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We provide here a proof of our main theoretical result with full details.

Theorem 4.1. Suppose that ρ has support in the whole Rn. For any K ∈ L1(Rn ×Rn) the sequence of random probability
measures Pm = fdx defined by the CVDE with m generators converges to P in distribution w.r.t. x and in probability w.r.t.
P . Namely, for any measurable set E ⊆ Rn the sequence Pm(E) of random variables over P sampled from ρ converges in
probability to the constant P(E).

We shall first build up some machinery necessary for the proof. First of all, the following fact on higher-dimensional
Euclidean geometry will come in hand.

Proposition 4.2. (Gibbs and Chen 2020, Lemma 5.3) Let x ∈ Rn, δ > 0. There exist constants 1 < c1 < c2 − 1 < 31 such
that for any open cone K ⊆ Rn centered at x of solid angle π

12 and any p, q, z ∈ K, if

d(x, p) < δ, c1δ ≤ d(x, q) < c2δ, d(x, z) ≥ 32δ

then d(z, q) < d(z, p).

Figure 1: Graphical depiction of sets and points appearing in the proof of Proposition 4.3.

We can now deduce the following.

Proposition 4.3. Let ∅ 6= E ⊆ Rn be a bounded measurable set. There exists a bounded measurable set B ⊇ E such that
as m = |P | tends to∞, the probability with respect to P ∼ ρm that every Voronoi cell intersecting E is contained in B
tends to 1.
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Proof. Let δ = 2diam E = 2 supx,y∈E d(x, y) be twice the diameter of E. For L > 0, consider the L-neighbourhood of E

EL = {x ∈ X | d(x,E) < L}.

First of all, if E has vanishing measure, we can replace it without loss of generality by some EL, which has nonempty
interior.

We claim that B = E32δ is as desired. To see that, consider an arbitrary x ∈ E and let {Kj}j be a finite minimal set of open
cones centered at x of solid angle π

12 whose closures cover Rn. As m tends to∞, since ρ has support in the whole Rn, by
the law of large numbers the probability of the following tends to 1:

• P intersects E (recall that E has non-vanishing measure),

• for every j, P intersects (E(c2− 1
2 )δ
\ Ec1δ) ∩Kj , where c1, c2 are the constants from Proposition 4.2.

To prove our claim, we can thus conditionally assume the above. Consider now a Voronoi cell intersecting E and suppose
by contradiction that z is an element of the cell not contained in B. Let q ∈ P be a generator in (E(c2− 1

2 )δ
\ Ec1δ) ∩Kj

where Kj is the cone containing z. Since P intersects E, the generator p of the cell lies in Ediam(E) = E δ
2

and consequently
d(x, p) < δ. If p 6∈ Kj , then one can replace it with its orthogonal projection on the line passing through x and z. The
hypotheses of Proposition 4.2 are then satisfied and we conclude that d(z, q) < d(z, p). This is absurd since p is the
generator of C(z).

For a bounded measurable set E ⊆ Rn, denote by

DE = max
p∈P

C(p)∩E 6=∅

diam C(p)

the maximum diameter of a Voronoi cell intersecting E.

Proposition 4.4. DE , thought as a random variable in P , converges in probability to 0 as m = |P | tends to∞.

Proof. The proof is inspired by Theorem 4 in Devroye et al. 2015. Consider a finite minimal set of open cones {Kj}j
centered at 0 of solid angle π

12 whose closures cover Rn. Then there is a constant c > 0 such that for each p ∈ P

diam C(p) ≤ cmax
j
Rp,j

where Rp,j = minq∈P∩(p+Kj) d(p, q) denotes the distance from p to its closest neighbour in the cone Kj centered in p (and
Rp,j = ∞ if P ∩ (p +Kj) = ∅). This follows from Proposition 4.2 applied with x = p to all the cones centered at the
generators, with an opportune δ for each of them. For each ε > 0 we thus have an inclusion of events

{DE > ε} ⊆

 max
p,j

C(p)∩E 6=∅

Rp,j >
ε

c

 ⊆⋃
i,j

{
P ∩ (pi +Kj) ∩B

(
pi,

ε

c

)
= ∅ and C(pi) ∩ E 6= ∅

}
whereB(x, r) is the open ball centered in x of radius r. In the above, we assumed that the set P is equipped with an ordering.
For x ∈ Rn denote by Ex,j the event appearing at the right member of the above expression for x = pi. We can then bound
the probability with respect to a random P ∼ ρm, with m = |P | fixed, as

PP∼ρm(DE > ε) ≤
∑
i,j

PP∼ρm(Epi,j) = m
∑
j

∫
Rn
ρ(x)PP∼ρm(Ex,j | p1 = x) dx.

Since the points in P are sampled independently we have

PP∼ρm(Ex,j | p1 = x, C(x) ∩ E 6= ∅) =
(
1− P

(
(x+Kj) ∩B

(
x,
ε

c

)))m−1
:= (1−M(x))m−1.



Pick the set B guaranteed by Proposition 4.3. We can then conditionally assume that every Voronoi cell intersecting E is
contained in B, which implies PP∼ρm(Ex,j) = 0 for x 6∈ B. The limit we wish to estimate reduces to

lim
m→∞

m
∑
j

∫
Rn
ρ(x)PP∼ρm(Ex,j | p1 = x) dx =

∑
j

lim
m→∞

∫
B

ρ(x)m(1−M(x))m−1 dx.

Since B is bounded and ρ has support in the whole Rn, M(x) is (essentially) bounded from below by a strictly positive
constant as x varies in B. The limit can thus be brought under the integral and putting everything together we get:

lim
m→∞

PP∼ρm(DE > ε) ≤
∑
j

∫
B

ρ(x) lim
m→∞

m(1−M(x))m−1 dx = 0.

We are now ready to prove Theorem 4.1.

Proof. By the Portmanteau Lemma (Van der Vaart 2000), it is sufficient to that Pm(E) converges to P(E) in probability
for any bounded measurable set E ⊆ Rn which is a continuity set for P i.e., P(∂E) = 0 where ∂E is the (topological)
boundary of E. Pick such E. By definition of the CVDE, for a fixed set P of generators we have that

Pm(E) =
1

m
|{p ∈ P | C(p) ⊆ E}|+

R︷ ︸︸ ︷
1

m

∑
p∈P

C(p)6⊆E
C(p)∩E 6=∅

Volp(C(p) ∩ E)

Volp(C(p))

=
1

m
|P ∩ E|+R− 1

m
|{p ∈ P ∩ E | C(p) 6⊆ E}|.

(1)

Since the Voronoi cells are closed, any cell intersecting E not contained in E intersects ∂E. Thus∣∣R− 1
m |{p ∈ P ∩ E | C(p) 6⊆ E}|

∣∣ ≤ 2R where R := 1
m |{p ∈ P | C(p) ∩ ∂E 6= ∅}|. Now, the random variable

1
m |P ∩E| tends to P(E) in probability as m tends to∞ by the law of large numbers. In order to conclude, we need to show
that R tends to 0 in probability.

Fix ε > 0. For L > 0, consider the L-neighbour ∂EL = {x ∈ X | d(x, ∂E) < L} of the boundary ∂E. If the diameter of
the Voronoi cells intersecting ∂E is less than L then all such cells are contained in ∂EL. Thus:

PP∼ρm (R > ε) ≤ PP∼ρm
(

1

m
|P ∩ ∂EL| > ε and D∂E < L

)
+ PP∼ρm (D∂E ≥ L)

≤ PP∼ρm
(

1

m
|P ∩ ∂EL| > ε

)
+ PP∼ρm (D∂E ≥ L)

≤ PP∼ρm
(∣∣∣∣P(∂EL)− 1

m
|P ∩ ∂EL|

∣∣∣∣ > ε− P(∂EL)
)
+ PP∼ρm (D∂E ≥ L) .

(2)

Since ∂E is closed, ∂E = ∩L>0∂EL and thus limL→0 P(∂EL) = P(∩L∂EL) = P(∂E) = 0 since E is a continuity set.
This implies that there is an L such that ε > P(∂EL). The right hand side of Equation 2 tends then to 0 by the law of large
numbers and Proposition 4.4, which concludes the proof.
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