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1 PROOFS

In this appendix, we present the proofs of Theorems 4 and 5.

1.1 PROOF OF THEOREM 4

After proving a few useful lemma, we provide here the proof of the complexity of our HYBRID QUANTUM PERCEPTRON.
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Lemma 2. Let’s define K2 =
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Using ln(1− e−x) ∼
x→0

ln(x), it holds that

K2 = log3/4
(
1− e−α

)
∼ log3/4(α) ∼ log3/4(ϵγ).

Theorem 4. Let S be a linearly separable sample of N points of margin γ. Algorithm HYBRID QUANTUM PERCEPTRON
finds a perfect separator with probability at least 1− ϵ and has a complexity of
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Proof. The algorithm can fail because of two reasons. It is possible that none of the hyperplanes wi, i = 1, . . . ,K, separate
the classes and it is also possible that the quantum search gives a wrong result.

The exact value of K we take is K =
⌈
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because of lemma 2. The probability that a randomly

drawn hyperplane separates the data is
√
2/πγ (from Wiebe et al., 2016, Proof of theorem 2). Thus, the probability that at
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Next we will assume that one of the K hyperplanes separates the classes. The algorithm will still return a wrong answer if it
identifies a non-separating hyperplane as a separating one. The worst case is when the separating hyperplane is the K th one.
The probability that K − 1 non-separating hyperplanes are all correctly identified is

(
1− 3

4

K2
)K−1

≥ 1− ϵ

2
,

where
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The probability of failure is then bounded by
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which concludes the proof.



1.2 PROOF OF THEOREM 5

For proving Theorem 5, the following definition and lemma are useful.

Definition 1. We define the Leave-one-out (LOO) error on a dataset S by

R̂LOO(S) =
1

N

N∑
i=1

1{hS−{xi}(xi) ̸= yi} , (1)

where hS−{xi} is the hypothesis returned by HYBRID QUANTUM PERCEPTRON on S −{xi}, which is the same as S except
that xi has been deleted.

The lemma below shows the link between the expected risk and the Leave-one-out error.

Lemma 3 (Mohri et al., 2018, Lemma 5.3). For any N ≥ 1,

E
S∼DN

[R(hS)] = E
S′∼DN+1

[R̂LOO(S
′)] .

Theorem 5. Assume that the data is linearly separable. Let hS be the hypothesis returned by the HYBRID QUANTUM
PERCEPTRON algorithm after training over a sample S of size N drawn according to some distribution D. Then, the
expected error of hS is bounded as follows:
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.

Proof. The proof is based on computing an upper bound of the Leave-one-out error. Since the hyperplanes are drawn
beforehand, they are the same for all instances (S − {xi})i,∀i = 1, . . . , N . We also assume that there is at least one
hyperplane that separates the training set S of size N (true with probability 1− ϵ). If N ≤ K then the number of errors in
R̂LOO is naturally bounded by N ≤ K so it holds that R̂LOO ≤ K/N . Thus we can restrict ourselves to the non trivial
case where K < N .

We know that there is an hyperplane that separates the training set S correctly. Apart this hyperplane, noted wK , the worst
scenario is when the other ones all classify correctly all the data except one. Without loss of generality we consider that
each wk misclassifies only xk, ∀1 ≤ i < K. So we will have one error for each of the K − 1 first predictions. Now, when
HYBRID QUANTUM PERCEPTRON is trained on S − {xi}, ∀K ≤ i ≤ N , the algorithm will choose the hyperplane wK

because it is the only one that correctly separates S − {xi} for i = K, . . . , N . Since wK is the hyperplane returned by
HYBRID QUANTUM PERCEPTRON on all the sample S, it will also correctly classify the points xi, ∀K ≤ i ≤ N . Hence it
holds that

R̂LOO ≤ K

N
.

Using Lemma 3 and K ∼
√

π
2
ln(1/ϵ)

γ (lemma 1), we obtain
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.
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