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1 ATTENTION DERIVATION

A typical self-attention block with the set X € R™*? as the input queries and keys/values obeys the following equation:

Z = MHA(X, X)
= [o (XW)(XWk)T) (XWv)] Wo
=0 (X(WoWH)XT) XWyWo

If we now consider the joint set X | | Y € R"+™*9 and perform self-attention on that, we find the following:
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wherein
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Then, we find that

Zx = Apa XWyWo + AnyWVWO
Ly = AwaWVWO + AyyYWVWO

This function remains entirely equivariant with respect to the order of the elements in the joint set X | | Y - there is no
distinction between elements in X and elements in Y.

Suppose, however, that we were to let the softmax for A,z be computed only over the elements of the set «, and let the
parameter matrices be different for each of the 4 terms. Then, we find

Accepted for the 38" Conference on Uncertainty in Artificial Intelligence (UAI 2022).


mailto:<kaselby@uwaterloo.ca>?Subject=Multi-Set Transformers (UAI)

These are just four separate attention blocks! Now we can simply write

Zx = MHA,.(X, X) + MHA,,,(X,Y)
Zy = MHA, (Y, X) + MHA,, (Y,Y)

Since the attention function is equivariant with respect to the first input and invariant with respect to the second, this meets
the conditions for partial equivariance. To make this slightly more general, we can now write

Zx = go (MHA (X, X),MHA (X, Y))
Zy = g, (MHA,, (Y, X),MHA,, (Y,Y))

where the function g acts on each vector in the output set independently.

2 EXPERIMENT DETAILS

The base architecture used in all experiments was the architecture shown in Figure[I] with the MSAB blocks replaced as
appropriate for each baseline. The only exception was the PINE model, which followed the architecture described in their

paper.

In all cases (except where noted otherwise), we used architectures with 4 blocks, 4 attention heads (for the transformer
models), and 1-layer feedforward decoders. We used Pooling by Multiheaded Attention (PMA) (see|Lee et al. [2019]) as the
pooling layer for the overall network, and max pooling within each relation network block. We used layer norm around each
encoder block, as well as within the transformer blocks as per usual. Each block used the same latent and hidden size, and
linear projection layers were added at the beginning of the network to project the inputs to the correct dimension if needed.

For the KL and MI experiments, we trained for 100,000 batches of size 64 with a learning rate of le-4. The models used a
latent size of 16 per input dimension and feedforward size of 32 per input dimension. The dimension-equivariant model was
trained across data of multiple dimensions (1-3 for d = 2, 3-5 for d = 4, 7-9 for d = 8 and 14-18 for d = 16). Sets were
generated as described in sections[5.1.T]and[5.1.2]

For the Counting experiments, we trained with a batch size of 64 using a latent size of 128 and hidden size of 256. We
used a single projection layer as a decoder, with no hidden layers. For MNIST, we used a convolutional encoder with 3x3
convolutional layers of 32 and 64 filters, each followed by a max pool, with a linear projection to the latent size of 128 at
the end. This encoder was pretrained for 1000 batches, then the network and encoder were trained end to end for 10,000
batches with a learning rate of 3e-4. Sets were randomly sampled with set size randomly selected in [10, 30]. For Omniglot,
the convolutional encoder used one 7x7 conv with stride 2 and 32 filters, followed by three blocks of two 3x3 convs each
with 32, 64 and 128 filters respectively. Each block was followed by a max pool, and a final linear projection to size 128
was again added at the end. This was pretrained for 300 batches, then the network itself was trained end to end for 10,000
batches with a learning rate of 1e-4. Loss was calculated by mean-squared error. Sets were randomly sampled with set size
randomly selected in [6, 10].

The CoCo experiments again used convolutional encoders to obtain fixed size representations of each image, and used
transformer encoders to do the same for the captions. This time, the pretrained ResNet-101 model was used as the image
encoder, with BERT used as the text encoder. The model was trained for 2500 batches of batch size 48 with learning rate
le-5, using a latent size of 512 and hidden size of 1024. The set size was increased gradually according to a schedule
during training, beginning at sets with size randomly selected in [1, 5] for 1250 batches, [3, 10] for 625 batches and [8, 15]
for 625 batches. Standard image preprocessing techniques were applied, with each image rescaled to 256x256, center
cropped to size 224, then normalized according to the method expected by PyTorch’s pretrained ResNet models (see
https://pytorch.org/vision/stable/models.html). The FastText experiments used common crawl FastText vectors for English
and French|'| with ground truth translations taken from MUSE The model was trained for 3125 batches of batch size 128
with learning rate le-5, using a latent size of 512 and hidden size of 1024. The set size was increased gradually according to
a schedule during training, beginning at sets with size randomly selected in [1, 5] for 1250 batches, [3, 10] for 625 batches,
[8, 15] for 625 batches and [10, 30] for 625 batches.

Meta-Dataset experiments used the same convolutional encoder architecture as the Omniglot experiments, though without
pretraining. Images were preprocessed in the standard fashion performed by the Pytorch Meta-Dataset library. The model

"https://fasttext.cc/docs/en/crawl-vectors.htm]
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was trained for 7500 batches of batch size 64 with set size randomly selected in [10, 30] and learning rate le-5, using a latent
size of 512 and hidden size of 1024. The synthetic experiments for distinguishability were trained for 7500 batches of batch
size 256 with set size randomly selected in [10, 30] and learning rate le-5, using a latent size of 8 and hidden size of 16.

3 PROOF OF THEOREM

Our proof will closely follow the work of |Yun et al.|[2019]. In their work, they define the following theorem:

Theorem 2 [Yun et al., 2019]. Let 1 < p < oo and € > 0, then for any given f € Fpg there exists a transformer network
g € T>Y4 such that d,,(f, g) < e.

The proof of this theorem follows several stages, enumerated here:

1. Approximate Fpg by piecewise constant functions on the grid of resolution ¢, denoted Gs = 0,4, ...,1 — ¢ dxn,

2. Approximate Fpg by modified transformers, with hardmax replacing softmax.
Proposition 4 [Yun et al., 2019]. For each f € Fppand 1 < p < oo, 37 € T2 such that dy(f,9) = O(6%/7)
3. Approximate the class of modified transformers T2 with 7214

Each of these steps leads to a certain error under d,,, with step 1 and 3 contributing an error of order ¢/3 and step 2
contributing an error of order (’)(6(1/ P). This leads to a total error of less than order e, so long as § is chosen to be sufficiently
small. Of these steps, we will focus our attention on step 2, as the others remain unchanged. The key is to prove our own
version of proposition[d [[Yun et al.[[2019]] The proof of this proposition itself follows the following steps:

1. Given X € R¥*", quantize X to L(*) € G, where Gy is the [0, 1]?*™ grid with resolution § and G} = GsU{—5""%}.

2. Implement a contextual mapping q(X) such that all elements of ¢(L), ¢(L’) are distinct if L, L are not permutations
of each other. This essentially maps each (z;, X) to a unique representation.

3. Since each (z;, X) is mapped to a unique representation, we can use feedforward networks to approximate any desired
decoder to approximate any equivariant function on X.

The critical part of this proof comes in Lemma 6 from Yun et al:

Lemma 6 [Yun et al., 2019]. Let Gs = {LeGs|L.;#L.;Vi#j} Let n > 2 and 5~ > 2. Then, there exists a
function q(L) of the form q(L) = uT g.(L) where u € R?, and g.(L) : R¥*™ — R¥*™ is a function composed of =% + 1
self-attention layers using the o operator, such that q(L) has the following properties:

1. Forany L € Gy, all entries of q(L) are distinct

2. Forany L, L' € Gy, if L is not a permutation of L' then all entries of (L) and q(L') are distinct

3. Forany L € G, all entries of (L) are in [t 1,

4. Forany L € G} \ Gs. all entries of q(L) are not in [t;, t,]

For our purposes, we will keep the structure of this proof, and change it by substituting our own version of this lemma:

Lemma 6’. Let éts ={LeGs|L.;#L.;Vi#j} Letn>2and 5~ > 2. Then, there exists a function q(LX,LY) on
LX LY ¢ G(J{; LX #£ LY consisting of 20~¢ + 4 MSAB layers and constants th, X, tlY, tY such that

1. Forany LX,LY € G, all entries of (L, LY) are distinct

2. Forany LX LY L' L'V € G5, if L'* is not a permutation of L and L'V is not a permutation of LY then all
entries of (L, LY ) and q(L'X, L'Y') are distinct

3. Forany LX LY € Gy, all entries of ¢ (LX, LY ) are in [t¥, tX]

L »%r

4. Forany LX LY € Gy, all entries of ¥ (L, LY ) are in [t} | tY]

L %r

5. Forany LX € G} \ Gs, LY € G, all entries of (L, L) are not in [t;, 1]



6. Forany LY € G} \ Gs, LX € G, all entries of q(LX, L) are not in [t;, t,]

Once our version of Lemma 6 is established, we then make a slight modification of Yun et al’s Lemma 7. This lemma states:

Lemma 7 [Yun et al.,2019]. Let g. : R©X™ — RYX™ be the function defined in Lemma@Yun et al.:ZOIQZI Then, there
exists a function g, : R™™ — R¥*™ composed of O(n(5)™ /n!) column-wise feedforward layers (r = 1) such that g, is
defined by a function g.o; : R? — RY,

gv(Z) = [gCOI(Z:,l)v -'~7gcol(Z:,n)]
whereVj=1,...,n
(AL); j Le Gg
col\Yc L nj) = ’ -~
ot(9e(L)..) {Od GG

Our modified version states

Lemma 7°. Let g, : RY™ x RYX™ — RIX™ 5 RIX™ be the function defined in Lemma Then, there exists a function
Gy o R R — REIXN 5 RIX™ composed of O(n(5)™ /n!) column-wise feedforward layers (v = 1) such that g, is
defined by a function g.,; : R* — RY,

gv(Z) = [gcol(Z:,l)a ~"agcol(Zz,n)]

whereVi=1,...n,5j=1,..m .
(AL):; LeGs

col\Yc L i) — ’ =~

ot(9e(L)..) {Od oG

The construction of g(L*, LY"), and the proofs of Lemma andwill follow in the subsequent sections.

3.1 CONSTRUCTION OF THE CONTEXTUAL MAPPING

The construction of this function proceeds as follows. First, note that a multi-set attention block can implement functions
consisting of multiple feedforward or attention blocks successively by using the skip connections to ignore the other
component when needed. It can also implement a function consisting of multiple blocks successively applied to a single
one of the input sets by simply letting the action of the block on the other set be the identity. The multi-set attention
block can also implement a layer which simply performs the attention computation e.g. ATT Nx x (X, X) by letting
9x(fxx, fxy) = fxx. As such, multi-set attention blocks can reproduce any function on either X or Y implemented by
regular transformer blocks - such as the constructions defined in|Yun et al.|[2019].

Let g.(L) be the iterated selective shift network defined in [Yun et al.| [2019], consisting of n selective shift operations
followed by a final global shift layer. This results in the mapping

u’go(L) = £ 407001,

where Z] is the j-th output of the selective shift layers, sorted in ascending order. We will now construct our own analogous
network, g.(L*X, LY). Let g4(L) be the selective shift portion of g.(L). Then, we let the first 5~ blocks implement g, (LX)
on L~ alone while performing the identity operation on LY (T'xy, Ty x = 0 for this component). The next 5 ~¢ blocks do the
same thing on LY, while performing the identity on LX. The next block then applies a modified global shift to each set with
attention component §(*+1)%4)(-; 0) - the same global shift as in Yun et al,|[2019]). This shift is applied with attention over X,
and a scaled version is also applied with attention over Y - i.e. shifting L~ by 6~ (**14 max;, uTLi(k and §% max;, uTL},/k
(and the same in reverse for LY ). This can be implemented by a single MSAB block with Tx x = Tyy = 6*(”“)‘11/)(; 0)
and Txy = Tyx = 6%)(-;0). This comprises our g.(L~, LY) block, and results in an output of

qX(LX, LY)j _ ungf (LX, LY):J _ ZJX + §—(n+1)d Zr)f + §(m+1)d Z}/n

¢ (L5, L) =gy (LY, L) = 0} 46~ gy 4 gD gX
3.2 PROOF OF LEMMA

The proof of Lemma[6”] proceeds much as the proof of Lemmal[6 [Yun et al.[[2019]] We must now check that all conditions
are satisfied.



3.2.1 Property 2

For the second property, let us begin by considering the case where L*, L’ are not permutations of each other. Then,
analogous to Yun et al., we have that
ung((LX7LY):7j c [57(n+1)d2ﬁi{ + 6(m+1)d2}/n’57(n+1)dz7)1( + 6(m+1)dz3’n + 67(n+1)d+1 _ 67nd+1)

As in Yun et al., LY, L'X € G5 which are not permutations of each other must result in £, /X differing by at least §.

By Lemma 10, distinct LY, L'Y can lead to 2”%7 Z’n’; differing by a value strictly less than 6~ (™+1d4+1 The smallest net
change this can result in is 6~ (14 . § — §im+D)d . 5=(m+1)d+1 — 5=(n+1)d+1 _ 5 Since this is larger than the width of
the original interval and the intervals are open on at least one end, the intervals must thus be disjoint, and thus if LX and
L' are distinct, Q* and Q' must be distinct. Now, consider the case where L™, L'* € Gy are permutations of each

other, but LY | L’V € G are not. In this case, since ¢, Z’,}; must differ by at least §, QX and @Q’X must again be distinct.
Since |£}, — Y| < 6~ (mTDI+L the resulting change in @~ must be strictly less than 6. Since £, £ must be separated
by at least § for j # k, QJX # Q)X for any j # k. Thus, all entries of @ and Q' must be distinct in this case as well.

These results apply symmetrically for @ and Q'Y and thus this proves Property 2.

Note that if LX L'X are not permutations of each other then u®gX(LX LY), uTgX(L'* L’Y) must be sep-
arated from each other by at least §, whereas if LX,L'X are permutations of each other, but LY 6 L'V are
not, ulgX(LX,LY),ugX(L'*,L'"Y) must be separated by at least §™F2. In general then, all entries of
uTgX (LY, LY),uT gX (L'X, L’Y) must be separated from each other by at least ™2 (and conversely with 6”2 for

Y).

3.2.2 Properties 3-4

By the same procedure as Yun et al (in B.5.1), we can see that ¢ (LX, L) obeys
(6—2nd+1 + 52d+1)(5—d _ 1) S uTgf(LX, LY) < (6—(2n+1)d+1 4 6d+1)(6—d _ 1)
if LX LY € Gs. Thus, VLY, LY € G5 ¢X(LX,LY) € [t;,t,] where

th — (5—2nd+1 + 52d+1)(5—d _ 1)
X = (67(2n+1)d+1 O

The same holds for ¢¥ (L~ LY) with

tlY _ (5—2md+1 + 52d+1)(6—d _ 1)
tTY — (57(2m+1)d+1 + 5d+1)(67d —1)

3.2.3 Property 1

Within QX and QY all entries must be distinct since 0 < ... <y Suppose n # m. Consider the bounds #;¥, ¢X from
the previous section. Without loss of generality, suppose m < n. If m = n — k then we have ¢t} = (§~(n+1-2k)d+1 4

§4HN) (671 — 1) < ;X and thus QX and QY belong to disjoint intervals.

If n = m, then we can apply a similar argument as we did in proving Property 2, and argue that fo , Z}f which are not
permutations must differ by at least &. This results in intervals shifted from each other by at least 6~ ("t 1Dd+1 _ §d+1 which
will always be larger than g—(n+1)d+1 _ s—nd+1 which is the width of the intervals. Thus, in this case too QX and QY

must be distinct, and Property 1 is proven.

3.2.4 Properties 5-6 - Case 1

Take LY € G and LX € Gy \ Gj. This corresponds to an L with duplicate columns but within the region of compact
support. In this case,

Zf < 6—(n—1)d+1(5—d _ 1) _ 6(6_d _ 1)2



Then,
uTg;X(LX7LY):’j _ ’[]X + §—(nt+1d 275 + §(m+1)d 2‘3;
< (5—(n+1)d + 1)(6—(n—1)d+1(5—d —1) - 5(6—d _ 1)2) + 5(m+1)d(5—md+1(5—d —1) - 6(5—d _ 1)2))
< 5—2nd+1(5—d — 1)+ 5—(n—1)d+1(5—d —1)- 5—(n+1)d+1(5—d _ 1)2 + 5d+1(5—d —1)
< TR (§7d — 1) 4 g (DAL (5 1) (1 4 67— 572 (5 — 1))
<o (5T 1) < Y

since 6~ > 2. Thus, Q falls strictly outside [t;, ], proving Property 6 for the case when LY € G} and LX € G;\ G;.
The same applies in reverse for Property 7.

3.2.5 Properties 5-6 - Case 2

Take LY € G} and LX € G} \ Gs. This corresponds to an L that contains at least one element outside the region of

compact support. This leads to columns of LX containing negative values. Note first that for a column LXJ containing —4 "4,
E;( = EJX as the selective shift operation does not alter it. From Yun et al, we have that Ei( < —§md 4 579+l _ 1 <0, and

that the last layer shifts negative values by 6~ ("t min, % . After this shift is applied and our additional attention-based
shift is applied,

ul gl (LY LY )y < (=07 4 57 = 1) (14 07 (D) 4 gl ey

P <

3] =

< (757nd + 57d+1 _ 1)(1 + 67(n+1)d) + 5(m+1)d57(m+1)d+1
S _5—(2n+1)d + 6—(n+2)d+1 + §<0< th

X, X

where we use that Z% < §—(mA1)d+1 apd §—1 > 2. Thus, any negative column is mapped to a value outside of [, .

Note that this holds for any LY, including an LY € G}' \ Gs .

In the case where all columns are negative, the argument proceeds exactly as in Yun et al, and all elements are straight-
forwardly less than zero as shown above. In the case where only some columns are negative, the negative columns are
mapped to negative values as before, and the positive columns satisfy u” g X (LX, LY):,i > 6~ (2n+2)d+1 pefore we apply

our attention shift layer. If maxy, ¢} > 0, then u? X (L%, LY).; > §( — (2n 4 2)d + 1 still holds. If not, all entries of £}
must be negative, which means maxy £} = —§~"4(5~¢ — 1). We then have

uTgX(LX,LY),z Z 67(2n+2)d+1 _ 5d(57d _ 1) > ti( (1)

(6]

and thus Property 5 is proved for all cases (and symmetrically for Property 6).

3.3 PROOF OF LEMMA

This proof very closely follows the proof shown in Yun et al, with a few small changes. The first layer used to map all invalid
entries to strictly negative numbers becomes

Z = Z — (M =Dy (¢X (u” Z%) + ¥ (uTZ7)) )

where M is the maximum value of the image of g.(G3, G¥) and

o te gt Y]
o () = {1 t¢ [th tX]

l »%r

v O tety, Y]
M)‘{l g Y]

This layer is applied to both X and Y, and ensures that if either X or Y contain invalid elements, the entirety of both sets
are mapped to negative values. The next d layers, which map all negative entries to the zero matrix, remain unchanged and
are applied again to both X and Y.



The remaining layers must now map gX (L~, LY) to A¥ and g¥ (L%, LY) to AY . In a similar fashion to Yun et al, we add
O ((n +m)(1/8)4™*+m) /(nlm!)) feedforward layers, each of which maps one value of u gX (LY, LY ) oru™g¥ (L*, L")
to the correct output while leaving the others unaffected. For a given value of u” X (L, LY"). ; these layers take the form:

2% 25 4 (A )y — gX (LY 1Y), ) 0% (w7 2% — T X (DX, 1Y) 517

2 2%+ ((AY).g — oY (X, LY).5) 07 («7 2" —u gf (L%, 1), 1)

wherein
s 0t ooz [0 < o 2ort 2 602
Sl =22 <t < 622 )1 et/ <t < 6722
If Z = g.(LX,LY) where LX is not a permutation of L* and LY is not a permutation of LY, then

¢ (uTZ —uTgX(LX, EY);JIZ> = 0 and Z is unchanged. If on the other hand L is a permutation of LX and
LY is a permutation of LY, with LY, = LX, then ¢* (uTZX — T gX (LX, EY);,JJZ) = (eD)T and gX(LX,LY) is
mapped to (AY). ;. Thus, this layer maps gX (L, LY). ; to the correct output for the specific inputs LX, LY (or permuta-

tions thereof), and does not affect any other inputs. By stacking O ((n 4+ m)(1/ §)dntm) / (n!m!)) of these layers together,
we achieve the correct output for any possible inputs LX, LY .
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