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1 PROOFS

In this appendix, we present the proofs of Theorems [4and [5}

1.1 PROOF OF THEOREME]

After proving a few useful lemma, we provide here the proof of the complexity of our HYBRID QUANTUM PERCEPTRON.

Lemma 1. Let’s define K = [M—‘ then it holds that
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Proof. Using a Taylor expansion for In(1 — z) in 0 we get

mln(lge) _ \/mln(l/e) In(1 — v/2v//7)

K ~v1In(e/2)
In(1/€) |=V2y/VT+ o (7)
= V)2 ~1n(e/2)
In(1/e)
’on In(1/€) + In(2)
o L
Thus K ~ ,/W/QW. O

1
Lemma 2. Let’s define K2 = [10g3/4 (1 — (1 - %) Kt )—‘, then it holds that
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Proof. Using a Taylor expansion for In(1 — ¢/2) and In(1 — \/gv) in 0 we get
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Using In(1 —e™®) ~ In(z), it holds that
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Theorem 4. Let S be a linearly separable sample of N points of margin ~y. Algorithm HYBRID QUANTUM PERCEPTRON
finds a perfect separator with probability at least 1 — ¢ and has a complexity of
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Proof. The algorithm can fail because of two reasons. It is possible that none of the hyperplanes w;, 7 = 1,.. ., K, separate
the classes and it is also possible that the quantum search gives a wrong result.

The exact value of K we take is K = [%—‘ =0 (%) because of lemma The probability that a randomly

drawn hyperplane separates the data is 1/2/7~ (from |[Wiebe et al., 2016, Proof of theorem 2). Thus, the probability that at
least one hyperplane separates the classes is
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Next we will assume that one of the K hyperplanes separates the classes. The algorithm will still return a wrong answer if it
identifies a non-separating hyperplane as a separating one. The worst case is when the separating hyperplane is the K™ one.
The probability that K — 1 non-separating hyperplanes are all correctly identified is
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The probability of failure is then bounded by
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which concludes the proof. O



1.2 PROOF OF THEOREM

For proving Theorem 5] the following definition and lemma are useful.

Definition 1. We define the Leave-one-out (LOO) error on a dataset .S by
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where hg_ .,y is the hypothesis returned by HYBRID QUANTUM PERCEPTRON on S — {z;}, which is the same as S except
that x; has been deleted.

The lemma below shows the link between the expected risk and the Leave-one-out error.

Lemma 3 (Mohri et al., 2018, Lemma 5.3). Forany N > 1,
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Theorem 5. Assume that the data is linearly separable. Let hg be the hypothesis returned by the HYBRID QUANTUM
PERCEPTRON algorithm after training over a sample S of size N drawn according to some distribution D. Then, the
expected error of hg is bounded as follows:
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Proof. The proof is based on computing an upper bound of the Leave-one-out error. Since the hyperplanes are drawn
beforehand, they are the same for all instances (S — {z;});,Vi = 1,..., N. We also assume that there is at least one
hyperplane that separates the training set S of size N (true with probablhty 1 —¢). If N < K then the number of errors in
R roo is naturally bounded by N < K so it holds that R roo < K/N. Thus we can restrict ourselves to the non trivial
case where K < N.

We know that there is an hyperplane that separates the training set S correctly. Apart this hyperplane, noted w g, the worst
scenario is when the other ones all classify correctly all the data except one. Without loss of generality we consider that
each wy, misclassifies only x, V1 < i < K. So we will have one error for each of the K — 1 first predictions. Now, when
HYBRID QUANTUM PERCEPTRON is trained on S — {z;}, VK < i < N, the algorithm will choose the hyperplane w g
because it is the only one that correctly separates S — {x;} fori = K,..., N. Since wg is the hyperplane returned by
HYBRID QUANTUM PERCEPTRON on all the sample S, it will also correctly classify the points x;, VK <4 < N. Hence it
holds that
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Using Lemmaand K~ \/g % (lemma , we obtain
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