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A PROOFS

A.1 THEOREM 1

Proof. This is Thm. 2 of Ben-David et al. [2010a] with added bound on RS(h)−RS(h) by standard uniform convergence
arguments; e.g., Ch. 28.1 of Shalev-Shwartz and Ben-David [2014]. Boole’s Inequality is used to combine bounds.

A.2 THEOREM A (THEOREM 7 OF GERMAIN ET AL. [2020])

Theorem A. [Germain et al., 2020] Let Y be binary, P any distribution over H, and ω > 0. For all δ > 0, w.p. at least
1− δ, for all distributions Q over H,

RT(Q) ≤ ω′(RS(Q) + |dS(Q)− dT (Q)|) + |eS(Q)− eT(Q)|+ 2ωKL(Q||P)−ln(δ/3)
mω′ + 2(ω′ − 1) (25)

where ω′ = 2ω/(1− exp(−2ω)) and for Hi ∼ (Q)i, (X,Y ) ∼ S we have

eS(Q)
def
= E[(1− 1{H1(X)}{Y })(1− 1{H2(X)}{Y })],

dS(Q)
def
= E[1− 1{H1(X)}{H2(X)}].

(26)

In comparison to Thm. 1, the absolute difference in disagreement d is most similar to the H∆H-divergence and the absolute
difference in joint-error e is most similar to the adaptability λ [Germain et al., 2020]. For this reason, in our discussion in
Section 2, we refer to the former as the “divergence” and the latter as the “adaptability”.

Proof. As noted, this is a simplification of Thm. 7 of Germain et al. [2020]. We set ω = a in the original notation and use
the fact that ω/(1− exp(−ω)) is increasing for ω > 0.

A.3 THEOREM 2

Before diving into the proof, we setup some helpful notation and Lemmas.

A.3.1 Notation

Frequently in our proofs, we use the error gap, defined for any distributions S,T and hypothesis h

∆h(S,T)
def
= |RS(h)−RT(h)|. (27)
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By the identification in Eq. (3), we observe that ∆h(S, T ) is also well-defined for any random samples S and T . Also,
using the usual definition of the Gibbs risk, ∆Q(S,T) is well-defined for any distribution Q over a hypothesis space H.
Occasionally, we also use two-subscripts on the error-gap ∆. The intended meaning is intuitive:

∆q,p(S,T)
def
= |RS(q)−RT(p)|. (28)

This notation will be especially useful in proofs since ∆q,p(S,T) obeys a triangle-inequality with respect to the subscripts
and arguments. Further, any bound on ∆Q(S,T) trivially yields a PAC-Bayesian adaptation bound for the Gibbs predictor Q
by definition of the absolute value.

As another short-hand in proofs, we frequently use the following more evocative expressions for the indicator function:

1[a = b]
def
= 1{a}{b}; 1[a ̸= b]

def
= 1− 1{a}{b}. (29)

Now, we can proceed with the employed Lemmas.

A.3.2 Lemmas

In this section, we build to the proof of Theorem 2. These results consist of most of the “real” work in proving the result.
They range in degree of novelty and we provide some exposition on this point here. Lemma 1 is an adaptation of the
triangle-inequality for 01-loss [Crammer et al., 2007, Ben-David et al., 2007] to the multiclass setting. Similarly, Lemma 2
is an adaptation of the main inequality of Ben-David et al. [2010a] to the multiclass setting. The former requires some
work to verify the logic, while our overall strategy for the latter is similar to the binary case. Next, Lemma 3 uses the
identification in Eq. (3) to apply Lemma 2 to the random samples S and T . While it is a simple insight, it is extremely
important, since it enables us to introduce the sample-dependent adaptability λ̃. The next result, Lemma 4, is well-known in
PAC-Bayes. Meanwhile, the final result, Lemma 5, is a new result which allows us to apply Lemma 3 to Gibbs predictors.
When broken down in this manner, as is our intention, the individual pieces that build to our bound may appear simple. Still,
it is important to remember that PAC-Bayesian bounds have never previously been combined with multiclass variants of
the results of Ben-David et al. [2007, 2010a]. After some trial and error, we’ve found our primary innovations – the use of
sample-independent adaptability, along with Lemma 5 – are vital to introducing the desired non-uniform notion of sample
complexity. In any case, we now proceed by stating and proving each of the discussed Lemmas.

Lemma 1. For any (h, h′) ∈ H2 and any (x, y) ∈ X × Y ,

1[h(x) ̸= y] ≤ 1[h(x) ̸= h′(x)] + 1[h′(x) ̸= y] (30)

and
1[h(x) ̸= h′(x)] ≤ 1[h′(x) ̸= y] + 1[y ̸= h(x)]. (31)

Proof. We begin with Eq. (30). We use proof by exhaustion. If h(x) = y, then the LHS is 0 and the RHS will always be
non-negative so the equation is true. If h(x) ̸= y and h(x) ̸= h′(x), then the equation evaluates to 1 ≤ 1 + c for c ≥ 0
which is true. If h(x) ̸= y and h(x) = h′(x), then h′(x) ̸= y, and 1 ≤ 1 which is true. This concludes the argument.

Next, we consider Eq. (31). Again, we use proof by exhaustion. If h(x) = h′(x), the LHS is 0. If h(x) ̸= h′(x) and
h(x) = y, we have h′(x) ̸= y and the equation evaluates to 1 ≤ 1 which is true. If h(x) ̸= h′(x) and h(x) ̸= y, it evaluates
to 1 ≤ 1 + c for c ≥ 0 which is true and concludes the argument.

Note, one observation is that the function d̃(y, y′)
def
= 1[y′ ̸= y] for any arguments y, y′ ∈ Y is identical to a well-known

function called the trivial metric or the discrete metric. As implied by the name, the tuple (Y, d̃) forms a metric space, and
subsequently, Lemma 1 above is a simple consequence of this fact. Nonetheless, we maintain the proof above to keep our
discussion relatively self-contained.

Lemma 2. For any distributions D1 and D2 over X × Y , for any h ∈ H

RD1
(h) ≤ RD2

(h) + dCh
((D1)X , (D2)X) + min

η∈H

{
RD1

(η) +RD2
(η)
}

(32)

where Ch = H∆H or Ch = h∆H and (Di)X is the X -marginal of Di.1

1In a formal sense, (Di)X is the pushforward distribution Di ◦ π−1of the projection π : X × Y → X defined π(x, y) = x.



Proof. Let D1, D2, and h as assumed.

Recall by Lemma 1 Eq. (30), for any h′ in H and any (x, y) ∈ X × Y

1[h(x) ̸= y] ≤ 1[h(x) ̸= h′(x)] + 1[h′(x) ̸= y]. (33)

Then, by monotonicity and linearity of the expectation, for any choice of h′,

RD1
(h) ≤ E[1[h(X1) ̸= h′(X1)]] +RD1

(h′); X1 ∼ (D1)X

≤ E[1[h(X2) ̸= h′(X2)]] +RD1
(h′) + ξ; X2 ∼ (D2)X

(34)

where

ξ =
∣∣E[1[h(X2) ̸= h′(X2)]]−E[1[h(X1) ̸= h′(X1)]]

∣∣
≤ dCh

((D1)X , (D2)X)) (by definition of supremum, for either choice of Ch).
(35)

Alternatively, by Lemma 1 Eq. (31), for any choice of h′, x, y,

1[h(x) ̸= h′(x)] ≤ 1[h′(x) ̸= y] + 1[y ̸= h(x)]. (36)

Using monotonicty and linearity of the expectation as before, we have

E[1[h(X2) ̸= h′(X2)]] ≤ RD2
(h′) +RD2

(h); X2 ∼ (D2)X . (37)

As the above holds for any h′ ∈ H, select h′ to be minimizer of the quantity RD1(h
′) +RD2(h

′).

This yields the desired result.

Lemma 3. Almost surely, w.r.t samples S and T ,

∀h ∈ H : ∆h(S, T ) ≤ λ̃+ dCh(SX , TX) (38)

where λ̃
def
= minh∈H RS(h) +RT (h) and the bound holds for both Ch = H∆H and Ch = h∆H.

Proof. The statement asserts the following holds with probability 1 according to the random draws of S and T :

∀h ∈ H : ∆h(S, T ) ≤ λ̃+ dCh
(SX , TX) (39)

It is sufficient to show the statement holds for any realization of S and T . Recall, for any realization, S and T themselves
define distributions by the identification in Eq. (3). So, Lemma 2 may be applied. Doing so twice and interchanging the
roles of S and T gives

∀h ∈ H : Rh(S)−Rh(T ) ≤ λ̃+ dCh
(SX , TX) and Rh(T )−Rh(S) ≤ λ̃+ dCh

(SX , TX). (40)

So, the absolute difference between Rh(S) and Rh(T ) is also bounded and we have our result.

Lemma 4. [Maurer, 2004] For any distribution P over H, for any δ > 0,

Pr
(
∀ Q : ∆Q(T,T) ≤

√
KL(Q||P)+ln

√
4m−ln(δ)

2m

)
≥ 1− δ. (41)

Proof. This is the result of Maurer [2004] given below

Pr

(
kl(RT (Q) || RT(Q)) ≤ KL(Q||P)− ln δ + ln

√
4m

m

)
≥ 1− δ, (42)

where the “little” kl is the KL-divergence between Bernoulli distributions parameterized by its arguments. The above bound
implies the stated result by application of Pinsker’s Inequality.

Lemma 5. For any distribution Q, almost surely w.r.t samples S and T ,

∆Q(S, T ) ≤ λ̃+EH [dCH
(SX , TX)] (43)

where λ̃ and CH are defined as in Lemma 3.



Proof. We apply Lemma 3. By Jensen’s Inequality, monotonicity of E, and linearity of E, we have

∆Q(S, T ) ≤ EH [∆H(S, T )] ≤ λ̃+EH [dCH
(SX , TX)] (44)

almost surely. In more details, for any realization of S and T ,

∆Q(S, T ) =
∣∣RQ(S)−RQ(T )

∣∣
=
∣∣E[RS(H)]−E[RT (H)]

∣∣ (H ∼ Q, S fixed, T fixed)

=
∣∣∣E[RS(H)−RT (H)

]∣∣∣ (Linearity of E)

≤ E
[
∆H(S, T )

]
(Jensen’s Inequality)

≤ E
[
λ̃+ dCH

(SX , TX)
]

(Lemma 3 and monotonicity of E)

≤ λ̃+E[dCH
(SX , TX)] (Linearity of E).

A.3.3 Proof

We give the final proof of Theorem 2 below. Admittedly, it is a bit underwhelming, since most of the work has gone into the
Lemmas above. The remaining component we rely on is our notation for the error-gap ∆. By design, this notation exhibits a
triangle-inequality.

Proof. Observe,
∆Q(S,T) ≤ ∆Q(S, T ) + ∆Q(T,T). (45)

To bound the former, we use Lemma 5. To bound the latter, we use Lemma 4. We use Boole’s Inequality to combine to the
desired result.

A.4 THEOREM 3

As noted in the main text, we employ the overall strategy of Ben-David et al. [2010a]. The main distinction in our result
below is the removal of any symmetry assumption on H.

Proof. As before, we show the statement holds for any realization of SX and TX .

Let C = H∆H and expand the divergence as below

dC(SX , TX) = max
φ∈H∆H

∣∣E[φ(X)]−E[φ(X̃)]
∣∣ = max

φ∈H∆H

∣∣Pr(φ(X) = 1)−Pr(φ(X̃) = 1)
∣∣ (46)

where X ∼ SX , X̃ ∼ TX . Note, we substitute max for sup because both SX and TX are finitely supported, and thus, some
φ ∈ C does achieve the maximum. Then, we have

max
φ∈H∆H

∣∣Pr(φ(X) = 1)−Pr(φ(X̃) = 1)
∣∣

= max
φ∈H∆H

max

{
Pr(φ(X) = 1)−Pr(φ(X̃) = 1),

Pr(φ(X̃) = 1)−Pr(φ(X) = 1)

}

= max
φ∈H∆H

max

{
1−Pr(φ(X) = 0)−Pr(φ(X̃) = 1),

1−Pr(φ(X̃) = 0)−Pr(φ(X) = 1)

}

= max


1− min

φ∈H∆H

{
Pr(φ(X) = 0) +Pr(φ(X̃) = 1)

}
,

1− min
φ∈H∆H

{
Pr(φ(X̃) = 0) +Pr(φ(X) = 1)

}
 .

(47)

The first equality follows by definition of absolute value, the second by law of complements, and last because consecutive
applications of the max operation may be interchanged. Taking P,Q,U, V as assumed, the result follows by the definition
of risk; i.e., Eq. (1).



A.5 THEOREM 4

As we are aware, Theorem 4 is the first proposal for approximation of ERM over the class H∆H when H has multiclass
output. Our strategy is to identify an appropriate score-based surrogate expression for any φ ∈ S∆S; i.e., which is positive
where φ returns 1 and negative otherwise. Upon doing so, we can use standard techniques for giving smooth upperbounds to
the 01-loss.

Proof. Let x ∈ X , f ,g ∈ F and suppose f(x) and g(x) have no repeated entries. Recall, for any two sets of non-negative
numbers S1 and S2 the following equality holds2

max{a · b | a ∈ S1, b ∈ S2} = (maxS1) · (maxS2). (48)

From this and the fact that τ is non-negative and order-preserving, we know Aii ≥ Ajk for some i ∈ [C] and all
(j, k) ∈ [C]2 if and only if

i = argmax
ℓ∈C

fℓ(x) = argmax
ℓ∈C

gℓ(x). (49)

Notice, ties are impossible due to the assumed uniqueness of the scores. So, by this same logic, we observe

argmax
ℓ∈C

fℓ(x) ̸= argmax
ℓ∈C

gℓ(x)

iff ∀ i ∈ [C], ∃ (j, k) ∈ [C]2 : Aii < Ajk

iff max
i∈[C]

Aii < max
(j,k)∈[C]2

Ajk

iff 0 < max
(j,k)∈[C]2

Ajk −max
i∈[C]

Aii = z(x)

(50)

So, under the current assumptions, the score z(x) is positive if and only if ŷ = 1 − 1{Ψf (x)}{Ψg(x)} = 1. Using this
fact, it is easy to verify L(z(x), y) ≥ 1[ŷ ̸= y] for each case (ŷ, y) ∈ {(0, 0), (0, 1), (1, 0), (1, 1)}. The loss L is actually a
standard surrogate – i.e., the cross-entropy – multiplied by a constant factor as in Dziugaite and Roy [2017] to turn it into a
propper upperbound on the 01-loss. The main novelty here comes from defining z(x) to be positive whenever ŷ is.

Notice, the inequality holds on all but a set of measure 0, according to D. Thus, monotonicity of E gives the result.

A.6 THEOREM 5

As noted in the main text, Theorem 5 is conceptually similar to a result – in the binary case – given by Kuroki et al. [2019].
Unfortunately, their strategy does not simply extend to the multiclass case: there is a loss of precision due to the increased
degrees of freedom in multiclass classification. As a result, we observe the need to add additional constraints on the labeling
function for the classification problem. Specifically, we introduce the class Υ for use in our reduction. Careful attention is
paid to show the constrained labeling function can be independent of the classifier we wish to learn φ ∈ H, which enables
our appeal to a simple heuristic that is also independent of φ. Otherwise, in simpler formulations, this dependence produces
a more complicated minimization problem.

Proof. We show the statement holds for any realization of SX and TX .

Let h ∈ H arbitrarily and let C = h∆H. We proceed by expanding the divergence:

dC(SX , TX) = max
ν∈h∆H

∣∣Pr(ν(X) = 1)−Pr(ν(X̃) = 1)
∣∣

= max


1− min

ν∈h∆H

{
Pr(ν(X) = 0) +Pr(ν(X̃) = 1)

}
,

1− min
ν∈h∆H

{
Pr(ν(X̃) = 0) +Pr(ν(X) = 1)

}


= max


1− min

φ∈H

{
Pr(h(X) = φ(X)) +Pr(h(X̃) ̸= φ(X̃))

}
,

1− min
φ∈H

{
Pr(h(X̃) = φ(X̃)) +Pr(h(X) ̸= φ(X))

}


(51)

2Suppose not. Then, WLOG max{a · b} = d · e > (maxS1) · (maxS1) for some d ̸= maxS1 or some e ̸= maxS2. But, we also
have d · e ≤ d ·maxS2 ≤ (maxS1) · (maxS2), a contradiction.



where X ∼ SX and X̃ ∼ TX . The first and second lines follow from an identical expansion as in the proof of Theorem 3.
The last follows by definition of h∆H.

Next, we observe

∀φ ∈ H, ∀h̄ ∈ Υ : Pr(h(X) = φ(X)) +Pr(h(X̃) ̸= φ(X̃)) ≤ Pr(h̄(X) ̸= φ(X)) +Pr(h(X̃) ̸= φ(X̃)). (52)

The inequality follows by the monotonicity of probability and the fact

{x | h(x) = φ(x)} ⊆ {x | h̄(x) ̸= φ(x)} (by definition of h̄). (53)

Meanwhile, setting

h̄∗
φ(x)

def
=

{
φ(x), if φ(x) ̸= h(x)

max{ℓ ∈ [C] | ℓ ̸= φ(x)}, else
(54)

implies h̄∗
φ ∈ Υ and {x | h(x) = φ(x)} = {x | h̄∗

φ(x) ̸= φ(x)}. So, we also have

∀φ ∈ H : Pr(h(X) = φ(X)) +Pr(h(X̃) ̸= φ(X̃)) = Pr(h̄∗
φ(X) ̸= φ(X)) +Pr(h(X̃) ̸= φ(X̃)). (55)

Considering that h̄∗
φ ∈ Υ, Eq. (52) and Eq. (55) in combination tell us

∀φ ∈ H : Pr(h(X) = φ(X)) +Pr(h(X̃) ̸= φ(X̃)) = minh̄∈Υ

{
Pr(h̄(X) ̸= φ(X)) +Pr(h(X̃) ̸= φ(X̃))

}
. (56)

To see this, it’s easiest to use the definition of a set’s min element as that which attains the greatest lower bound; i.e., the inf
or infimum. Then, Eq. (52) implies the min upperbounds the LHS of Eq. (56), and Eq. (55) implies the min lowerbounds
the LHS of Eq. (56). In combination, these bounds prove equality.

Note, an identical argument also gives,

∀φ ∈ H : Pr(h(X̃) = φ(X̃)) +Pr(h(X) ̸= φ(X)) = minh̄∈Υ

{
Pr(h̄(X̃) ̸= φ(X̃)) +Pr(h(X) ̸= φ(X))

}
. (57)

To continue, we apply Eq. (56) and Eq. (57) to Eq. (51). Specifically, we have

max


1− min

φ∈H

{
Pr(h(X) = φ(X)) +Pr(h(X̃) ̸= φ(X̃))

}
,

1− min
φ∈H

{
Pr(h(X̃) = φ(X̃)) +Pr(h(X) ̸= φ(X))

}


= max


1− min

φ∈H,

h̄∈Υ

{
Pr(h̄(X) ̸= φ(X)) +Pr(h(X̃) ̸= φ(X̃))

}
,

1− min
φ∈H,

h̄∈Υ

{
Pr(h̄(X̃) ̸= φ(X̃)) +Pr(h(X) ̸= φ(X))

}
 .

(58)

Taking P,Q,U, V as assumed, the desired result follows by the definition of risk in Eq. (1).

A.7 THEOREM 6

As noted in the main text, this result introduces a deterministic reference to avoid costly Monte-Carlo estimation. It is the
consequence of a series of triangle-inequalities and some of the Lemmas disucssed in proof of Thm. 2.

Proof. Observe, for any h∗,

∆Q(S,T) ≤ ∆Q,h∗(S, T ) + ∆h∗,Q(T,T)
≤ ∆h∗(S, T ) + ∆Q,h∗(S, S) + ∆Q(T,T) + ∆Q,h∗(T, T )

≤ ρ+∆h∗(S, T ) + ∆Q(T,T)
(59)

Use Lemma 3 and Lemma 4, respectively, to bound the latter two terms. Application of Boole’s Inequality and selection of
h∗ = µ gives the result.



A.8 COROLLARY 1

Conceptually, this result relies on the same proof-technique as Theorem 6, but the proof is still a bit more technically involved
than a typical “Corollary” because it requires the measure-theoretic notion of a pushforward. We consider pushfowards of
empirical distributions, which are finitely supported, so there is no need to discuss issues of measurability.

Proof. Following the proof of Theorem 6, we have ∆Q(S,T) ≤ ρ + ∆µ(S, T ) + ∆Q(T,T). Now, recalling µ is the
composition of a classifier cµ and a feature extractor fµ, we have

∆µ(S, T ) = ∆cµ(S ◦ f−1
µ , T ◦ f−1

µ ) (60)

where we abuse notation and write D ◦ g−1 for the pushforward of a distribution D on X × Y by the function Φg(x, y) =
(g(x), y). In details, setting ℓ(h, (x, y)) = 1[h(x) ̸= y] and assuming fµ : X → Z and cµ : Z → Y , Eq. (60) follows
because

RD(µ) =

∫
X×Y

ℓ(cµ ◦ fµ, v)D(dv) =
∫

ℓ(cµ,Φfµ(v))D(dv) =
∫
Z×Y

ℓ(cµ, w)D ◦ f−1
µ (dw) = RD◦f−1

µ
(cµ) (61)

for any distribution D over X × Y . After applying the equality in Eq. (60), we can conclude our argument as in the proof of
Theorem 2 using Lemma 3. Although, it should be noted the adaptation problem has changed slightly, since we now consider
the hypothesis space W = {ch | h ∈ H} ⊆ YZ , the source distribution S ◦ f−1

µ over Z × Y , and the target distribution
T ◦ f−1

µ over Z × Y . Of course, Lemma 3 still applies in this case, so this does not present an issue.

After this, to arrive at the result in the main text, we simplify terms to remove any discussion of pushforward distributions.
For any risks, this is accomplished by reversing the steps in Eq. (61). For any divergences, a similar equality holds and can
be applied. In particular, for any Q ⊆ YZ , any function p : X → Z , and any distributions S and T over X × Y , we use the
expansion below:

dQ((S ◦ p−1)Z , (T ◦ p−1)Z) = sup
q∈Q

|EZ∼(S◦p−1)Z [q(Z)]−EZ∼(T◦p−1)Z [q(Z)]|

= sup
q∈Q

|EX∼SX [(q ◦ p)(X)]−EX∼TX
[(q ◦ p)(X)]| (similiar to Eq. (61))

= sup
r∈Q◦p−1

|EX∼SX [r(X)]−EX∼TX
[r(X)]| (Q ◦ p−1 def

= {q ◦ p | q ∈ Q})

= dQ◦p−1(SX , TX).

(62)

Taking Q = {1 − 1{c(·)}{c′(·)} | (c, c′) ∈ W} and p = fµ, we end up with Q ◦ p−1 = [H∆H]µ as defined in the main
text. Likewise, taking Q = {1− 1{cµ(·)}{c′(·)} | c′ ∈ W} and p = fµ, we end up with Q ◦ p−1 = [µ∆H]µ.

B EXTENDED RELATED WORKS

Here, we give an extended version of the related works (Section 2.3). First, we discuss theoretical adaptation work. We
compartmentalize relevant contributions based on some key-terms common to adaptation bounds. Following this, we discuss
related works in PAC-Bayes, in which, we give a more in depth history of these bounds.

Divergence Many bounds use a modified, or generalized, divergence term. Mansour et al. [2009] define divergence for
any loss function (i.e., in addition to the 01-loss we consider). With some restrictions on hypothesis space, Redko et al.
[2017] show a Wasserstein metric may be used to bound error. Shen et al. [2018] extend this to more general settings. As
noted by Redko et al. [2020], bounds based on Wasserstein metric imply bounds based on MMD [Gretton et al., 2012]
due to a general relationship between the two. Johansson et al. [2019] give another bound based on an integral probability
metric. Note, none of these works consider approximation of divergences used to bound 01-loss in multiclass settings. In
this regard, the closest work to ours is Zhang et al. [2019] who approximate a divergence used to bound a multiclass margin
loss, which in turn, bounds the 01-loss we consider. As noted, the primary difference between our work and the work of
Zhang et al. [2019] is the use of uniform sample-complexity in the latter. Possibly, bounds in the latter could be extended
to PAC-Bayesian contexts as well, but our choice of divergences allows us to work directly with 01-loss and avoid any
loosening of the bound via the margin penalty.



Adaptability Besides requiring small adaptability term, some theoretical DA works consider other possible assumptions.
For example, a covariate shift assumption can be made: the marginal feature distributions disagree, but the feature-conditional
label distributions are identical. This assumption is useful, for example, in designing model-selection algorithms [Sugiyama
et al., 2007, You et al., 2019], but Ben-David et al. [2010b] show this assumption (on its own) is not enough for the general
DA problem. Another frequent assumption is label-shift: the marginal label distributions disagree, but the label-conditional
feature distributions remain the same. As mentioned, Zhao et al. [2019] show failure-cases in this context, while Lipton
et al. [2018] propose techniques for detecting and correcting shift in this case. Similarly, Tachet des Combes et al. [2020]
propose generalized label-shift and motivate new algorithms in this context. The DA problem can also be modeled through
causal graphs [Zhang et al., 2015, Magliacane et al., 2018] and some extensions to DA consider a meta-distribution over
targets [Blanchard et al., 2021, Albuquerque et al., 2020, Deng et al., 2020]. Notably, most assumptions are untestable in
practice, but not many works consider this. As we are aware, we are the first work to use a sample-dependent adaptability
term, which improves estimation in empirical study.

PAC-Bayes For completeness, besides what is discussed here, readers are directed to the work of Catoni [2007], McAllester
[2013], Germain et al. [2009, 2015], and the primer by Guedj [2019]. While PAC-Bayes is often attributed to McAllester
[1999] with early ideas by Shawe-Taylor and Williamson [1997], the particular bound we use is due to Maurer [2004]. A
similar result was first shown by Langford and Seeger [2001] for 01-loss. In experiments, we use data-dependent priors,
perhaps first conceptualized by Ambroladze et al. [2007], Parrado-Hernández et al. [2012]. Besides the previously discussed
work of Germain et al., PAC-Bayes has also been used in theories for transfer learning [Li and Bilmes, 2007, McNamara
and Balcan, 2017]. As mentioned, our bounds are the first PAC-Bayesian multiclass adaptation bounds.

C EXPERIMENTAL DETAILS

C.1 DATASETS AND MODELS

As noted in the main text, we consider a collection of common adaptation datasets from both computer vision and NLP.
Each dataset consists of a number of component domains which are themselves distinct datasets that all share a common
label space. In this way, we can simulate transfer of some model from one domain to another. The datasets and models we
consider are as follows:

1. Digits: Digits consists of collection of digit classification datasets including: USPS [Hull, 1994], MNIST [LeCun and
Cortes, 2010], and SVHN [Netzer et al., 2011]. We use only the training sets. The number images in each is about 7K,
60K, and 70K, respectively. We select X to be the space of 28×28 grayscale images (i.e., the original feature space for
MNIST). For USPS and SVHN, this is accomplished through image transformation. The label space Y consists of the
digits 0-9. As we are aware, this collection was first used by Ganin and Lempitsky [2015]. For this task, we consider H
to be a space of CNNs of a fixed 4-layer architecture.

2. PACS: PACS is an image-classification, domain generalization dataset where each domain has a different style. It
was proposed by Li et al. [2017] to be a more challenging task compared to existing generalization datasets. The
domains consist of images in style of: Photo, Art Painting, Cartoon, or Sketch. There are about 10K total labeled images
with some slight imbalance in the liklihood of each style. The label space Y consists of 7 common object categories:
dog, elephant, giraffe, guitar, horse, house, and person. The feature space X is selected to be space of real-vectors of
dimension 2048; i.e., R2048. To map to the feature space from an image, we use the hidden-layer output of an image
passed through a pre-trained ResNet-50 [He et al., 2016]. For this task, we consider H to be either the space of linear
classifiers or the space of 4-layer FCNs of a fixed architecture (fully-connected networks).

3. Office-Home: Office-Home was originally proposed by Venkateswara et al. [2017], but we use the smaller preprocessed
version given by Zhou et al. [2020]. The dataset is similar to PACS. It also contains 4 different styles as its component
domains across about 15K total images: Art, Clipart, Product, and Real-World. Unlike PACS, it has a much larger
number of classes. In particular, the label space Y contains 65 categories of different daily objects. Like PACS, we use
the outputs of ResNet-50 to map to the real vector space X . We let H be either a linear model or a 4-layer FCN as
before.

4. Amazon Reviews: Amazon Reviews is a text-classification dataset introduced by Blitzer et al. [2007]. We use the
Books, DVD, Electronics, and Kitchen domains preprocessed as in Blitzer et al. This totals about 4000 reviews
which are labeled as having positive or negative sentiment. The feature space X is the space N4096; i.e., the space of
bag-of-word representations. For each review, the non-zero vector components correspond to counts for words found



within the review. Implicitly, this limits our vocabulary to the 4095 most frequent words and leaves one special token
for out-of-vocabulary words. As noted, the label space Y is a binary space whose elements denote the sentiment of the
review. We let H be either a linear model or a 4-layer FCN as before.

5. Discourse A (PDTB Labels): The Penn Discourse Treebank (PDTB) [Prasad et al., 2008] is an NLP dataset containing
a subset of Wall Street Journal articles from the Penn Treebank [Marcus et al., 1993] which are tagged with shallow
discourse coherence relations (i.e., relations that hold only between the argument pairs and do not have any hierarchy
or graph structure). These coherence relations can be explicitly signaled by discourse connectives such as and, so, and
but, or could require the insertion of an implicit connective. In this paper, we focus on the task of implicit discourse
sense classification which is the most difficult task for discourse parsers. To form a DA dataset, we also used implicit
relations from two parallel corpora: the TED-MDB [Zeyrek et al., 2020] which contains tagged TED talks and the
BioDRB [Ramesh and Yu, 2010] which contains tagged scientific articles. These three mentioned datasets form our
component domains. Our feature space X is selected to be space of real-vectors of dimension 728. Within this space,
we try three different feature representations for the discourse relations.3 In the first two cases, the feature is made
up of the argument pairs which have been concatenated and encoded using a BERT model [Devlin et al., 2019]. We
use either the pooled output or the average of the hidden states. In the last case, we use Sentence-BERT [Reimers and
Gurevych, 2019] to encode our features. Our label space Y consists of the 4 level 1 discourse sense classes contained
in the Penn Discourse Treebank. We let H be either a linear model or a 4-layer FCN as before.

6. Discourse B (GUM Labels): The GUM corpus [Zeldes, 2017] contains text documents from 8 different genres:
Academic, Biography, Fiction, Interview, News, Reddit, How-To, and Travel. These genres form our component
domains. Documents within the corpus are annotated using the discourse framework of Rhetorical Structure Theory
[Mann and Thompson, 1987] in which discourse coherence relations are organized in a hierarchical tree structure. The
sense hierarchy used for the GUM corpus is similar to that of the RST Discourse Treebank [Carlson et al., 2003]. In
order to focus on coherence relations only between two argument pairs (without the additional hierarchical structure),
we removed all relations where one or both nodes was not a leaf node. To form the label space, we mapped the twenty
GUM labels to the conventional RST discourse treebank top-level labels where only three GUM labels did not have an
existing mapping encoded in the RST. We mapped these three in the following manner, following Braud et al. [2017]:
preparation to BACKGROUND, justify and motivation to EXPLANATION, and solutionhood to TOPIC-COMMENT.
Given this mapping, our final label space Y consists of the 13 different RST discourse sense classes that were mapped
to by the GUM corpus classes. Our features are encoded the same way as the PDTB features. We let H be either a
linear model or a 4-layer FCN as before.

Random Data Splits To simulate variability due to sampling and also to consider more mild forms of dataset shift, we
split each component domain within each dataset into two disjoint sets of (roughly) equal size. So, for a dataset with 4
component domains, the new number of component domains will be 8. Some of these component domains should now
follow a fairly similiar distribution; i.e., splits coming from the same original component. This process is done randomly
and all adaptation scenarios (see Section C.4) test 3 different seeds for this split.

C.2 MODEL TRAINING FOR DIVERGENCE APPROXIMATION, ADAPTABILITY UPPERBOUNDS, AND
SIMPLE ALGORITHM (SA)

We train a number of deterministic models throughout our experimentation; e.g., for divergence approximation, to compute
risks for the ranking task, and to compute upperbounds on λ. To avoid individual parameter selection for more than 12,000
models all trained in our experimentation, we use the optimization parameters given below in most cases. For Gibbs
predictors, we use a slightly modified technique which is also discussed below. For the DANN algorithm, we use different
parameters which were more carefully selected (details discussed in Section C.3). While this “one size fits all” approach
is arguably simplistic, we found these settings worked well for a majority of cases in our preliminary experiments. For
divergence approximation and upperbounds on adaptability this is visible in the main text results. In Appendix D.2, we also
report statistics on the transfer (target) error of some hypotheses trained to minimize error on the source sample (i.e., the
Simple Algorithm SA). These provide a sanity check that our simple optimization procedure is indeed selecting non-trivial
hypotheses in a majority of cases. Notably, the point of this work is to study global trends rather than to achieve optimal
performance on any one dataset. The “one size fits all” approach we take is reflective of this; it allows us to use our limited
computational resources to study more datasets and models, rather than do rigorous parameter search on just a few.

3We only experiment within each representation type and do not attempt to transfer across different representations.



Optimization Parameters All models are trained using SGD on an NLL loss with momentum set to 0.9. The NLL loss
is sometimes weighted to correctly replicate the importance of multiple risks (e.g., when minimizing a sum of two risks).
For example, if we have the objective minh RS(h) +RT (h) and S has more samples than T , the NLL loss will weight
examples in T higher to give them equal importance during optimization, as described by the objective. We start training
with a learning of 1× 10−2 for 100 epochs. Then, we train for another 50 epochs using a learning rate of 1× 10−3. If a
model ever achieves a training error lower than 5× 10−4, we terminate training. In all cases, we use a batch size of 250.

Gibbs Predictors To learn a Gibbs predictor (stochastic model) Q we need to use a slightly different approach. In all cases,
Q will be a multivariate normal distribution with diagonal covariance and we will minimize Gibbs risk on a source sample S
with intention to transfer to a target sample T . We use PAC-Bayes-by-Backprop (PBB) to learn the parameters of our normal
distribution. PBB is an SGD-based technique proposed by Pérez-Ortiz et al. [2021] to learn stochastic models that optimize
PAC-Bayes bounds. The approach requires specification of a particular PAC-Bayes bound to use as the objective and a
particular distribution P to use as the prior. For the former, we use the variational bound proposed by Dziugaite et al. [2021].
For the latter, we use a multivariate normal distribution: the mean is a (trained) deterministic model (i.e., its parameter
vector) and the covariance matrix is σI where σ = 0.01 and I is the identity matrix. We train the deterministic model to
minimize the error on S using the same optimization parameters discussed previously. Note, this may seem taboo to one
familiar with PAC-Bayes, since the prior P is typically required to be independent of the data used in the bound. Contrary to
this, in our setting, it is perfectly valid to select P based on the data in (only) S. This is clear in the proofs of Theorem 2 and
Theorem 6 because the prior P is only used to bound the generalization gap between T and T. Thus, this choice is reflective
of a realistic scenario where one wishes to compute a PAC-Bayes bound with Q. The approach we describe essentially
corresponds to the idea of using a data-dependent prior (see Section B). The prior P is learned using data that is not used in
any part of the bound which depends on P. For optimization parameters of PBB not discussed here (e.g., learning rate), we
default to the previously discussed choices.

C.3 DANN MODEL TRAINING

For Digits, we study a PAC-Bayes variant of the invariant feature learning algorithm DANN (Domain Adversarial Neural
Network) proposed by Ganin and Lempitsky [2015]. The output of our variation is a Gibbs predictor Q, so we again employ
PBB as discussed above in Section C.2. While many parameters are similar to those used above – including the prior and the
PAC-Bayes bound –, we highlight some differences here. Most notably, we re-weight the KL divergence in the PAC-Bayes
bound by a dampening factor to reduce its regularizing impact during training. For example, if the KL divergence was 46K
and the dampening factor was 0.1, the effective KL divergence during training is 4.6K. We explore a range of different
dampening factors to get a breadth of different “complexities” for interpretation; i.e., this variability produces the movement
along the horizontal axes of Figure 2. In our experiments, we let the dampening factor range in the set {0.1, 0.05, 0.01, 0}.
We did not use any dampening factor to recover the original PAC-Bayes bound (i.e., 1) because we found this setting to
be too restrictive in preliminary experiments. Due to the increased training time involved in this parameter sweep, we
down-sampled the Digits dataset discussed above so that neither S nor T have more than 5K examples. We selected the
learning rate by manual inspection, varying the learning rate (and number of epochs accordingly) until we did not observe
frequent gradient explosion / vanishing. We ended up using an initial learning rate of 1× 10−3 for 112 epochs (75% of 150)
and 5× 10−4 for the remaining 38 epochs. We also reduced the batch size to 128, but most other parameters remained the
same. It is important to note that the instability we experienced (i.e., related to gradient explosion / vanishing) is somewhat
common when training adversarial methods such as DANN. As an additional measure to combat this issue, we slowly eased
in the adversarial loss by weighting it using the parameter βp = 2/(1 + exp(−10p)) where p is the progress ratio of the
current epoch in training; e.g., p = 0.1 corresponds epoch 15 out of 150. This approach was first proposed by Ganin and
Lempitsky [2015] for the same purpose. Besides the adversarial loss, we also multiply the KL divergence dampening factor
by this weight to ease in the regularization component as well. As a final measure, we used multiple restarts with a new
neural network initialization (up to 25 attempts), which proved to be the most effective measure. Among about 32K statistics
computed during these experiments, only 21 statistics were unable to be computed due to instability. These consisted of
restricted model-independent divergences (i.e., using class [H∆H]µ) and were ignored in plots. Roughly 5% of the data
points still had “extreme” values that did not match any other trend, so we removed these in Figure 2 to help with visual
interpretation.



C.4 ADAPTATION PAIRS

We now discuss the different adaptation scenarios we consider. Instances of each scenario produce the collection of (S, T )
pairs we consider in our histograms in the main text. Recall, we randomly split each component domain into two halves (see
Section C.1). This will be important for understanding our adaptation scenarios.

Single-Source For all datasets except Discourse B, we consider a single-source adaptation scenario: each component
domain in a dataset is paired with each distinct component domain. So, for a dataset with 8 components, this forms 64
(S, T ) pairs. For example, one pair might take S to be the first random half of SVHN and T to be the first random half
of USPS. Another pair might take S to be the first random half of SVHN and T to be the second random half of SVHN.
So, as we see from this example, this implies that components derived from the same domain (i.e., through our random
splitting procedure) will be paired. Note, these should follow a fairly similar (or identical) distribution. This is purposeful
and provides a number of instances of within-distribution shift. These milder forms of shift allow us to test a broader range
of realistic scenarios. The random splitting procedure also allows us to test variability in the outcome of a transfer task due
to sampling; e.g., the first and second random half of SVHN will both be paired with every other dataset.

Multi-Source We also consider multi-source scenarios for all datasets except Discourse A. In these cases, we group all
but one component of the dataset into a single pooled sample. The single component which was left out is chosen to be the
target. So, for a dataset with 4 components, this forms 4 (S, T ) pairs. For example, for PACS, one pair might take S to be
the union of Art, Cartoon, and Sketch while T consists of only Photo. Importantly, we only use one of the random splits
from each component type; e.g., for PACS, although we split photo into two disjoint sets, we only use one of these two sets.
Otherwise, in every (S, T ) pair, S would contain some data coming from a similar distribution as T . Informally speaking,
this likely to weaken the adaptation difficulty. Note, the adaptation bounds we give implicitly cover multi-source contexts,
since we can view the single source S as a mixture distribution.

Digits-Specific Scenarios The Digits dataset is particular interesting because the feature space X is well-understood by
humans. Thus, we can use our experience to design some natural distribution shifts. In particular, we consider the case
where S is some component of Digits and T is the same sample except every image is randomly rotated up to 360◦. We
also consider the case where S is some component of Digits and T is the same sample except every image is blurred with
random white noise. We can also consider a very unnatural shift. In particular, we consider transfer to randomly generated
data. Here, S is some component of Digits (as before) and every image in T is a 28× 28 grid of randomly generated pixels
which is assigned a random label. For these scenarios, we use the entirety of the components in the Digits sets without doing
any random splitting.

C.5 DETAILS FOR FOR FIGURE 4

Each dataum in Figure 4 corresponds to an upperbound for one of the adaptation pairs described in Section C.4 using
one of the compatible hypothesis spaces described in Section C.1. We describe the process for computing each type of
upperbound below. In all cases, we compute the upperbound using 3 different random seeds; i.e., this will effect things like
the model-training and subsequently the final bound. We report the smallest upperbound of these seeds. This is logical since
the smallest upperbound is still a valid upperbound. In case of λ, this is actually overly optimistic since the confidence
parameter should be changed to account for all 3 bounds.

Upperbound for λ̃ This bound is computed just as described in the main text. For each adaptation pair (S, T ) and each
hypothesis space H which is compatible with S and T , we train a model to minimize the summed risks on S and T using
the approach described in Section C.2. If this approach returns the hypothesis h, we report RS(h) +RT (h). As noted in the
main text, this is a valid upperbound for λ̃.

Upperbound for λ For each adaptation pair (S, T ) and each hypothesis space H which is compatible with S and T , we
randomly split S and T using an 80/20 train/test split. Denote train splits for S and T by Str and Ttr, respectively. Denote
the test splits for S and T by Sho and Tho, respectively. We train a model to minimize summed risks on Str and Ttr using
the approach described in Section C.2. If this approach returns the hypothesis h, we then report the quantity

RSho
(h) +RTho

(h) +
√
ln(4/δ)/(2m) +

√
ln(4/δ)/(2n) (63)



where m = |Tho|, n = |Sho|, and δ = 0.05. This is a valid upperbound for λ which holds (i.e., prior to observing data) with
probability 1 − δ. It is easily derived using Hoeffding’s Inequality to bound both ∆h(Sho,S) and ∆h(Tho,T), and then,
using Boole’s Inequality to combine the bounds.

C.6 DETAILS FOR FOR TABLE 1

Each dataum used to compute the correlations in Table 1 corresponds to a divergence approximation for an (S, T, h) triple.
The datasets S and T are given by one of the adaptation pairs described in Section C.4, and conceptually, we pick h to be
the hypothesis whose error we would like to bound in the simulated transfer from S to T . Specifically, for each adaptation
pair (S, T ) and each compatible hypothesis space H, we select h using SA. We then approximate either the H∆H- or
h∆H-divergence using the (appropriate) technique described in Section 3.2. The Spearman rank correlation we report
compares the H∆H- and the h∆H-divergence to the error-gap ∆h(S, T ) defined in Eq. (27) over all adaptation pairs (S, T )
in Section C.4, all compatible hypothesis spaces H discussed in Section C.1, and all 3 seeds.

C.7 DETAILS FOR FOR ESTIMATION OF FLATNESS

Each datum discussed in the main text paragraph Do Flat Regions Transfer? corresponds to an estimate for an (S, T,Q)
triple. The datasets S and T are given by one of the adaptation pairs described above, and as before, we pick Q to be the
Gibbs predictor whose error we would like to bound in the simulated transfer from S to T (i.e., using SA). We then estimate
as described in the main text. For each (S, T ) pair and compatible hypothesis space H, we repeat this procedure with 3
seeds to control for variability in the selection of Q. We report all seeds in the histogram in Figure 3. Also, the mean and
standard deviation reported in the main text are computed using all data in the histogram.

C.8 DETAILS FOR FIGURE 2

Each datum in Figure 2 corresponds to statistics computed for an (S, T,Q) triple. As noted, S and T are restricted to be
samples from the Digits dataset. Further, we only consider out-of-distribution adaptation scenarios as indicated in each
subfigure title. The Gibbs predictor Q is selected using the training details discussed in Section C.3 and the statistics are
reported as described in Thm. 6 and Cor. 1.

D ADDITIONAL EXPERIMENTAL RESULTS

D.1 UPPERBOUNDS ON ADAPTABILITY (DATASET SPECIFIC)

We also found it interesting to consider our sample-dependent adaptability in a more problem-specific context. This reveals
to us that PACS and Office-Home have the larger upperbounds of computer vision datasets. It also reveals that most
upperbounds above about 0.3 are due to NLP datasets. Informally speaking, this is sensible as the NLP tasks we consider
have higher uncertainty in the labeling functions. Results are shown in Figure 5. We use the same aggregate data as Figure 4.

D.2 TRANSFER ERROR OF TRAINED AND RANDOM HYPOTHESES

In Figure 6, we show transfer error (i.e., the error on T ) of hypotheses trained using SA. These are precisely the hypotheses
used to compute the error-gap ∆h(S, T ) when reporting Spearman rank correlation. As noted, we use a standardized
optimization procedure to forego parameter selection on the more than 12,000 models we train. Thus, we are not interested
in optimal performance in any case. Instead, Figure 6 primarily serves as a sanity check to make sure the hypotheses we use
are somewhat reflective of those which might be used in a practical scenario. That is, we would like to confirm that these
hypotheses have learned something non-trivial (at least on the source domain). To illustrate this, for all datasets, we also
report the error of randomly initialized hypotheses which have not been trained. This provides a point of reference. It is easy
to see our trained hypotheses are typically far more effective than the untrained random initializations.

For the discourse datasets with PDTB labels, we observe the error of the random initializations is somewhat harder to
interpret. For this reason we compare to a related work. In particular, Kishimoto et al. [2020] achieve an error rate of ≈ 0.38



Figure 5: Boxplots for upperbounds on λ̃ for individual datasets. The appendage _m denotes the multi-source setup,
otherwise it is single-source. For digits, we prepend r_, n_, or f_ to denote transfer to rotated, noisy, or randomly
generated (fake) data as discussed in Section C.4. As may be inferred, pdtb corresponds to Discourse A and gum
corresponds to Discourse B. Appendages for these indicate the type of BERT features used.



Figure 6: Dataset names are as in Figure 5. Hues correspond to within-distribution WD and out-of-distribution OOD
based on whether the target T is drawn from the same component domain as the source S. Notice, WD is not available for
multi-source setups and certain Digits setups. This is simply a property of these adaptation scenarios. In these cases, we still
report the OOD error. The appendage -r denotes the hypothesis is randomly initialized and not trained. These experiments
provide a point of reference for comparison.



Figure 7: Upperbounds for sample-dependent (left), sample-independent (center), and binary PAC-Bayes variant (right) of adaptability.
Each datum describes unique (S, T,H).

on a comparable (within-distribution) discourse sense classification task. We observe our within-distribution PDTB results
(Discourse A) are frequently better than this.

D.3 COMPARISON TO GERMAIN ET AL.

While we know, theoretically, the PAC-Bayes bound of Germain et al. [2020] is not valid for the multiclass setting, we
also study this question empirically. In Figure 7, we present a sample-dependent variation of the adaptability proposed by
Germain et al.4 because of our previous (positive) results on sample-dependence. Even with this upgrade, the adaptability of
Germain et al. is not able to capture the same useful information as our multiclass sample-dependent adaptability. Further,
conducting a similar experiment as in Table 1, we find the divergence term of Germain et al. has low rank correlation (0.27
on all data). These empirical results confirm the hypothesis of Germain et al. [2020] that their PAC-Bayesian theory of
adaptation in binary settings is not easily extend to the multiclass setting. This is especially true in comparison to the positive
outcomes observed under our theory. The experimental details for these results are provided below.

Upperbound for Adaptability of Germain et al. [2020] The historgram in Figure 7 shows a histogram of upperbounds
on a sample-dependent variation of the adaptability of Germain et al. [2020] given in Thm. A. We compute the upperbounds
using the same setup as described in Appendix C.5. Because we do not have full access to Q, we instead estimate this term
with a finite sample Q = (Hi)i ∼ Qk. Using Linearity of E and Hoeffding’s Inequality, we have the following bound on
Germain et al.’s adaptability (our sample-dependent variant) with i.i.d. sample (Hi,1, Hi,2)i ∼ (Q×Q)k∣∣∣∣∣ k−1

∑
i
E

X,Y
[1[Hi,1(X) ̸= Y ] · 1[Hi,2(X) ̸= Y ]]− k−1

∑
i
E

X̃,Ỹ
[1[Hi,1(X̃) ̸= Ỹ ] · 1[Hi,2(X̃) ̸= Ỹ ]]

∣∣∣∣∣+
√

2 ln(2/δ)

k
. (64)

Here, we pick δ = 0.05 as before and use k = 100. This gives a valid bound for which holds with probability 1− δ (i.e.,
prior to seeing the samples from Q). We select the Gibbs predictor Q using SA as before.

Divergence of Germain et al. [2020] We also approximate the divergence of Germain et al. to compare to the H∆H-
and h∆H-divergence in terms of model selection. As noted, the comparison is made through Spearman rank correlation
with error-gap ∆ using the same experimental setup as in Appendix C.6. Since we are not aware of an analytic solution for
this divergence (in case of neural networks), we approximate the divergence term of Germain et al. using a random sample
Q ∼ Qk with k = 100. Here, Q is a distribution over H selected, again, using SA. We do this for each adaptation pair
(S, T ) and each compatible hypothesis space H. The final reported correlation compares the approximated divergence to
∆Q(S, T ) over all adaptation pairs, all compatible hypothesis spaces, and all 3 seeds.

D.4 ADDITIONAL DANN RESULTS

In Figure 8, we show the effect of DANN on ρ. This confirms our takeaway in the main text that, as a function of sample
complexity, ρ behaves like adaptability. Also, we see that increasing the prior variance makes flatness less likely, since this
indirectly controls the variance of Q, which is regularized to be similar to the prior via PBB (see Section C.3). Intuitively, it
is easier to find small flat-minima than very large flat-minima. In Figure 9, we show the target (transfer) error of solutions

4Some proof-techniques we employ in Thm. 2 can be applied to derive a sample-dependent variation of Thm. A, instead.



Figure 8: Estimates for ρ while using DANN for various choices of the prior variance parameter σ. Solid line shows median,
while scatter shows 95% or more of data. Each datum describes unique (S, T,Q). As a function of complexity, we expect ρ
to be smaller for more complex solutions. For example, in the formula for KL-divergence between Gaussian distributions,
similarly concentrated distributions will have high KL-divergence as their variances decrease (i.e., holding all else constant).
Sensibly, smaller variance gives more concentrated Q, which helps to ensure small ρ as well. This relationship (between ρ
and complexity) is observed in the above and is similar to our findings in the main text on adaptability after DANN.

Figure 9: Estimates of target error RT (Q) (after DANN) compared to prior error RT (P) (before DANN, i.e. using SA).
Solid line shows median, while scatter shows 95% or more of data. Each datum describes unique (S, T,Q). More complex
solutions achieve lower error as expected. DANN is effective at reducing target error in many cases.



Figure 10: Heatmap (i.e., 2d histogram) showing counts for data used to compute correlations in Table 1. images corresponds
to the PACS+OH dataset.

trained using DANN compared to solutions trained using SA. The error rates may appear unusually high to familiar readers
(e.g., compared to Ganin and Lempitsky [2015]), but this is likely a result of the down-sampling we do to save training time
(see Section C.3). Since DANN is a more sophisticated adaptation algorithm, we expect it to learn more about the target than
SA, and indeed, it does in many contexts. Thus, this result also serves to validate our empirical setup for applying DANN.
Lastly, as before, we can interpret the target error as a function of sample complexity: unconstrained solutions are able to
achieve lower error than constrained solutions. Due to the higher complexity, these solutions may not generalize well.

D.5 DETAILED VISUALIZATION OF DATA IN TABLE 1

In some instances, we observe poor correlation of the proposed divergence terms with the error-gap. For example, in Table 1,
poor correlation is observed on the Digits dataset. Poor correlation is also observed on the PACS+OH dataset for the
model-dependent divergence. To study and understand these errors in detail, we visualize heatmaps (i.e., 2d histograms)
in Figure 10. Histogram counts illustrate counts of the individual data pairs used to compute correlation in Table 1; i.e.,
between a particular approximation of divergence and the corresponding error-gap. Please, see Section C.6 for details on the
data used for Table 1.

Results show the poor performance on the Digits dataset is likely due to insensitivity of the divergence approximation to
changes in data sample and hypothesis. In particular, there is significant concentration of the divergence approximations
near 1. In the case of the model-independent divergence, we also observe some artificially low approximations (i.e., near
0) compared to the error-gap; this illustrates poor approximation. On the PACS+OH dataset, the poor performance of the
model-dependent divergence is best explained by comparing to the data-points for the model-independent divergence. While
the model-dependent divergence is more variable and sensitive to data/model changes as one would expect, we see a high
density of anti-correlated measurements on the PACS+OH data. Specifically, there is a cluster of cases where the divergence
is near 1 with absolute change in error about 0.4 and another cluster of cases where the divergence is only about 0.8 with
absolute change in error higher at 0.6. Aptly, the divergence does not perform well at ranking in this case.

These more nuanced results speak to the conservative nature of bounds (and their contained terms), in general. In particular,
upperbounds are subject to “false positives” – in which the actual bound is high, but the quantity controlled is low; e.g.,1
is a valid bound on 1 and so are 2, 10, 50, and 1000. While this undesirable property impacts the Digits and PACS+OH
cases, it is also worth mentioning that the divergences perform well in many other cases. Depending on the application, a
conservative measure of performance change may actually be desirable.
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