Supplementary Material for "Quantum Perceptron Revisited: Computational-Statistical Tradeoffs"

Mathieu Roget^{1,2}

Giuseppe Di Molfetta¹

Hachem Kadri¹

¹Aix-Marseille University, CNRS, LIS, Marseille, France ²École Normale Superieure de Lyon, Lyon, France

1 PROOFS

In this appendix, we present the proofs of Theorems 4 and 5.

1.1 PROOF OF THEOREM 4

After proving a few useful lemma, we provide here the proof of the complexity of our HYBRID QUANTUM PERCEPTRON.

Lemma 1. Let's define $K = \left\lceil \frac{\ln(\epsilon/2)}{\ln(1-\sqrt{2}\gamma/\sqrt{\pi})} \right\rceil$, then it holds that $K \sim \sqrt{\frac{\pi}{2}} \frac{\ln(1/\epsilon)}{\gamma}$.

Proof. Using a Taylor expansion for $\ln(1-x)$ in 0 we get

$$\begin{split} \sqrt{\pi/2} \frac{\ln(1/\epsilon)}{K\gamma} &= \sqrt{\pi/2} \frac{\ln(1/\epsilon) \ln(1 - \sqrt{2}\gamma/\sqrt{\pi})}{\gamma \ln(\epsilon/2)} \\ &= \sqrt{\pi/2} \frac{\ln(1/\epsilon) \left[-\sqrt{2}\gamma/\sqrt{\pi} + \mathop{o}_{\gamma \to 0}(\gamma) \right]}{\gamma \ln(\epsilon/2)} \\ &\stackrel{\rightarrow}{\xrightarrow{\gamma \to 0}} \frac{\ln(1/\epsilon)}{\ln(1/\epsilon) + \ln(2)} \\ &\stackrel{\rightarrow}{\xrightarrow{\epsilon \to 0}} 1. \end{split}$$

Thus $K \sim \sqrt{\pi/2} \frac{\ln(1/\epsilon)}{\gamma}$.

Lemma 2. Let's define $K2 = \left\lceil \log_{3/4} \left(1 - \left(1 - \frac{\epsilon}{2} \right)^{\frac{1}{K-1}} \right) \right\rceil$, then it holds that $K2 \sim \log_{3/4}(\epsilon \gamma)$.

Proof. Using a Taylor expansion for $\ln(1-\epsilon/2)$ and $\ln(1-\sqrt{\frac{2}{\pi}}\gamma)$ in 0 we get

$$(1-\epsilon/2)^{\frac{1}{K-1}} = \exp\left(\frac{\ln(1-\epsilon/2)\ln(1-\sqrt{\frac{2}{\pi}\gamma})}{\ln(\epsilon/2) - \ln(1-\sqrt{\frac{2}{\pi}\gamma})}\right) = \exp\left(-\alpha\right)$$

Accepted for the 38th Conference on Uncertainty in Artificial Intelligence (UAI 2022).

where

$$\alpha = \frac{1}{\sqrt{2\pi}} \frac{\epsilon \gamma}{\ln(\epsilon/2) - \ln(1 - \sqrt{\frac{2}{\pi}}\gamma)} + o(\epsilon\gamma) \sim \frac{1}{\sqrt{2\pi}} \frac{\epsilon\gamma}{\ln(\epsilon/2) - \ln(1 - \sqrt{\frac{2}{\pi}}\gamma)}$$

Using $\ln(1-e^{-x}) \underset{x \to 0}{\sim} \ln(x)$, it holds that

$$K_2 = \log_{3/4} \left(1 - e^{-\alpha} \right) \sim \log_{3/4}(\alpha) \sim \log_{3/4}(\epsilon \gamma).$$

Theorem 4. Let S be a linearly separable sample of N points of margin γ . Algorithm HYBRID QUANTUM PERCEPTRON finds a perfect separator with probability at least $1 - \epsilon$ and has a complexity of

$$O\left(\frac{\sqrt{N}}{\gamma}\ln(1/\epsilon)\ln\left(\frac{1}{\gamma\epsilon}\right)\right)$$
.

Proof. The algorithm can fail because of two reasons. It is possible that none of the hyperplanes w_i , i = 1, ..., K, separate the classes and it is also possible that the quantum search gives a wrong result.

The exact value of K we take is $K = \left\lceil \frac{\ln(\epsilon/2)}{\ln(1-\sqrt{2}\gamma/\sqrt{\pi})} \right\rceil = O\left(\frac{\ln(1/\epsilon)}{\gamma}\right)$ because of lemma 2. The probability that a randomly drawn hyperplane separates the data is $\sqrt{2/\pi\gamma}$ (from Wiebe et al., 2016, Proof of theorem 2). Thus, the probability that at least one hyperplane separates the classes is

$$\mathbb{P}(\text{separating } w \text{ exists}) = 1 - \left(1 - \sqrt{\frac{2}{\pi}}\gamma\right)^K \ge \left(1 - \sqrt{\frac{2}{\pi}}\gamma\right)^{\frac{\ln(\epsilon/2)}{\ln(1 - \sqrt{2}\gamma/\sqrt{\pi})}} = 1 - \frac{\epsilon}{2}$$

Next we will assume that one of the K hyperplanes separates the classes. The algorithm will still return a wrong answer if it identifies a non-separating hyperplane as a separating one. The worst case is when the separating hyperplane is the K^{th} one. The probability that K - 1 non-separating hyperplanes are all correctly identified is

$$\left(1-\frac{3}{4}^{K_2}\right)^{K-1} \ge 1-\frac{\epsilon}{2} ,$$

where

$$K_2 = \left\lceil \log_{3/4} \left(1 - \left(1 - \frac{\epsilon}{2} \right)^{\frac{1}{K-1}} \right) \right\rceil = O\left(\ln(1/(\gamma \epsilon)) \right) \text{ (from lemma 2)}$$

The probability of failure is then bounded by

$$\mathbb{P}(\text{failure}) \leq \underbrace{\frac{\epsilon}{2}}_{\text{separating } w \text{ doesn't exist}} + \underbrace{\frac{\epsilon}{2}}_{\text{one non-separating hyperplane misidentified}} = \epsilon$$

and the complexity is

$$O\left(KK_2\sqrt{N}\right) = O\left(\frac{\sqrt{N}}{\gamma}\ln(1/\epsilon)\ln\left(\frac{1}{\gamma\epsilon}\right)\right)$$

which concludes the proof.

1.2 PROOF OF THEOREM 5

For proving Theorem 5, the following definition and lemma are useful.

Definition 1. We define the Leave-one-out (LOO) error on a dataset S by

$$\hat{R}_{LOO}(S) = \frac{1}{N} \sum_{i=1}^{N} \mathbb{1}\{h_{S-\{x_i\}}(x_i) \neq y_i\}, \qquad (1)$$

where $h_{S-\{x_i\}}$ is the hypothesis returned by HYBRID QUANTUM PERCEPTRON on $S - \{x_i\}$, which is the same as S except that x_i has been deleted.

The lemma below shows the link between the expected risk and the Leave-one-out error.

Lemma 3 (Mohri et al., 2018, Lemma 5.3). For any $N \ge 1$,

$$\mathbb{E}_{S \sim \mathcal{D}^N} \left[R(h_S) \right] = \mathbb{E}_{S' \sim \mathcal{D}^{N+1}} \left[\hat{R}_{LOO}(S') \right].$$

Theorem 5. Assume that the data is linearly separable. Let h_S be the hypothesis returned by the HYBRID QUANTUM PERCEPTRON algorithm after training over a sample S of size N drawn according to some distribution \mathcal{D} . Then, the expected error of h_S is bounded as follows:

$$\mathbb{E}_{S \sim \mathcal{D}^N} \left(R(h_S) \right) \le \sqrt{\frac{\pi}{2}} \frac{\log 1/\epsilon}{N+1} \mathbb{E}_{S \sim \mathcal{D}^{N+1}} \left(\frac{1}{\gamma_S} \right) \ .$$

Proof. The proof is based on computing an upper bound of the Leave-one-out error. Since the hyperplanes are drawn beforehand, they are the same for all instances $(S - \{x_i\})_i, \forall i = 1, ..., N$. We also assume that there is at least one hyperplane that separates the training set S of size N (true with probability $1 - \epsilon$). If $N \leq K$ then the number of errors in \hat{R}_{LOO} is naturally bounded by $N \leq K$ so it holds that $\hat{R}_{LOO} \leq K/N$. Thus we can restrict ourselves to the non trivial case where K < N.

We know that there is an hyperplane that separates the training set S correctly. Apart this hyperplane, noted w_K , the worst scenario is when the other ones all classify correctly all the data except one. Without loss of generality we consider that each w_k misclassifies only x_k , $\forall 1 \le i < K$. So we will have one error for each of the K - 1 first predictions. Now, when HYBRID QUANTUM PERCEPTRON is trained on $S - \{x_i\}$, $\forall K \le i \le N$, the algorithm will choose the hyperplane w_K because it is the only one that correctly separates $S - \{x_i\}$ for $i = K, \ldots, N$. Since w_K is the hyperplane returned by HYBRID QUANTUM PERCEPTRON on all the sample S, it will also correctly classify the points x_i , $\forall K \le i \le N$. Hence it holds that

$$\hat{R}_{LOO} \le \frac{K}{N} \; .$$

Using Lemma 3 and $K \sim \sqrt{\frac{\pi}{2}} \frac{\ln(1/\epsilon)}{\gamma}$ (lemma 1), we obtain

$$\mathbb{E}_{S \sim \mathcal{D}^N} \left(R(h_S) \right) \le \sqrt{\frac{\pi}{2}} \frac{\log 1/\epsilon}{N+1} \mathbb{E}_{S \sim \mathcal{D}^{N+1}} \left(\frac{1}{\gamma_S} \right) \ .$$

References

Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. *Foundations of machine learning*. MIT press, 2nd edition, 2018.

Nathan Wiebe, Ashish Kapoor, and Krysta M Svore. Quantum perceptron models. In NIPS, 2016.