Kravberg ¹	Anastasiia Varava
Florian T. Pokorny ¹		Danica Kragic ¹	

¹School of Electrical Engineering and Computer Science, Royal Institute of Technology (KTH), Stockholm, Sweden

We provide here a proof of our main theoretical result with full details.

Theorem 4.1. Suppose that ρ has support in the whole \mathbb{R}^n . For any $K \in L^1(\mathbb{R}^n \times \mathbb{R}^n)$ the sequence of random probability measures $\mathbb{P}_m = f dx$ defined by the CVDE with m generators converges to \mathbb{P} in distribution w.r.t. x and in probability w.r.t. P. Namely, for any measurable set $E \subseteq \mathbb{R}^n$ the sequence $\mathbb{P}_m(E)$ of random variables over P sampled from ρ converges in probability to the constant $\mathbb{P}(E)$.

We shall first build up some machinery necessary for the proof. First of all, the following fact on higher-dimensional Euclidean geometry will come in hand.

Proposition 4.2. (Gibbs and Chen 2020, Lemma 5.3) Let $x \in \mathbb{R}^n$, $\delta > 0$. There exist constants $1 < c_1 < c_2 - 1 < 31$ such that for any open cone $K \subseteq \mathbb{R}^n$ centered at x of solid angle $\frac{\pi}{12}$ and any $p, q, z \in K$, if

$$d(x,p) < \delta, \ c_1 \delta \le d(x,q) < c_2 \delta, \ d(x,z) \ge 32\delta$$

then d(z,q) < d(z,p)*.*

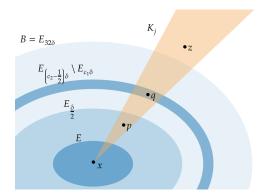


Figure 1: Graphical depiction of sets and points appearing in the proof of Proposition 4.3.

We can now deduce the following.

Proposition 4.3. Let $\emptyset \neq E \subseteq \mathbb{R}^n$ be a bounded measurable set. There exists a bounded measurable set $B \supseteq E$ such that as m = |P| tends to ∞ , the probability with respect to $P \sim \rho^m$ that every Voronoi cell intersecting E is contained in B tends to 1.

*Equal contribution.

Proof. Let $\delta = 2 \operatorname{diam} E = 2 \sup_{x,y \in E} d(x,y)$ be twice the diameter of E. For L > 0, consider the L-neighbourhood of E

$$E_L = \{ x \in X \mid d(x, E) < L \}.$$

First of all, if E has vanishing measure, we can replace it without loss of generality by some E_L , which has nonempty interior.

We claim that $B = E_{32\delta}$ is as desired. To see that, consider an arbitrary $x \in E$ and let $\{K_j\}_j$ be a finite minimal set of open cones centered at x of solid angle $\frac{\pi}{12}$ whose closures cover \mathbb{R}^n . As m tends to ∞ , since ρ has support in the whole \mathbb{R}^n , by the law of large numbers the probability of the following tends to 1:

- P intersects E (recall that E has non-vanishing measure),
- for every j, P intersects $(E_{(c_2-\frac{1}{2})\delta} \setminus E_{c_1\delta}) \cap K_j$, where c_1, c_2 are the constants from Proposition 4.2.

To prove our claim, we can thus conditionally assume the above. Consider now a Voronoi cell intersecting E and suppose by contradiction that z is an element of the cell not contained in B. Let $q \in P$ be a generator in $(E_{(c_2-\frac{1}{2})\delta} \setminus E_{c_1\delta}) \cap K_j$ where K_j is the cone containing z. Since P intersects E, the generator p of the cell lies in $E_{\text{diam}(E)} = E_{\frac{\delta}{2}}$ and consequently $d(x,p) < \delta$. If $p \notin K_j$, then one can replace it with its orthogonal projection on the line passing through x and z. The hypotheses of Proposition 4.2 are then satisfied and we conclude that d(z,q) < d(z,p). This is absurd since p is the generator of C(z).

For a bounded measurable set $E \subseteq \mathbb{R}^n$, denote by

$$D_E = \max_{\substack{p \in P \\ C(p) \cap E \neq \emptyset}} \operatorname{diam} C(p)$$

the maximum diameter of a Voronoi cell intersecting E.

Proposition 4.4. D_E , thought as a random variable in P, converges in probability to 0 as m = |P| tends to ∞ .

Proof. The proof is inspired by Theorem 4 in Devroye et al. 2015. Consider a finite minimal set of open cones $\{K_j\}_j$ centered at 0 of solid angle $\frac{\pi}{12}$ whose closures cover \mathbb{R}^n . Then there is a constant c > 0 such that for each $p \in P$

diam
$$C(p) \le c \max_j R_{p,j}$$

where $R_{p,j} = \min_{q \in P \cap (p+K_j)} d(p,q)$ denotes the distance from p to its closest neighbour in the cone K_j centered in p (and $R_{p,j} = \infty$ if $P \cap (p+K_j) = \emptyset$). This follows from Proposition 4.2 applied with x = p to all the cones centered at the generators, with an opportune δ for each of them. For each $\varepsilon > 0$ we thus have an inclusion of events

$$\{D_E > \varepsilon\} \subseteq \left\{\max_{\substack{p,j\\C(p)\cap E \neq \emptyset}} R_{p,j} > \frac{\varepsilon}{c}\right\} \subseteq \bigcup_{i,j} \left\{P \cap (p_i + K_j) \cap B\left(p_i, \frac{\varepsilon}{c}\right) = \emptyset \text{ and } C(p_i) \cap E \neq \emptyset\right\}$$

where B(x, r) is the open ball centered in x of radius r. In the above, we assumed that the set P is equipped with an ordering. For $x \in \mathbb{R}^n$ denote by $E_{x,j}$ the event appearing at the right member of the above expression for $x = p_i$. We can then bound the probability with respect to a random $P \sim \rho^m$, with m = |P| fixed, as

$$\mathbb{P}_{P \sim \rho^m}(D_E > \varepsilon) \le \sum_{i,j} \mathbb{P}_{P \sim \rho^m}(E_{p_i,j}) = m \sum_j \int_{\mathbb{R}^n} \rho(x) \mathbb{P}_{P \sim \rho^m}(E_{x,j} \mid p_1 = x) \, \mathrm{d}x.$$

Since the points in P are sampled independently we have

$$\mathbb{P}_{P\sim\rho^m}(E_{x,j}\mid p_1=x,\ C(x)\cap E\neq\emptyset) = \left(1-\mathbb{P}\left((x+K_j)\cap B\left(x,\frac{\varepsilon}{c}\right)\right)\right)^{m-1} := (1-M(x))^{m-1}$$

Pick the set B guaranteed by Proposition 4.3. We can then conditionally assume that every Voronoi cell intersecting E is contained in B, which implies $\mathbb{P}_{P \sim \rho^m}(E_{x,j}) = 0$ for $x \notin B$. The limit we wish to estimate reduces to

$$\lim_{m \to \infty} m \sum_{j} \int_{\mathbb{R}^n} \rho(x) \mathbb{P}_{P \sim \rho^m}(E_{x,j} \mid p_1 = x) \, \mathrm{d}x = \sum_{j} \lim_{m \to \infty} \int_B \rho(x) m (1 - M(x))^{m-1} \, \mathrm{d}x.$$

Since B is bounded and ρ has support in the whole \mathbb{R}^n , M(x) is (essentially) bounded from below by a strictly positive constant as x varies in B. The limit can thus be brought under the integral and putting everything together we get:

$$\lim_{m \to \infty} \mathbb{P}_{P \sim \rho^m} (D_E > \varepsilon) \le \sum_j \int_B \rho(x) \lim_{m \to \infty} m(1 - M(x))^{m-1} \, \mathrm{d}x = 0.$$

We are now ready to prove Theorem 4.1.

Proof. By the Portmanteau Lemma (Van der Vaart 2000), it is sufficient to that $\mathbb{P}_m(E)$ converges to $\mathbb{P}(E)$ in probability for any bounded measurable set $E \subseteq \mathbb{R}^n$ which is a continuity set for \mathbb{P} i.e., $\mathbb{P}(\partial E) = 0$ where ∂E is the (topological) boundary of E. Pick such E. By definition of the CVDE, for a fixed set P of generators we have that

$$\mathbb{P}_{m}(E) = \frac{1}{m} |\{p \in P \mid C(p) \subseteq E\}| + \underbrace{\frac{1}{m} \sum_{\substack{p \in P \\ C(p) \not\subseteq E \\ C(p) \cap E \neq \emptyset}} \frac{\operatorname{Vol}_{p}(C(p) \cap E)}{\operatorname{Vol}_{p}(C(p))}}_{\operatorname{Vol}_{p}(C(p))}$$
(1)
$$= \frac{1}{m} |P \cap E| + \overline{R} - \frac{1}{m} |\{p \in P \cap E \mid C(p) \not\subseteq E\}|.$$

Since the Voronoi cells are closed, any cell intersecting E not contained in E intersects ∂E . Thus $|\overline{R} - \frac{1}{m}|\{p \in P \cap E \mid C(p) \not\subseteq E\}|| \leq 2R$ where $R := \frac{1}{m}|\{p \in P \mid C(p) \cap \partial E \neq \emptyset\}|$. Now, the random variable $\frac{1}{m}|P \cap E|$ tends to $\mathbb{P}(E)$ in probability as m tends to ∞ by the law of large numbers. In order to conclude, we need to show that R tends to 0 in probability.

Fix $\varepsilon > 0$. For L > 0, consider the *L*-neighbour $\partial E_L = \{x \in X \mid d(x, \partial E) < L\}$ of the boundary ∂E . If the diameter of the Voronoi cells intersecting ∂E is less than *L* then all such cells are contained in ∂E_L . Thus:

$$\mathbb{P}_{P \sim \rho^{m}} (R > \varepsilon) \leq \mathbb{P}_{P \sim \rho^{m}} \left(\frac{1}{m} |P \cap \partial E_{L}| > \varepsilon \text{ and } D_{\partial E} < L \right) + \mathbb{P}_{P \sim \rho^{m}} (D_{\partial E} \geq L) \\
\leq \mathbb{P}_{P \sim \rho^{m}} \left(\frac{1}{m} |P \cap \partial E_{L}| > \varepsilon \right) + \mathbb{P}_{P \sim \rho^{m}} (D_{\partial E} \geq L) \\
\leq \mathbb{P}_{P \sim \rho^{m}} \left(\left| \mathbb{P}(\partial E_{L}) - \frac{1}{m} |P \cap \partial E_{L}| \right| > \varepsilon - \mathbb{P}(\partial E_{L}) \right) + \mathbb{P}_{P \sim \rho^{m}} (D_{\partial E} \geq L).$$
(2)

Since ∂E is closed, $\partial E = \bigcap_{L>0} \partial E_L$ and thus $\lim_{L\to 0} \mathbb{P}(\partial E_L) = \mathbb{P}(\bigcap_L \partial E_L) = \mathbb{P}(\partial E) = 0$ since E is a continuity set. This implies that there is an L such that $\varepsilon > \mathbb{P}(\partial E_L)$. The right hand side of Equation 2 tends then to 0 by the law of large numbers and Proposition 4.4, which concludes the proof.

REFERENCES

Devroye, Luc et al. (Dec. 2015). "On the measure of Voronoi cells." In: *Journal of Applied Probability* 54. DOI: 10.1017/jpr.2017.7.

Gibbs, Isaac and Linan Chen (2020). "Asymptotic properties of random Voronoi cells with arbitrary underlying density." In: *Advances in Applied Probability* 52.2, pp. 655–680.

Van der Vaart, Aad W (2000). Asymptotic statistics. Vol. 3. Cambridge university press.