
A Free Lunch from the Noise: Provable and Practical Exploration
for Representation Learning (Supplementary Materials)

Tongzheng Ren 1, 2, ? Tianjun Zhang 3, ? Csaba Szepesvári 4, 5 Bo Dai 2

1Department of Computer Science, UT Austin
2Google Research, Brain Team

3 Department of EECS, UC Berkeley
4DeepMind

5Department of Computer Science, University of Alberta

A BACKGROUNDS ON REPRODUCING KERNEL HILBERT SPACE

We briefly introduce the basic concepts of the Reproducing Kernel Hilbert Space, which is helpful on understanding our
paper. To start with, we first define the inner product.

Definition 1 (Inner Product). A function 〈·, ·〉H : H×H → R is said to be an inner product onH if it satisfies the following
conditions:

1. Positive Definiteness: ∀u ∈ H, 〈u, u〉 ≥ 0, and 〈u, u〉 = 0⇐⇒ u = 0.

2. Symmetry: ∀u, v ∈ H, 〈u, v〉 ∈ 〈v, u〉.
3. Bilinearity: ∀α, β ∈ R, u, v, w ∈ H, 〈αu+ βv,w〉 = α〈u,w〉+ β〈v, w〉.

Additionally, we can define a norm with the inner product: ‖u‖ =
√
〈u, u〉.

A Hilbert space is a space equipped with an inner product and satisfies an additional technical condition of completeness.
The finite-dimension vector space with the canonical inner product is an example of the Hilbert space. We remark thatH can
also be a function space, for example, the space contains all square integrable functions (i.e.

∫
R f(x)2 dx <∞, generally

denoted as L2) is also a Hilbert space with inner product 〈f, g〉 =
∫
R f(x)g(x) dx.

We then define the kernel, and introduce the notion of positive-definite kernel [?].

Definition 2 ((Positive-Definite) Kernel). A function k : X × X → R is said to be a kernel on non-empty set X if there
exists a Hilbert spaceH and a feature map φ : X → H such that ∀x, x′ ∈ X , we have

k(x, x′) = 〈φ(x), φ(x′)〉H.

Moreover, the kernel is said to be positive definite if ∀n ≥ 1, ∀{ai}i∈[n] ⊂ R and mutually distinct set {xi}i∈[n] ⊂ X , we
have that ∑

i∈[n]

∑
j∈[n]

aiajk(xi, xj) > 0.

Some well-known kernels include:

• Linear Kernel: k(x, y) = 〈x, y〉, with the canonical feature map φ(x) = x.

• Polynomial Kernel: k(x, y) = (〈x, y〉+ c)m, where m ∈ N+ and c ∈ R+.

? Equal Contribution

Accepted for the 38th Conference on Uncertainty in Artificial Intelligence (UAI 2022).

mailto:<tongzheng@utexas.edu>?Subject=Your UAI 2022 paper
mailto:<tianjunz@berkeley.edu>?Subject=Your UAI 2022 paper
mailto:<bodai@google.com>?Subject=Your UAI 2022 paper

• Gaussian (a.k.a radial basis function, RBF) Kernel: k(x, y) = exp
(
‖x−y‖22

2σ2

)
. It’s known that such kernel is positive

definite.

Now we can define the Reproducing Kernel Hilbert space (RKHS) [?].

Definition 3 (Reproducing Kernel Hilbert Space (RKHS)). The Hilbert space H of R-valued function defined on a
non-emptry set X is said to be a reproducing kernel Hilbert space (RKHS) is there is a kernel k : X × X → R, such that

1. ∀x ∈ X , k(x, ·) ∈ H.

2. ∀x ∈ X , f ∈ H, 〈f, k(x, ·)〉H = f(x) (a.k.a the reproducing property), which also implies that 〈k(x, ·), k(y, ·)〉 =
k(x, y).

Here k is called a reproducing kernel ofH.

We provide an intuitive interpretation on the definition of RKHS whenH is the space of linear function. Consider X = Rd
and k(x, y) = 〈x, y〉. With the definition of the kernel k, we can see that k(x, ·) : X → R is a linear function, and thus lies
inH. Meanwhile, ∀f ∈ H, there exists θf such that f(x) = θ>f x. We define the inner product onH via 〈f, g〉H = 〈θf , θg〉,
and thus 〈f(, k(x, ·))〉H = θ>x = f(x), which demonstrates the reproducing property, and shows that the space of linear
function on any finite-dimensional vector space is an RKHS with linear kernel as the corresponding reproducing kernel.

We state the following theorems without the proof.

Theorem 4 (Moore-Aronszajn [?]). Every positive definite kernel k is associated with a unique RKHSH.

Notice that, Moore-Aronszajn theorem guarantees that all of the positive kernel can be represented as the inner product in
certain Hilbert space, hence we can have a linear representation of the Gaussian distribution induced by the reproducing
property of Gaussian kernel, as we illustrated in the main text.

Theorem 5 (Bochner [?]). A continuous, shift-invariant kernel (i.e. k(x, y) = k(x− y)) is positive definite if and only if
k(x− y) is the Fourier transform of a non-negative measure ω, i.e.

k(x− y) =

∫
Rd

exp(iω>(x− y)) dP(ω) =

∫
Rd×[0,2π]

2 cos(ω>x+ b) cos(ω>y + b) d(P(ω)× P(b)),

where P(b) is a uniform distribution on [0, 2π].

Bochner’s theorem shows that any continuous positive definite shift-invariant kernel (e.g. Gaussian kernel, Laplacian
kernel) can be represented as the inner product of random Fourier feature, which provides an additional way to provide a
representation for certain distribution [see Rahimi and Recht, 2007, Dai et al., 2014].

B AN EQUIVALENT UPPER CONFIDENCE BOUND ALGORITHM

In this section, we provide a generic Upper Confidence Bound (UCB) algorithm with the OFU principle, and show the
connections and differences between the UCB algorithm and the TS algorithm. The prototype for our UCB algorithm is
illustrated in Algorithm 1.

Notice that, the only difference between UCB algorithm and TS algorithm is the mechanism of finding f we use to plan
for each episode (highlighted in blue). For UCB algorithm, we perform an optimistic planning, which finds the f̃k that
potentially has the largest cumulative reward. However, such constrained optimization problem is NP-hard even for the
simplest linear bandits [Dani et al., 2008]. Instead, for TS algorithm, we only sample the fk from the posterior distribution,
which gets rid of the complicated constraint optimization. We are interested in the UCB algorithm, as the worst case regret
bound of the UCB algorithm can be directly translated to the expected regret bound of the TS algorithm without the need of
explicit manipulation of the prior and the posterior[Russo and Van Roy, 2013, 2014, Osband and Van Roy, 2014].

Confidence Set Construction Perhaps the most important part in OFU-style algorithm is the construction of confidence
set Fk. To enable sample-efficient learning, the confidence set should

1. contain f∗ with high probability, so that we can identify f∗ eventually;

Algorithm 1 Upper Confidence Bound (UCB) Algorithm

Require: Number of Episodes K, Failure Probability δ ∈ (0, 1), Reward Function r(s, a).
1: Initialize the history setH0 = ∅.
2: for episodes k = 1, 2, · · · do
3: Compute πk via . Optimistic Planning.

(πk, f̃k) = arg max
π∈Π,f̃∈Fk

Ṽ π0 (s0).

where Fk is defined in (2).
4: for steps h = 0, 1, · · · , H − 1 do . Execute πk.
5: Execute akh ∼ πhk (skh).
6: Observe sh+1.
7: end for
8: SetHk = Hk−1 ∪ {(skh, akh, skh+1)}H−1

h=0 . . Update the History.
9: end for

2. shrink as fast as possible, so that we can identify f∗ efficiently.

In the tabular setting, Fk is constructed via the concentration of sub-Gaussian/sub-Gamma random variable [e.g. Azar et al.,
2017], and in the linear MDP setting, Fk is constructed via the concentration on the linear parameters. As we don’t assume
any specific structures, we instead constructed Fk via the concentration on the `2 error, following the idea of [Russo and
Van Roy, 2013, Osband and Van Roy, 2014]. Specifically, consider the least-square estimates defined by

f̂K = arg min
f∈F

L2,K(f) :=
∑
k∈[K]

H−1∑
h=0

‖f(skh, a
k
h)− skh+1‖22. (1)

As skh+1 = f∗(skh, a
k
h) + εkh where εkh is the Gaussian noise added to the step h at the k-th episode, we know f̂K will not

deviate from f∗ a lot. Meanwhile, as K increases, the estimation f̂K should become closer to f∗. Specifically, define the
empirical 2-norm ‖ · ‖2,Et as

‖g‖22,EK :=
∑
k∈[K]

H−1∑
h=0

‖g(skh, a
k
h)‖22.

We can construct the confidence set based on the following lemma:

Lemma 6 (Confidence Set Construction [Russo and Van Roy, 2013, Osband and Van Roy, 2014]). Define

FK =

{
f ∈ F : ‖f − f̂K‖2,EK ≤

√
β∗K(F , δ, α)

}
, (2)

then

Pf∗
(
f∗ ∈

∞⋂
k=1

Fk

)
≥ 1− 2δ, (3)

where

β∗K(F , δ, α) = 8σ2 log(N (F , α, ‖ · ‖2)/δ) + 2Hα(12C +
√

8dσ2 log(4K2H/δ)). (4)

The proof can be found in Appendix C.1. Notice that, the empirical 2-norm ‖f − f̂K‖2,EK scales linearly with K, and
β∗K(F , δ, α) only scales as logK, so the confidence set shrinks. Meanwhile, Equation 3 guarantees that f∗ ∈ Fk, ∀k with
high probability. Hence, it satisfies our requirement for the confidence set.

Regret Upper Bound We have the following upper bound of the regret for the UCB algorithm:

Theorem 7 (Regret Bound). Assume Assumption 2 to 5 holds. We have that

Regret(K) ≤ Õ(
√
H2T · logN (F , T−1/2, ‖ · ‖2) · dimE(F , T−1/2)).

where Õ represents the order up to logarithm factors.

C TECHNICAL PROOF

C.1 PROOF FOR LEMMA 6

Proof. We first show the following concentration on the `2 error:

Lemma 8 (Concentration of `2 error [Russo and Van Roy, 2013, Osband and Van Roy, 2014, ?]). ∀δ > 0, f : S ×A → R,
we have

Pf∗
(
L2,K(f) ≥ L2,K(f∗) +

1

2
‖f − f∗‖22,EK − 4σ2 log(1/δ), ∀K ∈ N

)
≥ 1− δ

Proof. Define the filtrationHk,h = {(sih, aih)}i∈[k−1],h=0,··· ,H−1 ∪ {(ski , aki)}h−1
h=0, and the random variable Zk,h adapted

to the filtrationHk,h via:

Zk,h =‖f∗(skh, akh)− skh+1‖22 − ‖f(skh, a
k
h)− skh+1‖22

=‖f∗(skh, akh)− skh+1‖22 − ‖f(skh, a
k
h)− f∗(skh, akh) + f∗(skh, a

k
h)− skh+1‖22

=− ‖f(skh, a
k
h)− f∗(skh, akh)‖22 + 2〈f(skh, a

k
h)− f∗(skh, akh), εkh〉,

where εkh = skh+1 − f∗(skh, akh). Thus, E(Zhk |Hk,h) = −‖f(skh, a
k
h)− f∗(skh, akh)‖22, and Zhk + ‖f(skh, a

k
h)− f∗(skh, akh)‖22

is a martingale w.r.tHk,h. Notice that we assume ε is an isotropic Gaussian noise with variance σ2 on each of the dimension,
thus the conditional moment generating function of Zhk + ‖f(skh, a

k
h)− f∗(skh, akh)‖22 satisfies:

Mk,h(λ) = logE[exp(λ(Zhk + ‖f(skh, a
k
h)− f∗(skh, akh)‖22))|Hk,h]

= logE[exp(〈2λf(skh, a
k
h)− f∗(skh, akh), εkh〉)|Hk,h]

≤2σ2λ2‖f(skh)− f∗(skh, akh)‖22.

Applying Lemma 4 in [Russo and Van Roy, 2013], we have that, ∀x, λ ≥ 0,

Pf∗

 ∑
k∈[K]

H−1∑
h=0

λZk,h ≤ x− λ(1− 2λσ2)
∑
k∈[K]

H−1∑
h=0

‖f(skh, a
k
h)− f∗(skh, akh)‖22, ∀k ∈ N

 ≤ 1− exp(−x).

Take λ = 1
4σ2 , x = log 1/δ, and notice that

∑
k∈[K]

∑H−1
h=0 Zk,h = L2,K(f∗)− L2,K(f), we have the desired result.

We construct an α-cover Fα in F with respect to ‖ · ‖2. With a standard union bound, we know that condition on f∗, with
probability at least 1− δ, we have that

L2,K(fα)− L2,K(f∗) ≥ 1

2
‖fα − f∗‖22,EK − 4σ2 log(|Fα|/δ), ∀K ∈ N, fα ∈ Fα.

Thus, we have that

L2,K(f)− L2,K(f∗) ≥1

2
‖f − f∗‖22,EK − 4σ2 log(|Fα|/δ)

+ min
fα∈Fα

{
1

2
‖fα − f∗‖22,EK −

1

2
‖f − f∗‖22,EK + L2,K(f)− L2,K(fα)

}
︸ ︷︷ ︸

Discretization Error

.

We then deal with the discretization error. Assume α ≤ 2C (or otherwise we only have a trivial cover) and ‖fα(s, a) −
f(s, a)‖2 ≤ α, we have that

‖fα(s, a)− f∗(s, a)‖22 − ‖f(s, a)− f∗(s, a)‖22
=‖fα(s, a)‖22 − ‖f(s, a)‖22 + 2〈f∗(s, a), f(s, a)− fα(s, a)〉
≤ max
‖y‖2≤α

{‖f(s, a) + y‖22 − ‖f(s, a)‖22}+ 2Cα

= max
‖y‖2≤α

{2〈f(s, a), y〉+ ‖y‖22}+ 2Cα

≤4Cα+ α2 ≤ 6Cα,

where the inequality is by Cauchy-Schwartz inequality and α ≤ 2C. Meanwhile,

‖s′ − f(s, a)‖22 − ‖s′ − fα(s, a)‖22
=2〈s′, fα(s, a)− f(s, a)〉+ ‖f(s, a)‖22 − ‖fα(s, a)‖22
≤2〈ε, fα(s, a)− f(s, a)〉+ 2〈f∗(s, a), fα(s, a)− f(s, a)〉+ 2Cα+ α2

≤2‖ε‖2α+ 6Cα.

We now consider the concentration property of ‖ε‖2. Here we simply follow [?] and notice that ε is
√
dσ-norm-sub-Gaussian,

we have that

P(‖ε‖2 >
√

2dσ2 log(2/δ)) ≤ δ.

By a union bound, we have that

P(∃k, ‖ε‖2 >
√

2dσ2 log(4k2H/δ)) ≤ δ

2

∞∑
k=1

H−1∑
h=0

1

k2H
≤ δ.

Sum all these up, we can see with probability 1− δ, ∀K ∈ N, the discretization error is upper bounded by:

Hα(12C +
√

8dσ2 log(4K2H/δ)).

As we consider the least square estimate f̂K , we have that L2,K(f̂K)− L2,K(f∗) ≤ 0. Substitute back, we have the desired
results.

C.2 SIMULATION LEMMA

Lemma 9 (Simulation Lemma (adapted from Lemma 3.9 in [Kakade et al., 2020])). Given f̂ , ∀s ∈ S, the value function
V̂ π and V π corresponding to the model f̂ and f∗ satisfies

V̂ π0 (s)− V π0 (s) ≤ H3/2

√√√√E

[
H−1∑
h=0

min

{
2‖f∗(sh, ah)− f̂(sh, ah)‖22

σ2
, 1

}]
.

Proof. We first show the following difference lemma:

Lemma 10 (Difference Lemma). Assume the trajectory {(sh, ah)}H−1
h=0 is generated via policy π and ground truth f∗,

define

Vh =

H−1∑
τ=h

r(sτ , aτ)

then ∀τ ∈ {1, · · · , H − 1}, we have:

V̂ π0 (s0)− V0 =Es′τ∼N (f̂(sτ−1,aτ−1),σ2I)

[
V̂ πτ (s′τ)

]
− Vτ

+

τ−1∑
h=1

[
Es′h∼N (f(sh−1,ah−1),σ2I)

[
V̂ πh (s′h)

]
− V̂ πh (sh)

]
.

Proof. When τ = 1, we can obtain the result with a0 = π(s0) and

V̂ π0 (s0) = r(s0, π(s0)) + Es′1∼N (f(s0,a0),σ2I)V̂
π
1 (s′1).

We only need to show the case when τ = 2, and the case when τ > 2 can be derived via recursion. Notice that

V̂ π0 (s0)− V0 =Es′1∼N (f(s0,a0),σ2I)

[
V̂ π1 (s′1)

]
− V1

=V̂ π1 (s1)− V1 + Es′1∼N (f(s0,a0),σ2I)

[
V̂ π1 (s′1)

]
− V̂ π1 (s1)

=Es′2∼N (f(s1,a1),σ2I)

[
V̂ π2 (s′2)

]
− V2 + Es′1∼N (f(s0,a0),σ2I)

[
V̂ π1 (s′1)

]
− V̂ π1 (s1),

where the last equality is due to the fact that a1 = π(s1).

We then follow the idea of “optional stopping” used in [Kakade et al., 2020] and show the following “optional stopping”
simulation lemma.

Lemma 11 (“Optional Stopping” Simulation Lemma). Consider the stochastic process over the trajectories {(sh, ah)}H−1
h=0

generated via policy π and ground truth f∗, where the randomness is from the Gaussian noise in the dynamics. Define a
stopping time τ w.r.t this stochastic process and a given model f̂ via:

τ := min{h ≥ 0 : V̂ πh (sh) ≤ V πh (sh)}.

Furthermore, define a random variable:

Ṽ πh (sh) = max{V̂ πh (sh), V πh (sh)},

we have that

V̂ π0 (s0)− V π0 (s0) ≤ E

[
H−1∑
h=0

1h<τ

(
Es′h+1∼N (f∗(sh,ah),σ2I)Ṽ

π
h (s′h+1)− Es′h+1∼N (f̂(sh,ah),σ2I)Ṽ

π
h (s′h+1)

)]
,

where the expectation is w.r.t the stochastic process over the trajectories.

Proof. Define the filtration Fh := {εi}h−1
i=0 , where εi is the noise that add to the dynamics at step i. Define

Mh = E[V̂ π0 (s0)− V0|Fh],

which is a Doob martingale with respect to Fi [?]. As τ ≤ H , by Doob’s optional stopping theorem, we have that

E[V̂ π0 (s0)− V0] = E[Mτ] = E[E[V̂ π0 (s0)− V0|Fτ]].

We then provide a bound for Mτ . By Lemma 10, we have that

Mτ =E[V̂ π0 (s0)− V0|Fτ]

=Es′τ∼N (f̂(sτ−1,aτ−1),σ2I)

[
V̂ πτ (s′τ)

]
− V πτ (sτ)

+ Es′h∼N (f̂(sh−1,ah−1),σ2I)

[
V̂ πh (s′h)

]
−
τ−1∑
h=1

V̂ πh (sh)

=

τ∑
h=1

(
Es′h∼N (f̂(sh,ah),σ2)

[
V̂ πh (s′h)

]
− Ṽ πh (sh)

)
≤

τ∑
h=1

(
Es′h∼N (f̂(sh,ah),σ2I)

[
Ṽ πh (sh)

]
− Ṽ πh (sh)

)
=

H∑
h=1

1h≤τ

(
Es′h∼N (f̂(sh,ah),σ2I)

[
Ṽ πh (sh)

]
− Ṽ πh (sh)

)
,

where the third inequality follows the definition of τ (and thus V πτ (sτ) = Ṽ πτ (sτ) and V̂ πh (sh) = Ṽ πh (sh) for h < τ .)

The proof is then concluded via the following observation:

E
[
1h≤τ

(
Es′h∼N (f̂(sh,ah),σ2I)

[
Ṽ πh (sh)

]
− Ṽ πh (sh)

)]
=E

[
E
[
1h≤τ

(
Es′h∼N (f̂(sh,ah),σ2I)

[
Ṽ πh (sh)

]
− Ṽ πh (sh)

) ∣∣∣∣Fh−1

]]
=E

[
E
[
1h−1<τ

(
Es′h∼N (f̂(sh,ah),σ2I)

[
Ṽ πh (sh)

]
− Ṽ πh (sh)

) ∣∣∣∣Fh−1

]]
=E

[
1h−1<τE

[(
Es′h∼N (f̂(sh,ah),σ2I)

[
Ṽ πh (sh)

]
− Ṽ πh (sh)

) ∣∣∣∣Fh−1

]]
=E

[
1h−1<τ

(
Es′h∼N (f̂(sh,ah),σ2)

[
Ṽ πh (sh)

]
− Es′h∼N (f∗(sh,ah),σ2)

[
Ṽ πh (sh)

)]]
,

where the third equality is due to the fact that 1h−1<τ is measurable under Fh−1.

Before we finally provide the proof of Lemma 9, we state the following lemma that bound the expectation under two
isotropic Gaussian distribution with different mean:

Lemma 12 (Difference of Expectation under Different Mean Isotropic Gaussian). ∀ (approximately measurable) positive
function g, we have that

Ez∼N (µ1,σ2I)[g(z)]− Ez∼N (µ2,σ2I)[g(z)] ≤ min

{√
2‖µ1 − µ2‖

σ
, 1

}√
Ez∼N (µ1,σ2I)[g(z)2]

Proof.

Ez∼N (µ1,σ2I)[g(z)]− Ez∼N (µ2,σ2I)[g(z)]

=Ez∼N (µ1,σ2I)

[
g(z)

(
1− exp

(
2(µ1 − µ2)>z + ‖µ2‖2 − ‖µ1‖2

2σ2

))]

≤
√

Ez∼N (µ1,σ2I)[g(z)2]

√
Ez∼N (µ1,σ2I)

(
1− exp

(
2(µ2 − µ1)>z − ‖µ2‖2 + ‖µ1‖2

2σ2

))2

We then calculate

Ez∼N (µ1,σ2I)

(
1− exp

(
2(µ2 − µ1)>z − ‖µ2‖2 + ‖µ1‖2

2σ2

))2

=1− 2√
2πσd/2

∫
exp

(
−‖z − µ1‖22 + 2(µ2 − µ1)>z − ‖µ2‖2 + ‖µ1‖2

2σ2

)
dz

+
1√

2πσd/2

∫
exp

(
−‖z − µ1‖22 + 4(µ2 − µ1)>z − 2‖µ2‖2 + 2‖µ1‖2

2σ2

)
dz

=− 1 +
1√

2πσd/2

∫
exp

(
−‖z − (2µ2 − µ1)‖22 + 2‖µ2 − µ1‖22

2σ2

)
dz

=− 1 + exp

(
‖µ2 − µ1‖22

σ2

)
.

Also notice that, as g is positive, a simple bound is that

Ez∼N (µ1,σ2I)[g(z)]− Ez∼N (µ2,σ2I)[g(z)] ≤ Ez∼N (µ1,σ2I)[g(z)] ≤
√

Ez∼N (µ1,σ2I)[g(z)2].

Thus,

Ez∼N (µ1,σ2I)[g(z)]− Ez∼N (µ2,σ2I)[g(z)] ≤
√

Ez∼N (µ1,σ2I)[g(z)2]

√
min

{
exp

(
‖µ2 − µ1‖22

σ2

)
− 1, 1

}
.

Notice that, if ‖µ2 − µ1‖ ≥ σ, then exp
(
‖µ2−µ1‖22

σ2

)
− 1 ≥ 1. Meanwhile, when x ∈ [0, 1], exp(x) ≤ 1 + 2x. Thus,√

min

{
exp

(
‖µ2 − µ1‖22

σ2

)
− 1, 1

}
≤

√
min

{
1 +

2‖µ2 − µ1‖22
σ2

− 1, 1

}
= min

{
2‖µ2 − µ1‖2

σ2
, 1

}
,

which finishes the proof.

With Lemma 11, we have that

V̂ π0 (s0)− V π0 (s0)

≤E
[
1h−1<τ

(
Es′h∼N (f̂(sh,ah),σ2)

[
Ṽ πh (sh)

]
− Es′h∼N (f∗(sh,ah),σ2)

[
Ṽ πh (sh)

)]]
≤
H−1∑
h=0

E

[√
Es′h+1∼N (f̂(sh,ah),σ2)

[
Ṽ πh (s′h+1)2

]
min

{√
2‖f∗(sh, ah)− f̂(sh, ah)2‖

σ
, 1

}]

≤
H−1∑
h=0

√
E
[
Es′h+1∼N (f̂(sh,ah),σ2)

[
Ṽ πh (s′h+1)2

]]√√√√E

[
min

{
2‖f∗(sh, ah)− f̂(sh, ah)2

2‖
σ2

, 1

}]

≤

√√√√E

[
H−1∑
h=0

Es′h+1∼P (·|f∗(sh,ah))

[
Ṽ πh (s′h+1)2

]]√√√√E

[
H−1∑
h=0

min

{
2‖f∗(sh, ah)− f̂(sh, ah)2

2‖
σ2

, 1

}]

≤H3/2

√√√√E

[
H−1∑
h=0

min

{
2‖f∗(sh, ah)− f̂(sh, ah)2

2‖
σ2

, 1

}]

where the second inequality is due to Lemma 12, and the last inequality is due to the fact that Ṽ πh (s′h+1) ≤ H , ∀h.

C.3 SUM OF WIDTH SQUARE

Lemma 13 (Bound on the Sum of Width Square). Define

wF (s, a) := sup
f̄ ,f∈F

‖f̄(s, a)− f(s, a)‖2.

If {β∗k}k∈[K] is a non-decreasing sequence, and ‖f‖2 < C,∀f ∈ F , then:

∑
k∈[K]

H−1∑
h=0

w2
Ft(s

k
h, a

k
h) ≤ 1 + 4C2HdimE

(
F , T−1/2

)
+ 4βKdimE

(
F , T−1/2

)
(1 + log T)

Proof. We first show the following lemma, which will be helpful in our proof.

Lemma 14 (Lemma 1 in [Osband and Van Roy, 2014]). If {βk}k∈[K] is a non-decreasing sequence, we have

∑
k∈[K]

H−1∑
h=0

1wFk (skh,a
k
h)>ε ≤

(
4βK
ε2

+H

)
dimE(F , ε).

Proof. We first consider when wFk(skh, a
k
h) > ε and is ε-dependent on n disjoint sub-sequences of {(sih, aih)}i∈[k−1].

By the definition of ε-dependent, we know ‖f̄ − f‖2,Ek > nε2. On the other hand, by triangle inequality, we know
‖f̄ − f‖2,Ek ≤ 2

√
βk ≤ 2

√
βK , thus n < 4βK

ε2 . Hence we know when wFk(skh, a
k
h) > ε, then (sh, ah) is at most

ε-dependent on 4βK
ε2 disjoint sub-sequences of {(sih, aih)}i∈[k−1].

We then show that, for any sequence {(si, ai)}i∈[N], there is some element (sj , aj) that is ε-dependent on at least n
dimE(F,ε)−

H disjoint sub-sequences of {(si, ai)}i∈[j−1]. Let n satisfies that ndimE(F , ε) + 1 ≤ N ≤ (n+ 1)dimE(F , ε), and we

will construct n disjoint sub-sequences {Bi}i∈[n]. We first let Bi = {(si, ai)},∀i ∈ [n]. If (sk+1, ak+1) is ε-dependent on
eachBi, i ∈ [n], we have the desired results. Otherwise, we append (sk+1, ak+1) to the sub-sequence that it is ε-independent
with. Repeat this process until some j > n+ 1 is ε-dependent on each sub-sequence or we have reached N . In the latter case
we have

∑
i∈[n] |Bi| ≥ ndimE(F , ε) (here we can add at most H − 1 data to avoid the case we need a new episode of data),

and since each element of a sub-sequence is ε-independent with its predecessors, |Bi| ≤ dimE(F , ε),∀i by the definition
of eluder dimension. Thus |Bi| = dimE(F , ε),∀i. And in this case, (sN , aN) must be ε-dependent on each sub-sequence
by the definition of eluder dimension. Notice that, as our data is collected in an episodic pattern, there are at most H − 1
sub-sequences that contains "imaginary" final episode data introduced to the construction. In this case, we know that there
are at least n

dimE(F,ε) −H disjoint sub-sequences that (sN , aN) is ε-dependent, which finishes our claim.

We finally consider the sub-sequenceB = {(skh, akh)}withwFk(skh, a
k
h) > ε. We know that each element inB is ε-dependent

on at most 4βK
ε2 disjoint sub-sequence of B, but at least ε-dependent on |B|

dimE(F,ε) −H sub-sequence of B. Thus we know

|B| ≤
(

4βK
ε2 +H

)
dimE(F , ε), which concludes the proof.

For notation simplicity, we define wt,h := wFt(s
t
h, a

t
h). We first reorder the sequence {wt,h}k∈[K],0≤h≤H−1 →

{wi}i∈[KH], such that w1 ≥ · · ·wTH . Then we have

∑
k∈[K]

H−1∑
h=0

w2
Ft(s

k
h, a

k
h) =

∑
i∈[KH]

w2
i ≤

∑
i∈[KH]

w2
i 1wi<T−1/2 +

∑
i∈[KH]

w2
i 1wi≥T−1/2 ≤ 1 +

∑
i∈[KH]

w2
i 1wi≥T−1/2 .

As we order the sequence, wj ≥ ε means

∑
k∈[K]

H−1∑
h=0

1wFt (skh,akh)>ε ≥ j.

Hence we know

ε ≤
√

4βK
j

dimE(F,ε) −H
=

√
4βKdimE(F , ε)
j −HdimE(F , ε)

,

which means if wi ≥ T−1/2, then wi < min
{

2C,
√

4βKdimE(F,T−1/2)
k−HdimE(F,T−1/2)

}
. Hence,

∑
i∈[KH]

w2
i 1wi≥T−1/2 ≤4C2HdimE

(
F , T−1/2

)
+

T∑
j=HdimE(F,T−1/2)+1

4βKdimE(F , T−1/2)

j −HdimE(F , T−1/2)

≤4C2HdimE

(
F , T−1/2

)
+ 4βKdimE

(
F , T−1/2

)
(1 + log T),

which finishes the proof.

C.4 PROOF FOR THEOREM 5 AND THEOREM 7

Proof. Define Ek = Pf∗ (f∗ ∈ Fk). When constructing the confidence set, take α = T−1/2 and δ = 0.25 in Lemma 6,
which leads to

β∗k := 8σ2 log(4N (F , T−1/2, ‖ · ‖2)) +HT−1/2(12C +
√

8dσ2 log(16k2H)).

With our confidence set construction, we know that
∑
k∈[K] P (Ēk) ≤ 0.5. Notice that

Regret(K) =
∑
k∈[K]

[
V ∗0 (sk0)− V πk0 (sk0)

]

≤E

 ∑
k∈[K]

E
[
P(Ek)[V ∗(sk0)− V πk0 (sk0)]

]+H
∑
k∈[K]

P(Ēk)

≤E

 ∑
k∈[K]

E
[
Ṽ πk0,k(sk0)− V πk0 (sk0)

]+ 0.5H

≤H3/2
∑
k∈K

√√√√E

[
H−1∑
h=0

min

{
2‖f̃k(skh, a

k
h)− f∗(skh, akh)‖22
σ2

, 1

}]
+ 0.5H

≤

√√√√√H2TE

 ∑
k∈[K]

H−1∑
h=0

min

{
2‖f̃k(skh, a

k
h)− f̂∗(skh, akh)‖22
σ2

, 1

}+ 0.5H

≤
√

2H2T

σ2

(
1 + 4C2HdimE

(
F , T−1/2

)
+ 4β∗KdimE

(
F , T−1/2

)
(1 + log T)

)
+ 0.5H,

where the first equality is due to the fact that the total reward for each episode is bounded in [0, H], the second inequality is
due to the optimism and our confidence set construction, the third inequality is due to Lemma 9, the fourth inequality is
due to Cauchy-Schwartz inequality and the final inequality is due to Lemma 13 , which concludes the proof of Theorem 7.
Following the idea of [Russo and Van Roy, 2013, 2014, Osband and Van Roy, 2014], we can translate the worst-case regret
bound for UCB algorithm into the expected regret bound for TS algorithm, that conclude the proof of Theorem 5.

Remark It can be undesirable that our regret bound scale with σ−1, which means our algorithm can perform pretty bad
when the noise level is extremely low. It is also more or less counter-intuitive. We want to remark that, such phenomenon is
only an artifact introduced by our proof strategy. The simulation lemma (Lemma 9) works well when f(s, a)− f̃(s, a) is
small. However, we need to tolerate some bad episodes to collect sufficient samples, that can eventually make the error
small. Fortunately, the regret of such bad episode is at most H . Hence, we can use the following strategy to get rid of the
dependency on σ−1.

Definition 15 (Bad and Good Episodes). Define episode k as a bad episode, if ∃h ∈ {0, 1, · · · , H − 1}, such that
wk,h := wFk(skh, a

k
h) is the largest HdimE(F , σ2T 1/2) elements in the set {wk,h}k∈[K],0≤h≤H−1. Define episode k as a

good episode, if it is not a bad episode.

By the definition, we know there are at most HdimE(F , σ2T−1/2) bad episodes. We then show the following lemma, that
can be directly generalized from Lemma 13, by setting ε = σ2T−1/2 and remove the terms from bad episodes.

Lemma 16. If {β∗k}k∈[K] is a non-decreasing sequence, and ‖f‖2 < C,∀f ∈ F , then:

∑
k∈[K],k is good

H−1∑
h=0

w2
Ft(s

k
h, a

k
h) ≤ σ2 + 4βKdimE

(
F , σ2T−1/2

)
(1 + log T)

Eventually, we can obtain the following regret bound, by setting the regret of bad episodes as H , and bounding the regret of
good episodes with Lemma 16.

Theorem 17 (Improved Regret Bound). Assume Assumption 2 to 5 holds. Take α = σ2T−1/2 and δ = 0.25 in Lemma 6,
which leads to

β∗k := 8σ2 log(4N (F , σ2T−1/2, ‖ · ‖2)) +Hσ2T−1/2(12C +
√

8dσ2 log(16k2H)).

We have that

Regret(K) ≤
√
H2T (8βK

σ2 + 1)dimE(F , σ2T−1/2)(1 + log T) + 0.5H +H2dimE(F , σ2T−1/2)

We would like to remark, that the definition of bad and good episodes is only used for the proof. We don’t need to make any
modification on the algorithm. Notice that, as β∗k ∝ σ2, our upper bound in Theorem 17 can only scale with σ−1 through the
logarithm covering number log(4N (F , σ2T−1/2, ‖ · ‖2)) and eluder dimension dimE(F , σ2T−1/2). When F is a linear
function class, both term should scale with polylog(σ), that matches the result from [Kakade et al., 2020].

D BOUNDS ON THE COMPLEXITY TERM UNDER LINEAR REALIZABILITY

We provide the upper bound on the covering number and the eluder dimension of F when F := {θ>ϕ : θ ∈ Rdϕ×d, ‖θ‖2 ≤
W} where ϕ : S ×A → Rdϕ is some known feature map. We first make the following standard assumption:

Assumption 1 (Bounded Feature).

‖ϕ(s, a)‖2 ≤ B, ∀(s, a) ∈ S ×A.

D.1 COVERING NUMBER

Theorem 18 (Covering Number Bound). We have that

N (F , ε, ‖ · ‖2) ≤
(

1 +
2BW

ε

)dϕ
.

Proof. Notice that, by Cauchy-Schwartz inequality, we have that

max
(s,a)∈S×A

‖ε>i ϕ(s, a)‖2 ≤ B‖εi‖2, ∀εi ∈ Rdϕ .

Thus, denote ε = [εi]i∈[d], we have that

max
(s,a)∈S×A

‖ε>ϕ(s, a)‖22 = max
(s,a)∈S×A

∑
i∈[d]

‖ε>i ϕ(s, a)‖22 ≤ B2
∑
i∈[d]

‖εi‖22 = B2‖ε‖22.

Hence, to find an ε-cover for F , we just need to find an ε/B-cover of {θ : θ ∈ Rdϕ×d, ‖θ‖2 ≤W}. By standard argument
on the covering number of Euclidean space (e.g. Lemma 5.7 in [Wainwright, 2019]), we can conclude the desired result.

D.2 ELUDER DIMENSION

Theorem 19 (Eluder Dimension Bound). We have that

dimE(F , ε) ≤ 3dϕe

e− 1
log

(
3 +

12W 2B2

ε2

)
+ 1.

Proof. Our proof follows the idea in [Russo and Van Roy, 2013]. Define

wk := sup

(θ1 − θ2)>ϕ(s, a) :

√ ∑
i∈[k−1]

((θ1 − θ2)>ϕi(si, ai))
2 ≤ ε′, θ1, θ2 ∈ Rdϕ×d , ‖θ1‖ ≤W, ‖θ2‖ ≤W

 .

For notation simplicity, define ϕk := ϕ(si, ai), θ := θ1 − θ2, and Φk :=
∑
i∈[k−1] ϕiϕ

>
i . Obviously, we have that

‖θ‖ ≤ 2W . Moreover, by straightforward calculation, we know∑
i∈[k−1]

(
(θ1 − θ2)>ϕi(si, ai)

)2
= Trace(θ>ϕkθ).

Define Vk := Φk + (ε′)2

4W 2 I , we start from considering the problem

max
θ

Trace(θ>ϕkϕ
>
k θ), subject to Trace(θ>Vkθ) ≤ 2ε2.

The Lagrangian can be formed as

L(θ, γ) = −Trace(θ>ϕkϕ
>
k θ) + λ(Trace(θ>Vkθ)− 2ε2), λ ≥ 0.

The optimality condition of θ is

(λVk − ϕkϕ>k)θ = 0.

As Vk is of full rank, λVk − ϕkϕ>k has rank at least dϕ − 1 (as ϕkϕ>k is of rank 1). So the equation

(λVk − ϕkϕ>k)θi = 0, θi ∈ Rdϕ

only has one non-zero solution. Substitute back, we know that (define ‖x‖A :=
√
x>Ax):

sup{Trace(θ>ϕkϕ
>
k θ) : Trace(θ>Vkθ) ≤ ε2} =

√
2ε′‖ϕk‖V −1

k
.

With the conclusion above, we have that

wk ≤ sup{θ>ϕk : Trace(θ>Φkθ) ≤ ε2, ‖θ‖ ≤ 2W} ≤ sup{θ>ϕk : Trace(θ>Vkθ) ≤ 2ε2} =
√

2ε′‖ϕk‖V −1
k
.

Hence, if wk ≥ ε′, then ϕkV −1
k ϕk ≥ 0.5. Moreover, with Matrix Determinant Lemma, if wi ≥ ε′, ∀i < k, we have

det(Vk) = det(Vk−1)(1 + ϕ>k V
−1
k ϕk) ≥ det(Vk−1)

(
3

2

)
≥ · · · ≥ det

(
(ε′)2

4W 2
I

)(
3

2

)k−1

=
(ε′)2d

4W 2d

(
3

2

)k−1

.

Meanwhile,

det(Vk) ≤
(

Trace(Vk)

d

)d
≤
(
B2(k − 1)

d
+

(ε′)2

4W 2

)d
.

Hence, we know (
3

2

)(k−1)/d

≤ 4W 2B2

(ε′)2
· k − 1

d
+ 1.

Now we only need to find the largest k that can make this inequality hold. For notation simplicity, define α := 4W 2B2

(ε′)2 ,
n = k−1

d . As log(1 + x) ≥ x
1+x and log x ≤ x/e, we have

n

3
≤ n log 3/2 ≤ log(α+ 1) + log n ≤ log(α+ 1) + log 3 + log(n/3) ≤ log(α+ 1) + log 3 +

n

3e
.

Substitute back, we can obtain the desired result.

E EXPERIMENTAL DETAILS

E.1 ALGORITHM SUMMARY

Our algorithm is easily built on SAC. The only difference we make is we decouple the critic network into a representation
network φ(·) and a linear layer l(·) on top of the representation. The representation network is governed by the model
dynamics loss in SPEDE, and we train a linear layer to predict the Q-value as it lies in the linear space of the representation
guaranteed by our analysis. We update the representation by a momentum factor and keep the policy update the same
procedure as SAC.

E.2 FULL EXPERIMENTS

Table 1: Performance of SPEDE on various MuJoCo control suite tasks. Our method achieve strong performance even
comparing to pure empirical baselines. To be specific, in hard tasks like Humanoid-ET and Ant-ET, SPEDE outperforms
the baselines significantly. Results with ∗ are directly adopted from MBBL [Wang et al., 2019]. We also provide the SoTA
model-free RL method SAC as a reference.

Swimmer Ant-ET Hopper-ET Pendulum

ME-TRPO∗ 30.1±9.7 42.6±21.1 4.9±4.0 177.3±1.9
PETS-RS∗ 42.1±20.2 130.0±148.1 205.8±36.5 167.9±35.8
PETS-CEM∗ 22.1±25.2 81.6±145.8 129.3±36.0 167.4±53.0
DeepSF 25.5±13.5 768.1±44.1 548.9±253.3 168.6±5.1
SPEDE 42.6±4.2 806.2±60.2 732.2±263.9 169.5±0.6

SAC∗ 41.2±4.6 2012.7±571.3 1815.5±655.1 168.2±9.5

Reacher Cartpole I-pendulum Walker-ET

ME-TRPO∗ -13.4±5.2 160.1±69.1 -126.2±86.6 -9.5±4.6
PETS-RS∗ -40.1±6.9 195.0±28.0 -12.1±25.1 -0.8±3.2
PETS-CEM∗ -12.3±5.2 199.5±3.0 -20.5±28.9 -2.5±6.8
DeepSF -16.8±3.6 194.5±5.8 -0.2±0.3 165.6±127.9
SPEDE -7.2±1.1 138.2±39.5 0.0±0.0 501.58±204.0

SAC∗ -6.4±0.5 199.4±0.4 -0.2±0.1 2216.4±678.7

MountainCar Acrobot SlimHumanoid-ET Humanoid-ET

ME-TRPO∗ -42.5±26.6 68.1±6.7 76.1±8.8 776.8±62.9
PETS-RS∗ -78.5±2.1 -71.5±44.6 320.7±182.2 106.9±102.6
PETS-CEM∗ -57.9±3.6 12.5±29.0 355.1±157.1 110.8±91.0
DeepSF -17.0±23.4 -74.4±3.2 533.8±154.9 241.1±116.6
SPEDE 50.3±1.1 -69.0±3.3 986.4±154.7 886.9±95.2

SAC∗ 52.6±0.6 -52.9±2.0 843.6±313.1 1794.4±458.3

E.3 ABLATIONS

Table 2: Ablation Suty of SPEDE on MuJoCo tasks. We see that a small momentum factor help stabilize the performance,
especially in environments like Huamoid and Hopper-ET.

Hopper-ET Ant-ET S-Humanoid-ET Humanoid-ET

SPEDE-0.9 593.2±37.4 877.7±45.9 881.6±385.2 232.9±63.4
SPEDE-0.99 305.9±13.4 707.9±51.1 629.3±106.9 818.1±130.6
SPEDE-0.999 732.2±263.9 806.2±60.2 986.4±154.7 886.9±95.2

Momentum Update Our ablation experiments are trying to study an important design choice of the practical algorithm:
the momentum used to update the critic function. We summarize the results in Table 2. We can see that using a small large
momentum factor such as 0.999 shows better performance. This is intuitively understandable: large momentum factor slows
down the update speed of the representation of the critic function and thus stabilize the training. Such phenomenon illustrates
the importance of slowly update the representation.

Figure 1: Increasing the number of random features
can also lead to a performance gain.

Random Feature Dimension We also conduct the experiments on
how does the random feature dimension affect the final performance of
the algorithm. We plot the results in HalfCheetah environment in Fig. 1.
We can see that when we increasing the random feature dimension,
we see a performance gain on the final return. This suggests that using
a larger number of feature dimension would help the performance.

MLP Network for Critic Network We also conduct an experiment
to study whether adding a MLP network on top of our representation
could work. We show such ablation in Tab. 3. From the results, we
see that the performance of MLP network is in generally better than
the Linear network.

Table 3: Comparison of SPEDE linear critic network and critic network. Results show that in general MLP network will
further improve the performance.

Reacher MountainCar Cartpole Acrobot

SPEDE-Linear -7.2±1.1 50.3±1.1 138.2±39.5 -69.0±3.3
SPEDE-MLP -6.8±0.4 53.8±1.1 171.9±31.0 -15.6±1.9
SAC -6.4±0.5 52.6±0.6 199.4±0.4 -52.9±2.0

Pendulum I-Pendulum Walker-ET S-Humanoid-ET

SPEDE-Linear 169.5±0.6 0.0±0.0 501.6±204.0 986.4±154.7
SPEDE-MLP 165.9±4.2 0.0±0.0 1005.7±458.4 2521.1±420.8
SAC 168.2±9.5 -0.2±0.1 2216.4±678.7 843.6±313.1

E.4 COMPARISON TO LC3

We provide a comparison of empirical results with LC3 [Kakade et al., 2020], which is also an algorithm with rigorous
theoretical guarantees. Despite the major difference that we are learning the representation while LC3 assumes a given
feature, the performance of SPEDE is much better than LC3 in tasks like Mountain Car and Hopper.

Table 4: Comparison of SPEDE with LC3 on MuJoCo tasks. LC3 only achieves good performance on relatively easy tasks
like Reacher. However, their performance on Hopper and Mountain-Car is much worse than SPEDE.

Reacher MountainCar Hopper

SPEDE -7.2±1.1 50.3±1.1 732.2±263.9
LC3 -4.1±1.6 27.3±8.1 -1016.5±607.4

E.5 PERFORMANCE CURVES

We provide an additional performance curve including ME-TRPO in Figure 2 for a reference.

0.0 0.5 1.0 1.5 2.0
Environment Steps 1e5

200

150

100

50

0

Re
tu

rn

InvertedPendulum

0.0 0.5 1.0 1.5 2.0
Environment Steps 1e5

100

50

0

50
MountainCar

0.0 0.5 1.0 1.5 2.0
Environment Steps 1e5

0

50

100

150

200 Pendulum

0.0 0.5 1.0 1.5 2.0
Environment Steps 1e5

200

150

100

50

0
Reacher

SPEDE DeepSF-SAC PETS-CEM PETS-RS ME-TRPO

Figure 2: Experiments on MuJoCo: We show curves of the return versus the training steps for SPEDE and model-based RL baselines.
We also include the final performance of ME-TRPO from [Wang et al., 2019] for reference.

E.6 HYPERPARAMETERS

We conclude the hyperparameter we use in our experiments in the following.

Table 5: Hyperparameters used for SPEDE in all the environments in MuJoCo.

Hyperparameter Value

Actor lr 0.0003
Model lr 0.0001
Actor Network Size (1024, 1024, 1024)
Fourier Feature Size 1024
Discount 0.99
Target Update Tau 0.005
Model Update Tau 0.001
Batch Size 256

	Backgrounds on Reproducing Kernel Hilbert Space
	An Equivalent Upper Confidence Bound Algorithm
	Technical Proof
	Proof for Lemma 6
	Simulation Lemma
	Sum of Width Square
	Proof for Theorem 5 and Theorem 7

	Bounds on the Complexity Term under Linear Realizability
	Covering Number
	Eluder Dimension

	Experimental Details
	Algorithm Summary
	Full Experiments
	Ablations
	Comparison to LC3
	Performance Curves
	Hyperparameters

