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A ORGANIZATION OF THE SUPPLEMENTARY

The supplementary is organized as follows. We recall the DSB algorithm for unconditional simulation from De Bortoli et al.
[2021] in Appendix B. The proofs of our propositions are given in Appendix C. In Appendix D, we give details on the
loss functions we use to train CDSB. A continuous-time version of the conditional time-reversal and conditional DSB is
presented in Appendix E. The forward-backward technique used in our experiments is detailed in Appendix F. Finally, we
provide experimental details and guidelines in Appendix G.

B DIFFUSION SCHRÖDINGER BRIDGE

We recall here the DSB algorithm introduced by De Bortoli et al. [2021] which is a numerical approximation of IPF1.

Algorithm 2 Diffusion Schrödinger Bridge [De Bortoli et al., 2021]

1: for n ∈ {0, . . . , L} do
2: while not converged do
3: Sample {Xj

k}
N,M
k,j=0, where Xj

0 ∼ pdata, and
Xj

k+1 = Fϕn(k,Xj
k) +

√
2γk+1Z

j
k+1

4: Compute ℓ̂bn(θ
n) approximating (8)

5: θn ← Gradient Step(ℓ̂bn(θ
n))

6: end while
7: while not converged do
8: Sample {Xj

k}
N,M
k,j=0, where Xj

N ∼ pref, and
Xj

k−1 = Bθn(k,Xj
k) +

√
2γkZ̃

j
k

9: Compute ℓ̂fn+1(ϕ
n+1) approximating (9)

10: ϕn+1 ← Gradient Step(ℓ̂fn+1(ϕ
n+1))

11: end while
12: end for
13: Output: (θL, ϕL+1)

In this (unconditional) SB scenario, the transition kernels satisfy qnk|k+1(x|x
′) = N (x;Bθn(k + 1, x′), 2γk+1 Id) and

pnk+1|k(x
′|x) = N (x′;Fϕn(k, x), 2γk+1 Id) where θn is obtained by minimizing

ℓbn(θ) = Epn [
∑

k ∥Bθ(k + 1, Xk+1)−Gn,k(Xk, Xk+1)∥2] (8)

1For discrete measures, IPF is also known as the Sinkhorn algorithm and can be implemented exactly [Peyré and Cuturi, 2019].
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for Gn,k(x, x
′) = x′ + Fϕn(k, x)− Fϕn(k, x′) and ϕn+1 by minimizing

ℓfn+1(ϕ) = Eqn [
∑

k ∥Fϕ(k,Xk)−Hn,k(Xk, Xk+1)∥2] (9)

for Hn,k(x, x
′) = x+Bθn(k+ 1, x′)−Bθn(k+ 1, x). See De Bortoli et al. [2021] for a derivation of these loss functions.

C PROOFS OF PROPOSITIONS

C.1 PROOF OF PROPOSITION 1

Let π̄ such that KL(π̄|p̄) < +∞, which exists since we have that KL(π̄⋆|p̄) < +∞, and π̄0 = pjoin, π̄N =
pjref, where we define the joint forward process p̄(x0:N , y0:N ) := py0(x0:N )p̄obs(y0:N ). Recall that py0(x0:n) :=

p(x0|y0)
∏N−1

k=0 pk+1|k(xk+1|xk) is the forward process starting from the posterior p(x0|y0), and p̄obs(y0:N ) :=

pobs(y0)
∏N−1

k=0 δyk
(yk+1) is the extended y-process. Since KL(π̄|p̄) < +∞ we have using the transfer theorem [Kullback,

1997, Theorem 2.4.1] that KL(π̄obs|p̄obs) < +∞, where π̄obs(y0:N ) :=
∫
(Rd)N

π̄(x0:N , y0:N )dx0:N . In addition, using the
chain rule for the Kullback–Leibler divergence, see [Léonard, 2014, Theorem 2.4], we get that

KL(π̄obs|p̄obs) = KL(π̄obs,0|pobs) +
∫
Y KL(π̄obs|0|p̄obs|0)pobs(y)dy < +∞,

where p̄obs|0 =
∏N−1

k=0 δyk
(yk+1) and therefore π̄obs|0 = p̄obs|0. Since we also have that π̄obs,0 = pobs we get that π̄obs = p̄obs.

Hence, letting πc be the kernel such that π̄ = πc ⊗ p̄obs we have using [Léonard, 2014, Theorem 2.4] that

KL(π̄|p̄) =
∫
Y KL

(
πc
y|py

)
pobs(y)dy. (10)

In addition, we have π̄0 = πc
0 ⊗ pobs = pjoin. Similarly, we have π̄N = πc

N ⊗ pobs = pjref. Hence, πc
y,0 = p(·|y) and

πc
y,N = pref, pobs-almost surely. Let π̄⋆ = π⋆,c ⊗ p̄obs be the minimizer of (5) and π̂c be the minimizer of (4). Then, we have

that π̄ = π̂c ⊗ p̄obs satisfies KL(π̄⋆|p̄) ≤ KL(π̄|p̄). Using (10), we have that E[KL
(
π⋆,c
Y |pY

)
] ≤ E[KL (π̂c

Y |pY )]. But we
have that E[KL (π̂c

Y |pY )] ≤ E[KL
(
π⋆,c
Y |pY

)
] since π̂c is the minimizer of (4). Using the uniqueness of the minimizer of

(4) we have that π⋆,c = π̂c, which concludes the proof.

C.2 PROOF OF PROPOSITION 2

Let n ∈ N and q̄ be such that KL(q̄|p̄n) < +∞ and q̄N = pjref (note that the existence of such a distribution is ensured since
KL(pjoin ⊗ pjref|p̄n0,N ) < +∞). Using the chain rule for the Kullback–Leibler divergence, see [Léonard, 2014, Theorem 2],
we have

KL(q̄|p̄n) = KL (q̄obs|p̄obs) +
∫
YN+1 KL(q̄|obs|p̄n|obs)dq̄obs(y0:N ), (11)

where q̄obs =
∫
XN+1 q̄(x0:N , y0:N )dx0:N and q̄|obs and p̄n|obs are the conditional distribution of q̄, respectively p̄n w.r.t. to

y0:N . Since KL (q̄obs|p̄obs) < +∞, we can use [Léonard, 2014, Theorem 2.4] and we have

KL (q̄obs|p̄obs) = KL (q̄obs,N |p̄obs,N ) +
∫
Y KL

(
q̄obs|N |p̄obs|N

)
dq̄obs,N (yN ),

with p̄obs|N (y0:N−1|yN ) =
∏N−1

k=0 δyk+1
(yk). Therefore, since KL (q̄obs|p̄obs) < +∞, we get that q̄obs|N (y0:N−1|yN ) =∏N−1

k=0 δyk+1
(yk). Since q̄obs,N = pobs, we get that q̄(x0:N , y0:N ) = p̄obs(y0:N )q̄(x0:N |y0:N ) = p̄obs(y0:N )q̄(x0:N |yN ),

where we have used that yN = yk for k ∈ {0, . . . , N}, p̄obs(y0:N ) almost surely. Combining this result and (11) we get that

KL(q̄|p̄n) =
∫
YN+1 KL(q̄|obs|p̄n|obs)dpobs(y0:N ) =

∫
Y KL(q̄(·|yN )|p̄n(·|yN ))dpobs(yN ),

Using [Léonard, 2014, Theorem 2], we have that for any yN ∈ Y

KL(q̄(·|yN )|p̄n(·|yN ) = KL(pref|p̄nN (·|yN )) +
∫
Y KL(q̄(·|yN , xN )|p̄n(·|yN , xN ))pref(xN )dxN .

For the IPF solution q̄n, we get that q̄n(·|yN , xN ) = p̄n(·|yN , xN ). Therefore for any x0:N ∈ XN+1 and yN ∈ Y ,

q̄n(x0:N |yN ) = pref(xN )
∏N−1

k=0 p̄nk|k+1(xk|xk+1, yN ).

The proof is similar for any x0:N ∈ XN+1 and y0 ∈ Y , we have

p̄n+1(x0:N |y0) = p(x0|y0)
∏N−1

k=0 q̄nk+1|k(xk+1|xk, y0).



C.3 PROOF OF PROPOSITION 3

Using [Léger, 2021, Corollary 1], we get that for any n ∈ N with n ≥ 1

KL(π̄n
0 |pjoin) + KL(π̄n

N |pjref) ≤
2

n
KL(π̄⋆|p̄). (12)

Similarly to Proposition 2, we have that for any n ∈ N, there exists a Markov kernel πc,n such that π̄n = p̄obs ⊗ πc,n. Recall
that there exists a Markov kernel πc,⋆ such that π̄⋆ = p̄obs ⊗ πc,⋆ and that p̄ = p̄obs ⊗ py. Hence, using [Léonard, 2014,
Theorem 2.4], we get that for any n ∈ N,

KL(π̄n
0 |pjoin) = E[KL(πc,n

Y,0|p(·|Y ))], KL(π̄n
N |pjref) = E[KL(πc,n

Y,N |pref)]. (13)

Similarly, we have that
KL(π̄⋆|p̄) = E[KL(πc,⋆

Y |pY )]. (14)

We conclude the proof upon combining (12), (13) and (14).

D DETAILS ON THE LOSS FUNCTIONS

In this section, we simplify notation and write Y for all the random variables Y0, Y1, ..., YN as they are all equal almost surely
under p̄n and q̄n, similarly to Section 4. In Section 4, the transitions satisfy q̄nk|k+1(x|x

′, y) = N (x;By
θn(k+1, x′), 2γk+1 Id)

and p̄nk+1|k(x
′|x, y) = N (x′;Fy

ϕn(k, x), 2γk+1 Id) where θn is obtained by minimizing

ℓbn(θ) = Ep̄n [
∑

k ∥BY
θ (k + 1, Xk+1)−GY

n,k(Xk, Xk+1)∥2]

for Gy
n,k(x, x

′) = x′ + Fy
ϕn(k, x)− Fy

ϕn(k, x′) and ϕn+1 by minimizing

ℓfn+1(ϕ) = Eq̄n [
∑

k ∥FY
ϕ (k,Xk)−HY

n,k(Xk, Xk+1)∥2]

for Hy
n,k(x, x

′) = x+By
θn(k + 1, x′)−By

θn(k + 1, x). We justify these formulas by proving the following result which is
a straightforward extension of De Bortoli et al. [2021]. We recall that for any n ∈ N, k ∈ {0, . . . , N}, xk, xk+1 ∈ Rd and
y ∈ Y , bn,yk+1(xk+1) = −fn,y

k (xk+1) + 2∇ log p̄nk+1(xk+1|y) and fn+1,y
k (xk) = −bn,yk+1(xk) + 2∇ log q̄nk (xk|y).2

Proposition 4. Assume that for any n ∈ N and k ∈ {0, . . . , N − 1}, q̄k(·|y) and p̄k(·|y) are bounded and

q̄nk|k+1(xk|xk+1, y) = N (xk;B
n,y
k+1(xk+1), 2γk+1 Id), p̄

n
k+1|k(xk+1|xk, y) = N (xk+1;F

n,y
k (xk), 2γk+1 Id),

with Bn,y
k+1(x) = x + γk+1b

n,y
k+1(x), F

n,y
k (x) = x + γk+1f

n,y
k (x) for any x ∈ Rd. Then we have for any n ∈ N and

k ∈ {0, . . . , N − 1}

Bn
k+1 = argminB∈L2(Rd×Y,Rd) Ep̄n [∥B(Xk+1, Y )−GY

n,k(Xk, Xk+1)∥2], (15)

Fn+1
k = argminF∈L2(Rd×Y,Rd) Eq̄n [∥F(Xk, Y )−HY

n,k(Xk, Xk+1)∥2], (16)

Gy
n,k(x, x

′) = x′ + Fn,y
k (x)− Fn,y

k (x′), Hy
n,k(x, x

′) = x+Bn,y
k+1(x

′)−Bn,y
k+1(x).

Proof. We only prove (15) since the proof (16) is similar. Let n ∈ N and k ∈ {0, . . . , N − 1}. For any xk+1 ∈ Rd we have

p̄nk+1(xk+1|y) = (4πγk+1)
−d/2

∫
Rd p̄

n(xk|y) exp[−∥Fn,y
k (xk)− xk+1∥2/(4γk+1)]dxk,

with Fn,y
k (xk) = xk + γk+1f

n,y
k (xk). Since p̄nk > 0 is bounded using the dominated convergence theorem we have for any

xk+1 ∈ Rd

∇xk+1
log p̄nk+1(xk+1|y) =

∫
Rd(F

n,y
k (xk)− xk+1)/(2γk+1) p̄k|k+1(xk|xk+1, y)dxk.

Therefore we get that for any xk+1 ∈ Rd

bn,yk+1(xk+1) =
∫
Rd(F

n,y
k (xk)− Fn,y

k (xk+1))/γk+1 p̄k|k+1(xk|xk+1, y)dxk.

2We should have conditioned w.r.t. yN and y0 but since y0 = y1 = · · · = yN under pobs we simply conditioned by y which can be
any of these values.



This is equivalent to

Bn,y
k+1(xk+1) = E[Xk+1 + Fn,Y

k (Xk)− Fn,Y
k (Xk+1)|Xk+1 = xk+1, Y = y],

Hence, we get that

Bn
k+1 = argminB∈L2(Rd×Y,Rd) Ep̄n [∥B(Xk+1, Y )− (Xk+1 + Fn,Y

k (Xk)− Fn,Y
k (Xk+1))∥2],

which concludes the proof.

E CONTINUOUS-TIME VERSIONS OF CSGM AND CDSB

In the following section, we consider the continuous-time version of CSGM and CDSB. The continuous-time dynamics we
recover can be seen as the extensions of the continuous-time dynamics obtained in the unconditional setting, see Song et al.
[2021], De Bortoli et al. [2021].

E.1 NOTATION

We start by introducing a few notations. The space of continuous functions from [0, T ] to Rd × Y is denoted C =
C([0, T ] ,Rd × Y) and we denote P(C) the set of probability measures defined on C. A probability measure P ∈ P(C)
is associated with a diffusion if it is a solution to a martingale problem, i.e. P ∈ P(C) is associated with dXt =
b(t,Xt)dt+

√
2dBt if for any φ ∈ C2

c(Rd,R), (Zφ
t )t∈[0,T ] is a P-local martingale, where for any t ∈ [0, T ]

Zφ
t = φ(Xt)−

∫ t

0
As(φ)(Xs)ds, At(φ)(x) = ⟨b(t, x),∇φ(x)⟩+∆φ(x).

Here C2
c(Rd,R) denotes the space of twice differentiable functions from Rd to R with compact support. Doing so, P is

uniquely defined up to the initial distribution P0. Finally, for any P ∈P(C), we introduce PR the time reversal of P, i.e. for
any A ∈ B(C) we have PR(A) = P(AR) where AR = {t 7→ ω(T − t) : ω ∈ A}.

E.2 CONTINUOUS-TIME CSGM

Recall that in the unconditional setting, we consider a forward noising dynamics (Xt)t∈[0,T ] initialized with X0 ∼ pdata

and satisfying the following Stochastic Differential Equation (SDE) dXt = −Xtdt+
√
2dBt, i.e. an Ornstein–Uhlenbeck

process. In this case, under entropy condition on (Xt)t∈[0,T ] (see Cattiaux et al. [2021] for instance) we have that the time-
reversal process (X̃t)t∈[0,T ] = (XT−t)t∈[0,T ] also satisfy an SDE given by dX̃t = {X̃t + 2∇ log pT−t(X̃t)}dt+

√
2dBt,

where pt is the density of Xt w.r.t. the Lebesgue measure, and (X̃t)t∈[0,T ] is initialized with X̃0 ∼ L(XT ), the law
of XT of density qT . Using the geometric ergodicity of the Ornstein–Uhlenbeck process, L(XT ) is close (w.r.t. to the
Kullback–Leibler divergence for instance) to pref = N (0, Id). Hence, we obtain that considering (Zt)t∈[0,T ] such that
Z0 ∼ N (0, Id) and dZt = {Zt + 2∇ log pT−t(Zt)}dt+

√
2dBt, ZT is approximately distributed according to pdata. The

Euler–Maruyama discretization of (Zt)t∈[0,T ] is the SGM used in existing work.

In the conditional setting, we consider the following dynamics dXt = −Xtdt +
√
2dBt and dYt = 0, where

(X0,Y0) ∼ pjoin. Note that we have Yt = Y0 for all t ∈ [0, T ]. Using the ergodicity of the Ornstein–
Uhlenbeck process, we get that L(XT ,Yt) is close (w.r.t. to the Kullback–Leibler divergence for instance) to pjref.
Let (X̃t, Ỹt)t∈[0,T ] = (XT−t,YT−t)t∈[0,T ]. We have that dX̃t = {X̃t + 2∇ log pT−t(X̃t|Ỹt)}dt +

√
2dBt and

dỸt = 0 with X̃0, Ỹ0 ∼ L(XT ,YT ). Hence, we obtain that considering (Zt)t∈[0,T ] such that (Z0,Y0) ∼ pjref and
dZt = {Zt +2∇ log pT−t(Zt|Y0)}dt+

√
2dBt, ZT is approximately distributed according to pdata. The Euler–Maruyama

discretization of (Zt,Yt)t∈[0,T ] is the conditional SGM.

E.3 CONNECTION WITH NORMALIZING FLOWS AND ESTIMATION OF THE EVIDENCE

It has been shown that SGMs can be used for log-likelihood computation. Here, we further show that they can be used to
estimate the evidence log p(yobs) when g(yobs|x) can be computed pointwise. This is the case for many models considered
in the diffusion literature, see for instance Kadkhodaie and Simoncelli [2021], Kawar et al. [2021, 2022]. Indeed, we have



that for any x ∈ Rd, log p(yobs) = log g(yobs|x) + log p(x) − log p(x|yobs). The term log p(x) can be estimated using
an unconditional SGM whereas the term log p(x|yobs) can be estimated using a CSGM. Note that both conditional and
unconditional SGM can be trained simultaneously adding a “sink” state to Y , i.e. considering Y ∪ {∅}, see Ho and Salimans
[2021] for instance.

We briefly explain how one can compute log p(x|yobs) and refer to Song et al. [2021] for a similar discussion in the
unconditional setting. Recall that the forward noising process is given by dXt = −Xtdt+

√
2dBt and dYt = 0, where

(X0,Y0) ∼ pjoin. We introduce another process (X̂t, Ŷt)t∈[0,T ] with deterministic dynamics which has the same marginal
distributions, i.e. L(XT ,YT ) = L(X̂T , ŶT ). This process is defined by dX̂t = {−X̂t−∇ log pt(X̂t|Ŷt)}dt and dŶt = 0

with (X̂0, Ŷ0) ∼ pjoin. As one has d log pt(X̂t|Ŷt) = div(−X̂t −∇ log pt(X̂t|Ŷt))dt, we can approximately compute
log p(X̂0|Ŷ0) by integrating numerically this Ordinary Differential Equation (ODE). There are practically three sources
of errors, one is the score approximation, one is the numerical integration error and the last one one is due to the fact that
L(X̂T ) is unknown so we use the approximation L(X̂T ) ≈ pref.

E.4 CONTINUOUS-TIME CDSB

In this section, we introduce an IPF algorithm for solving CSB problems in continuous-time. The following results are a
generalization to the conditional framework of the continuous-time results of De Bortoli et al. [2021]. The CDSB algorithm
described in Algorithm 1 can be seen as a Euler–Maruyama discretization of this IPF scheme combined to neural network
approximations of the drifts. Let P ∈P(C) be a given reference measure (thought as the continuous time analog of p̄). The
dynamical continuous formulation of the SB problem can be written as follows

Π⋆ = argmin {KL(Π|P) : Π ∈P(C), Π0 = pjoin, ΠT = pjref} .

We define the IPF (Πn)n∈N such that Π0 = P and associated with dXt = −Xt +
√
2dBt and dYt = 0, with (X0,Y0) ∼

pjoin. Next for any n ∈ N we define

Π2n+1 = argmin
{
KL(Π|Π2n) : Π ∈P(C), ΠT = pjref

}
,

Π2n+2 = argmin
{
KL(Π|Π2n+1) : Π ∈P(C), Π0 = pjoin

}
.

The following result is the continuous counterpart of Proposition 2.

Proposition 5. Assume that pN , pref > 0, H(pref) < +∞ and
∫
Rd | log pN |0(xN |x0)|pdata(x0)pref(xN ) < +∞. In addition,

assume that there exist M ∈ P(C), U ∈ C1(Rd,R), C ≥ 0 such that for any n ∈ N, x ∈ Rd, KL(Πn|M) < +∞,
⟨x,∇U(x)⟩ ≥ −C(1 + ∥x∥2) and M is associated with (Xt,Yt)t∈[0,T ] such that

dXt = −∇U(Xt)dt+
√
2dBt, dYt = 0 (17)

with X0 distributed according to the invariant distribution of (17). Then, for any n ∈ N we have:

(a) (Π2n+1)R is associated with (X2n+1
t ,Y2n+1

t )t∈[0,T ] such that dX2n+1
t = bnT−t(X

2n+1
t ,Y2n+1

t )dt +
√
2dBt and

dY2n+1
t = 0 with (X2n+1

0 ,Y2n+1
0 ) ∼ pjref;

(b) Π2n+2 is associated with dX2n+2
t = fn+1

t (X2n+2
t ,Y2n+2

t )dt+
√
2dBt with (X2n+2

0 ,Y2n+2
0 ) ∼ pjoin;

where for any n ∈ N, t ∈ [0, T ], x ∈ Rd and y ∈ Y , bnt (x, y) = −fn
t (x, y) + 2∇ log pnt (x|y), fn+1

t (x, y) = −bnt (x, y) +
2∇ log qnt (x|y), with f0

t (x) = −x, and pnt (·|y), qnt (·|y) the densities of Π2n
t|y and Π2n+1

t|y .

Proof. The proof of this proposition is a straightforward extension of [De Bortoli et al., 2021, Proposition 6].

We have seen in Appendix E.3 that it is possible to use CSGM to evaluate numerically the evidence when g(yobs|x) can
be computed pointwise. The same strategy can be applied to both DSB and CDSB; see [De Bortoli et al., 2021, Section
H.3] for details for DSB. In both cases, there exists an ordinary differential equation admitting the same marginals as the
diffusion solving the SB, resp. the CSB, problem. By integrating these ODEs, we can obtain log p(x) and log p(x|yobs) for
any x and thus can compute the evidence. Contrary to SGM and CSGM, the terminal state of the diffusion is exactly equal
to the reference measure by design. So practically, we only have two instead of three sources of errors for SGM/CSGM: one
is the drift approximation, one is the numerical integration error.



F FORWARD-BACKWARD SAMPLING

We detail in this section the forward-backward sampling approach and its connection with Spantini et al. [2022] when using an
unconditional pref. In Spantini et al. [2022], it is proposed to first learn a deterministic transport map U(x, y) : X×Y → X×Y
from (X,Y ) ∼ pjoin to pjref, then transport back the X-component through S(·, yobs)−1 where S : X × Y → X is the
X-component of U . In other words, this is to say sampling X̂pos ∼ p(x|yobs) corresponds to the two-step transformation

X̂ ref, Ŷ ref = U(X,Y ), X̂pos = S(·, yobs)−1(X̂ ref). (18)

The proposed CSB (5) can be thought of as the SB version of this idea. We learn a stochastic transport map from pjoin(x, y) to
pref(x, y). The CSB π⋆ defines, when conditioned on x0 and yobs, a (stochastic) transport map πc,⋆

yobs(xN |x0) from p(x0|yobs)

to pref(xN ); and, when conditioned on xN and yobs, a (stochastic) transport map πc,⋆
yobs(x0|xN ) from pref(xN ) to p(x0|yobs).

In practice, we learn using CDSB separate half-bridges p̄L(x1:N |x0, y
obs) and q̄L(x0:N−1|xN , yobs).

Spantini et al. [2022] remarked that, since the estimator S may be imperfect, X̂ ref may not have distribution pref exactly. In
this case, (18) allows for the cancellation of errors between S and S(·, yobs)−1.

We can exploit a similar idea in the CSB framework by defining an analogous forward-backward sampling procedure

X̂N ∼ p̄LN |0(xN |X,Y ), X̂0 ∼ q̄L0|N (x0|X̂N , yobs). (19)

As q̄L is the approximate time reversal of p̄L, (19) exhibits similar advantages as (18) when the half-bridge p̄L(x0:N |yobs) is
only an approximation to the CSB solution. While the forward and backward processes are stochastic and are not exact
inverses of each other, using this forward-backward sampling may inevitably lead to increased variance. However, we found
in practice that this forward-backward sampling procedure can still improve sampling quality (see e.g. Figures 2, G.4).

G EXPERIMENTAL DETAILS

G.1 EXPERIMENTAL SETUP

Network parameterization. Two parameterizations are possible for learning F and B. In the main text, we described
one parameterization in which we parameterize F,B directly as Fy

ϕ(k, x),B
y
θ(k, x) and learn the network parameters ϕ, θ.

Figure G.1: Test set PSNR and
SSIM against the number of train-
ing steps for MNIST 4x SR.

Alternatively, we can parameterize Fy(k, x) = x+ γk+1f
y
ϕ(k, x),B

y(k + 1, x) =

x + γk+1b
y
θ(k + 1, x) and learn the network parameters ϕ, θ for fyϕ ,b

y
θ instead.

For the 2D and BOD examples, we use a fully connected network with positional
encodings as in De Bortoli et al. [2021] to learn fyϕ ,b

y
θ , with y as an additional

input by concatenation with x. For the MNIST and CelebA examples, we follow
earlier work and utilize the conditional U-Net architecture in Dhariwal and Nichol
[2021]. Since residual connections are already present in the U-Net architecture,
we can adopt the Fy

ϕ,B
y
θ parameterization. In our experiments, we experiment with

both parameterizations and find that the fyϕ ,b
y
θ parameterization is more suitable for

neural network architectures without residual connections. On the other hand, both
parameterizations obtained good results when using the U-Net architecture. For
consistency, all reported image experiment results use the Fy

ϕ,B
y
θ parameterization,

and we leave the choice of optimal parameterization as future research.

Network warm-starting. As observed by De Bortoli et al. [2021], since the net-
works at IPF iteration n are close to the networks at iteration n− 1, it is possible to
warm-start ϕn, θn at ϕn−1, θn−1 respectively. Empirically, we observe that this ap-
proach can significantly reduce training time at each CDSB iteration. Compared to
CSGM, we usually observe immediate improvement in Bθ2 during CDSB iteration
2 when the network is warm-started at θ1 after CDSB iteration 1 (see e.g. Fig-
ure G.1). As CSGM corresponds to the training objective of θ1 at CDSB iteration 1,
this shows that the CDSB framework is a generalization of CSGM with observable
benefits starting CDSB iteration 2.



MCMC CDSB CDSB-FB CDSB-C MGAN IT

Mean
x1 .075 .066±.010 .068±.010 .072±.007 .048 .034
x2 .875 .897±.019 .897±.017 .891±.013 .918 .902

Var
x1 .190 .184±.007 .190±.007 .188±.005 .177 .206
x2 .397 .387±.006 .391±.006 .393±.005 .419 .457

Skew
x1 1.94 1.90±.038 2.01±.041 1.90±.028 1.83 1.63
x2 .681 .591±.018 .628±.018 .596±.014 .630 .872

Kurt
x1 8.54 7.85±.210 8.54±.239 8.00±.147 7.64 7.57
x2 3.44 3.33±.035 3.51±.041 3.27±.035 3.19 3.88

Table G.1: Estimated posterior moments and their standard deviations for the BOD example. The closest estimates to
MCMC are highlighted in bold.

Conditional initialization. In the main text, we considered joint reference measures of the form pjref(x, y) = pref(x|y)pobs(y)
and simple choices for pref(x|y) such as N (x; y, σ2

ref Id) for image super-resolution. We also explore two more choices for
pref(x|y) in our experiments. The first choice simply replaces the initialization mean from y to a neural network function
µref(y). This neural network can be pre-trained directly to estimate the conditional mean of p(x|y) using standard regression
with MSE loss. In the case of multi-modal p(x|y) such as in the case of image inpainting, we can also train µref(y) to
estimate the conditional mean of pN (xN |y), where xN follows a standard diffusion process. In essence, we can train
µref(y) to facilitate pN (xN |y) ≈ pref(xN |y) and shorten the noising process. Note that the CDSB framework is still useful
in this context since pN (xN |y) may not be well-approximated by a Gaussian distribution, which is precisely the issue
CDSB is designed to tackle. Another class of conditional initialization we consider is the Ensemble Kalman Filter (EnKF),
which is an ensemble-based method approximating linear Gaussian posterior updates. In this case, pref(x|y) is taken to
be N (x;µref(y), diag(σ2

ref(y)) where µref(y), σ
2
ref(y) are the sample mean and variance of the EnKF posterior ensemble.

Intuitively, pref(x|y) is now an approximation of the true posterior p(x|y) using linear prior-to-posterior mappings, which is
further corrected for non-linearity and non-Gaussianity by the CDSB.

Time step schedule. For the selection of the time step sequence {γk}Nk=1, we follow Ho et al. [2020], Dhariwal and Nichol
[2021] and consider a linear schedule where γ1 = γmin, γN = γmax, and γk = γmin +

k−1
N−1 (γmax − γmin). In this way, the

diffusion step size gets finer as the reverse process approaches π0 = pdata, so as to increase the accuracy of the generated
samples.

G.2 2D SYNTHETIC EXAMPLES

For the 2D examples, we use N = 50 diffusion steps and choose the time step schedule such that γmin = 10−4, γmax = 0.005.
At each IPF iteration, we train the network for 30,000 iterations using the Adam optimizer with learning rate 10−4 and a
batch size of 100.

G.3 BIOCHEMICAL OXYGEN DEMAND MODEL

For the BOD example, we again use N = 50 diffusion steps with time schedule γmin = γmax = 0.01. For CDSB-C, we use
the shortened time schedule γmin = γmax = 0.005 and a neural network regressor of the same architecture (with x and k
components removed) as the conditional initialization. The batch size and optimizer settings are the same as above.

We report the estimated posterior moments as well as their standard deviation in Table G.1. We further plot the convergence
of RMSE for each of the statistics in Figure G.2. As can be observed, IPF converges after about 20 iterations, and errors for
all statistics are improved compared with CSGM (corresponding to IPF iteration 1). Using conditional initialization also
helps with localizing the problem and reduces estimation errors especially in early iterations.

G.4 IMAGE EXPERIMENTS

For all image experiments, we use the Adam optimizer with learning rate 10−4 and train for 500k iterations in total. Since
both F and B needs to be trained, the training time is approximately doubled for CDSB. Following Song and Ermon
[2020], we make use of the exponential moving average (EMA) of the network parameters with EMA rate 0.999 at test
time. We use γmin = 5× 10−5 for all experiments unless indicated otherwise and perform a parameter sweep for γmax in



Figure G.2: Convergence of estimated posterior moments with increasing number of CDSB iterations.

{0.005, 0.01, 0.05, 0.1}. The optimal γmax depends on the number of timesteps N and the discrepancy between p(x|y) and
pref. When using large N or conditional pref(x|y), we find γmax can be taken smaller.

G.4.1 MNIST

For the MNIST dataset, we use a U-Net architecture with 3 resolution levels each with 2 residual blocks. The numbers of
filters at each resolution level are 64, 128, 128 respectively. The total number of parameters is 6.6m, and we use batch size
128 for training. Since we observe overfitting on the MNIST training set for all methods, we also apply dropout with p = 0.1
for the MNIST experiments. For each CDSB iteration, 100k or 250k training steps are used, corresponding to L = 5 or
L = 2 CDSB iterations in total, which we find to be sufficient on this simpler dataset.

For N = 10, CDSB generates a minibatch of 100 images in approximately 0.8 seconds when run on a GTX 1080Ti. As a
baseline comparison, we experimented with the methodology in Kadkhodaie and Simoncelli [2021] on the same MNIST test
set and find that it gives PSNR/SSIM values of 15.78/0.72 and 12.49/0.47 for super-resolution and inpainting respectively
(c.f. Table 2). Around 250 iterations are required for generating each image, or approximately 1 second generation time for 1
image on a GTX 1080Ti. In comparison, the CDSB methodology is much more efficient and achieves better image quality
on both tasks.

G.4.2 CelebA 64x64

For the CelebA dataset, we use a U-Net architecture with 4 resolution levels each with 2 residual blocks and self-attention
blocks at 16× 16 and 8× 8 resolutions. The numbers of filters at each resolution level are 128, 256, 256, 256 respectively.
The total number of parameters is 39.6m, and we use batch size 128 for training. For each CDSB iteration, 10k or 25k
training steps are used, corresponding to L = 50 or L = 20 CDSB iterations in total. For smaller γmax, we find that higher
number of CDSB iterations are beneficial.

For N = 20, 50, CDSB generates a minibatch of 100 images in approximately 12, 30 seconds when run on a Titan RTX.
As a baseline comparison, we find that CDSB-C with N = 20 even outperforms a standard CSGM with N = 200, which
achieves PSNR/SSIM values of approximately 20.98/0.62. To ensure that conditional initialization is not the sole contributor
to the gain in sample quality, we further compare CDSB-C (N = 50) to a CSGM (N = 50) with conditional initialization.
The forward noising process is also modified to the discretized Ornstein–Uhlenbeck process targeting pref(x|y) as described
in Section 5.2. This modification achieved PSNR/SSIM values of 20.84/0.59 (c.f. Table 2), which indicates that the CDSB
framework presents larger benefits in addition to conditional initialization.

As another baseline comparison, the SNIPS algorithm [Kawar et al., 2021] reports PSNR of 21.90 for 8 CelebA test images
and, when averaging across 8 predicted samples for each of the images, a PSNR of 24.31. The algorithm requires 2500
iterations for image generation, or approximately 2 minutes for producing 8 samples when run on an RTX 3080 as reported
by Kawar et al. [2021]. On the same test benchmark, CDSB with N = 50 achieved PSNR values of 21.87 and 24.20
respectively in 3.1 seconds, thus achieving similar levels of sample quality using much less iterations. Furthermore, the
SNIPS algorithm is applicable specifically for tractable linear Gaussian inverse problems, whereas CDSB is more general
and does not rely on tractable likelihoods.



G.4.3 CelebA 160x160

We adopt the official implementation and pre-trained checkpoints of SRFlow3 and make use of a higher resolution version
of CelebA (160x160) following Lugmayr et al. [2020] in only Section 7.3.2. For CSGM and CDSB, we use a U-Net
architecture with 4 resolution levels each with 2 residual blocks. The numbers of filters at each resolution level are 128, 256,
256, 512 respectively. The total number of parameters is 71.0m while SRFlow has total number of parameters 40.0m. We
use a batch size of 32 for training the CSGM and CDSB models.

When pref(x|y) is defined by SRFlow, it is infeasible to use a discretized Ornstein–Uhlenbeck process targeting pref(x|y)
as in Section 5.2. We instead use a discretized Brownian motion for pk+1|k, or equivalently the Variance Exploding (VE)
SDE [Song and Ermon, 2019, Song et al., 2021]. This has the interpretation as a entropy regularized Wasserstein-2 optimal
transport problem as discussed in Section 3.2, i.e. CDSB-C seeks to minimize the total squared transport distance between
SRFlow pref(x|y) and the true posterior p(x|y). We use the time schedule γmin = γmax = 0.005 with comparatively higher
γmin in order to accelerate convergence under N = 10 timesteps. We provide additional samples from SRFlow, CDSB-C as
well as CSGM-C in Figures G.8, G.9, G.10.

G.5 OPTIMAL FILTERING IN STATE-SPACE MODELS

For the sake of completeness, we first give details of the Lorenz-63 model here. It is defined for x ∈ R3 under the following
ODE system

dx[1]

dτ
= σ(x[2]− x[1]),

dx[2]

dτ
= x[1](ρ− x[3])− x[2],

dx[3]

dτ
= x[1]x[2]− θx[3].

We consider the values σ = 10, ρ = 28 and θ = 8/3, which results in chaotic dynamics famously known as the Lorenz
attractor. We integrate this system using the 4th order Runge–Kutta method with step size 0.05. For the state-space model, we
define (Xt)t≥1 as the states (x[1], x[2], x[3]) of the system at regular intervals of δτ = 0.1 with small Gaussian perturbations
of mean 0 and variance 10−4, and (Yt)t≥1 as noisy observations of (Xt)t≥1 with Gaussian noise of mean 0 and variance 4.
More explicitly, the transition density is thus defined for xt = (xt[1], xt[2], xt[3]) ∈ R3 as

f(xt|xt−1) = N (xt;RK4(xt−1, 0.1), 10
−4 Id), g(yt|xt) = N (yt;xt, 4 Id),

where RK4(xt, 0.1) is the 4th order Runge–Kutta operator (with step size 0.05) for the Lorenz-63 dynamics with initial
condition xt and termination time 0.1.

We run the model for 4,000 time steps and perform Bayesian filtering for the last 2,000 time steps. To accelerate the
sequential inference process, we use linear regression in this example to fit F,B with nonlinear feature expansion using
radial basis functions. Similar to Spantini et al. [2022], we experiment with the number of nonlinear features from 1 to 3
RBFs, in addition to the linear feature. We find that as the ensemble size M increases, increasing the number of features is
helpful for lowering filtering errors, suggesting that bias-variance tradeoff is at play.

Since the system’s dynamics are chaotic and can move far from the origin and display different scaling for each dimension,
it is not suitable to choose pref(x) = N (x; 0, Id). Therefore, for CSGM and CDSB, we let pref(x) = N (x;µref, diag(σ2

ref))
where µref, σ

2
ref are the estimated mean and variance of the prior predictive distribution p(xt|yobs

1:t−1) at time t. For CSGM-C
and CDSB-C, we let pref(x|y) = N (x;µref, diag(σ2

ref)) where the estimated posterior mean and variance are returned by
EnKF. Furthermore, we scale the diffusion process’s time step dimensionwise by the variance of the reference measure σ2

ref.
We consider a short diffusion process with N = 20, and a long diffusion process with N = 100. We let γmin = 0.0005 · σ2

ref
and γmax = 0.05 · σ2

ref for the short diffusion process, and reduce γmax by a half for the long diffusion process.

We report the RMSEs between each algorithm’s filtering means and the ground truth filtering means in Table 4. We compute
the ground truth filtering means using a particle filter with M = 106 particles. In addition, we report the RMSEs between
each algorithm’s filtering means and the true states x1:T in Table G.2a, and between each algorithm’s filtering standard
deviations and the ground truth standard deviations in Table G.2b. Similarly, we observe that CDSB and CDSB-C achieve
lower errors than CSGM and EnKF. Interestingly, CSGM-C performs similarly well as CDSB-C for state estimation when
N = 100 steps, but performs worse for standard deviation estimation. In the case where the ensemble size M = 200,
however, when using the long diffusion process we observe occasional large errors for CDSB and CDSB-C. We conjecture
that since CDSB is an iterative algorithm, inevitably small errors in regression can be accumulated. For small ensemble size

3https://github.com/andreas128/SRFlow

https://github.com/andreas128/SRFlow


M 200 500 1000 2000
EnKF .476±.010 .474±.005 .475±.005 .475±.003

CSGM (short) Diverges
CDSB (short) .464±.013 .391±.010 .369±.007 .352±.008

CSGM-C (short) Diverges
CDSB-C (short) .428±.016 .378±.012 .359±.015 .340±.007

CSGM (long) .431±.010 .376±.008 .360±.012 .343±.006
CDSB (long) .582±.328 .370±.012 .348±.006 .333±.006

CSGM-C (long) .434±.057 .367±.011 .346±.008 .336±.004
CDSB-C (long) .660±.310 .368±.016 .344±.010 .331±.006

(a)

M 200 500 1000 2000
EnKF .255±.003 .286±.002 .296±.001 .300±.003

CSGM (short) Diverges
CDSB (short) .203±.005 .167±.003 .150±.002 .137±.002

CSGM-C (short) Diverges
CDSB-C (short) .148±.004 .124±.002 .108±.002 .099±.001

CSGM (long) .204±.005 .163±.008 .140±.002 .129±.001
CDSB (long) .140±.008 .129±.003 .123±.003 .120±.002

CSGM-C (long) .186±.005 .142±.003 .120±.001 .109±.002
CDSB-C (long) .176±.006 .120±.002 .110±.003 .106±.002

(b)

Table G.2: RMSEs over 10 runs between (a) each algorithm’s filtering means and the true states x1:T for N = 20 (short)
and N = 100 (long); (b) each algorithm’s filtering standard deviations and the ground truth filtering standard deviations.
The lowest errors are highlighted in bold.

and large number of diffusion steps, the model may thus be more prone to overfitting. However, for larger ensemble size
M ≥ 500 we do not observe this issue.
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(a) yobs (b) Ground truth

(c) CSGM N = 5 (d) CDSB N = 5 (e) CDSB-C N = 5

(f) CSGM N = 10 (g) CDSB N = 10 (h) CDSB-C N = 10

Figure G.3: Additional samples for the MNIST 4x SR task.



(a) CSGM N = 10 (b) CDSB N = 10

(c) CDSB-FB N = 10 (d) CDSB-C N = 10

Figure G.4: Uncurated conditional samples for the MNIST 14x14 inpainting task. The first two columns correspond to
ground truth, yobs, and the last two columns correspond to the mean and standard deviation of 100 samples.



(a) yobs (b) Ground truth

(c) CSGM N = 20 (d) CDSB N = 20 (e) CDSB-C N = 20

(f) CSGM N = 50 (g) CDSB N = 50 (h) CDSB-C N = 50

Figure G.5: Uncurated samples for the CelebA 4x SR with Gaussian noise task.



(a) yobs (b) Ground truth

(c) CSGM N = 20 (d) CDSB N = 20 (e) CDSB-C N = 20

(f) CSGM N = 50 (g) CDSB N = 50 (h) CDSB-C N = 50

Figure G.6: Uncurated samples for the CelebA 4x SR with Gaussian noise task.



Figure G.7: Uncurated conditional samples using CDSB-C with N = 50 for the CelebA 4x SR with Gaussian noise task.
The first two columns correspond to ground truth, yobs, and the last column corresponds to the mean of the middle 8 samples.



(a) yobs (b) Ground truth

(c) SRFlow (d) CSGM-C N = 10 (e) CDSB-C N = 10

Figure G.8: Additional uncurated samples for the CelebA 8x SR task.



(a) yobs (b) Ground truth

(c) SRFlow (d) CSGM-C N = 10 (e) CDSB-C N = 10

Figure G.9: Additional uncurated samples for the CelebA 8x SR task.



(a) yobs (b) Ground truth

(c) SRFlow (d) CSGM-C N = 10 (e) CDSB-C N = 10

Figure G.10: Additional uncurated samples for the CelebA 8x SR task.
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