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This document presents the discussions and results left out
in the main paper due to space constraints. We begin with
the details regarding the considered data distributions. We
then present quantitative and qualitative results left out from
the main paper. We finally conclude with further information
regarding the experiments and implementation.

1 DATA GENERATION

We generated and experimented with ten 3-dimensional data
distributions over manifolds of varying complexity. Figure
1 provides the visualizations for each of the considered
datasets. We elaborate more on the equations used to gener-
ate data from each of these distribution below.

1.1 SPHERICAL

We considered three mixture of Gaussians in the 3-
dimensional space with parameters (µ1, σ),(µ2, σ),(µ3, σ)
respectively. Samples (x) drawn uniformly from each of
the three Gaussians were then projected on to the unit
sphere in 3D as x/||x||. The means (µi) were sampled
from a standard normal distribution and the standard de-
viation was set to 0.2. The exact parameter values used are:
µ1 = (−0.15,−0.77, 0.94), µ2 = (0.79,−0.75,−0.02),
µ3 = (0.04, 0.40, 1.31) and σ = 0.2.

1.2 HELIX

To generate the Helix data distribution, we first sample
θ ∈ R uniformly from [0, 8π]. For each θ, we then generate
the datapoint x = (x, y, z) + ϵ, where ϵ ∼ N(0, σ = 0.01)
and − • x = θ • y = cos θ • z = sin θ

*Equal contribution
†Work was performed while at Verisk Analytics.

1.3 LISSAJOUS

To generate the Lissajous data distribution, we first sample
θ ∈ R uniformly from [−π, π]. For each θ, we then generate
the datapoint x = (x, y, z) + ϵ, where ϵ ∼ N(0, σ = 0.01)
and − • x = cos θ • y = 0 • z = sin(2θ)

1.4 TWISTED-EIGHT

To generate the Twisted-Eight data distribution, we sam-
ple θ ∈ R uniformly from [−π, π]. For each θ, we
then generate two datapoints x1 = (x1, y1, z1) + ϵ and
x2 = (x2, y2, z2) + ϵ, where ϵ ∼ N(0, σ = 0.01) and −
• x1 = sin θ • y1 = cos θ • z1 = 0.
• x2 = 2 + sin θ • y2 = 0 • z2 = cos θ
The final distribution is the union of the distributions over
x1 and x2.

1.5 KNOTTED

To generate the Knotted data distribution, we first sample
θ ∈ R uniformly from [−π, π]. For each θ, we then generate
the datapoint x = (x, y, z) + ϵ, where ϵ ∼ N(0, σ =
0.01) and − • x = sin θ + 2 sin 2θ • y = cos θ − 2 cos 2θ
• z = sin 3θ

1.6 INTERLOCKED-CIRCLES

To generate the Interlocked-Circles data distribution, we
sample θ ∈ R uniformly from [−π, π]. For each θ, we
then generate two datapoints x1 = (x1, y1, z1) + ϵ and
x2 = (x2, y2, z2) + ϵ, where ϵ ∼ N(0, σ = 0.01) and −
• x1 = sin θ • y1 = cos θ • z1 = 0.
• x2 = 1 + sin θ • y2 = 0 • z2 = cos θ
The final distribution is the union of the distributions over
x1 and x2.
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Figure 1: Visualizations of the considered 3-dimensional data distributions

1.7 NON-KNOTTED

To generate the Non-Knotted data distribution, we first
sample θ ∈ R uniformly from [−π, π]. For each θ, we
then generate the datapoint x = (x, y, z) + ϵ, where
ϵ ∼ N(0, σ = 0.01) and −

• x = (1 + 0.5 cos 3θ) cos 2θ

• y = (1 + 0.5 cos 3θ) sin 2θ

• z = 0.5 sin θ

1.8 BENT-LISSAJOUS

To generate the Bent-Lissajous data distribution, we first
sample θ ∈ R uniformly from [−π, π]. For each θ, we
then generate the datapoint x = (x, y, z) + ϵ, where
ϵ ∼ N(0, σ = 0.01) and − • x = sin 2θ • y = cos θ
• z = cos 2θ

1.9 DISJOINT-CIRCLES

To generate the Disjoint-Circles data distribution, we sample
θ ∈ R uniformly from [−π, π]. For each θ, we then generate
two datapoints x1 = (x1, y1, z1)+ϵ and x2 = (x2, y2, z2)+
ϵ, where ϵ ∼ N(0, σ = 0.01) and − • x1 = −1 + sin θ
• y1 = −1 + sin θ • z1 = −1 + sin θ.
• x2 = 2 + sin θ • y2 = 1 + 2 cos θ • z2 = 1 + 2 cos θ
The final distribution is the union of the distributions over
x1 and x2.

1.10 STAR

To generate the Star data distribution, we sample θ ∈ R
uniformly from [−π, π]. For each θ, we then generate three
datapoints x1 = (x1, y1, z1)+ ϵ, x2 = (x2, y2, z2)+ ϵ, and
x3 = (x3, y3, z3) + ϵ where ϵ ∼ N(0, σ = 0.01) and −
• x1 = sin θ • y1 = 0 • z1 = 0.
• x2 = 0 • y2 = sin θ • z2 = 0
• x3 = 0 • y3 = 0 • z3 = sin θ
The final distribution is the union of the distributions over
x1, x2 and x3.

2 ADDITIONAL RESULTS

2.1 DENSITY ESTIMATION AND SAMPLE
GENERATION

We provide quantitative evaluations for density estimation
and sample generation over four additional 3-dimensional
data distribution discussed Section 1 in Table 1 and Table 2
respectively. We can observe that the models trained with
the augmentation of our framework achieves better perfor-
mance for both density estimation and sample generation
than their corresponding baselines. We also validate and
compare the goodness of the generated samples through
qualitative visualizations in Figures 7 - 11. Note that CEFs
perform poorer than the other baselines because they consist
of a 2-dimensional base flow which is then raised to the 3-
dimensional space using a conformal embedding. The other
flows (RealNVP and MAF) are, on the other hand, trained in
the 3-dimensional space. A particularly interesting observa-



tion here is that the data distributions learned by CEF with-
out VQ-augmentation tend to be planar in the 3-dimensional
space. This demonstrates the limited expressivity of global
conformal dimension raising transformations. The local con-
formal transformations obtained with the augmentation of
our framework are, on the other hand, able to better capture
the global structure of the data distribution and generate
better samples.

2.2 GAUSSIANIZATION

The ability of a normalizing flow to generate high fidelity
samples from given data distribution is also governed by
whether the latent space learned through the flow transfor-
mation matches the assumed prior. For a flow with a Normal
distribution assumed in the latent space, this means that the
forward flow transformations should effectively Gaussian-
ize the given data distribution. In Figures 3 to 6 we thus
visualize and compare how different data distributions are
transformed gradually by each layer of a RealNVP flow
trained with and without the augmentation of our proposed
framework. We can observe that the models trained with
VQ-augmentation learn to better transform the input space
to match the assumed prior. As a result, they are also able
to generate better samples.

3 IMPLEMENTATION DETAILS

To experimentally validate the efficacy of the proposed
framework, we consider the ten datasets presented in Sec-
tion 1. Each dataset consists of 10, 000 datapoints, 5, 000 of
which we use for training and 2, 500 each for validation and
testing. We train three different normalizing flows - Real-
NVP, Masked Autoregressive Flows (MAF) and Conformal
Embedding Flows (CEF). We define each model using 5
flow transformations and train them for 100 epochs using an
Adam optimizer with a learning rate of 1e− 4 and a batch
size of 128. We follow the same hyperparameters for a base
flow and its VQ-counterpart without any tuning and report
the performance averaged over 5 independent trials. We
early stop if the validation performance does not improve
over 10 epochs. The architectural details pertaining to each
of the models are given below:

RealNVP- We compose the RealNVP flow using 5 cou-
pling layer transformations, each followed by a batch-
normalization. We use feedforward networks with 2 hidden
layers, each consisting of 128 hidden nodes as the non-
linear transformation to obtain the scaling and translation
parameters. We use tanh as the activation function for the
scale network and relu as the activation function for the
translation network.

MAF- We compose the MAF flow using 5 masked auto-
regressive layer transformations, each followed by a batch-

normalization. In each layer, we use a masked feedforward
network with 1 hidden layer, consisting of 128 hidden nodes.
We use relu as the activation function for the feedforward
network.

CEF- We compose the CEF flow using 5 coupling layer
transformations in 2-dimensional space, followed by the
conformal transformation that raises the dimension to 3. We
use the same architecture reported above for RealNVP in
the coupling transforms. The conformal embedding is pa-
rameterized as given in [1], using a composition of Scaling,
Shifting, Orthogonal, Special Conformal and Padding trans-
formations. As CEF is an injective flow, we follow [1] and
train it to minimize the reconstruction loss for 20 epochs
prior to employing the maximum likelihood training.

VQ-flow- We parameterize the encoder and decoder of the
VQ-AE using feedforward neural networks. In each net-
work, we use 4 hidden layers each consisting of 128 hidden
nodes followed by batch-normalization and a leaky−relu
activation with negative slope of 0.2. To learn the partition-
ing of the data manifold, we use a latent dimension of 2 with
k = 32 learnable quantized centers. We train the VQ-AE
for 50 epochs to minimize the reconstruction loss using an
Adam optimizer with a learning rate of 1e − 4 and batch
size of 128.

To define the conditional normalizing flow, we use the pa-
rameterization given in [2, 3]. The key idea is to incorporate
the quantized center as additional conditioning information
to the unrestricted (non-invertible) neural network used in
the coupling and auto-regressive transformations. Figure 2
demonstrates the construction of such a conditional coupling
layer transform. To define conditional conformal transfor-
mations, we use k conformal embeddings and index into it
using the quantized center. We believe that we can extend
our framework to other arbitrary flows by adapting the con-
ditional flow transformations defined in [4], which we leave
to future work.
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(b) Inverse Transformation

Figure 2: Parametrizing the conditional coupling layer transformation.

Figure 3: Visualization of the latent transformation achieved using RealNVP (Top Row) and VQ-RealNVP (Bottom Row)
on the Bent-Lissajous data distribution.

Figure 4: Visualization of the latent transformation achieved using RealNVP (Top Row) and VQ-RealNVP (Bottom Row)
on the Knotted data distribution.
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Figure 5: Visualization of the latent transformation achieved using RealNVP (Top Row) and VQ-RealNVP (Bottom Row)
on the Star data distribution.

Figure 6: Visualization of the latent transformation achieved using RealNVP (Top Row) and VQ-RealNVP (Bottom Row)
on the Spherical data distribution.

Model Non-Knotted Bent-Lissajous Disjoint-Circles Star

Real NVP 0.53 ± 0.18 1.04 ± 0.22 1.71 ± 0.12 3.33 ± 0.18
VQ-RealNVP 2.39 ± 0.24 2.62 ± 0.13 2.71 ± 0.19 4.23 ± 0.06

MAF 0.73 ± 0.18 1.48 ± 0.11 1.95 ± 0.12 3.53 ± 0.03
VQ-MAF 2.41 ± 0.19 2.06 ± 0.12 2.87 ± 0.07 3.59 ± 0.12

CEF -0.46 ± 0.13 -0.51 ± 0.16 -0.71 ± 0.21 1.26 ± 0.11
VQ-CEF -0.15 ± 0.09 -0.54 ± 0.22 0.24 ± 0.15 1.32 ± 0.02

Table 1: Quantitative performance evaluation for Density Estimation in terms of the test log-likelihood in nats (higher
the better) on the toy 3D Datasets. The values are averaged across 5 independent trials, ± represents the 95% confidence
interval.



Model Non-Knotted Bent-Lissajous Disjoint-Circles Star

Real NVP 0.53 ± 0.18 1.04 ± 0.22 1.71 ± 0.12 3.33 ± 0.18
VQ-RealNVP 2.39 ± 0.24 2.62 ± 0.13 2.71 ± 0.19 4.23 ± 0.06

MAF 0.73 ± 0.18 1.48 ± 0.11 1.95 ± 0.12 3.53 ± 0.03
VQ-MAF 2.41 ± 0.19 2.06 ± 0.12 2.87 ± 0.07 3.59 ± 0.12

CEF -0.46 ± 0.13 -0.51 ± 0.16 -0.71 ± 0.21 1.26 ± 0.11
VQ-CEF -0.15 ± 0.09 -0.54 ± 0.22 0.24 ± 0.15 1.32 ± 0.02

Table 2: Quantitative performance evaluation for Sample Generation in terms of the log-likelihood in nats (higher the better)
on the toy 3D Datasets. The values are averaged across 5 independent trials, ± represents the 95% confidence interval.

(a) InterlockedCircles (b) Bent-Lissajous (c) Non-Knotted (d) Disjoint-Circles (e) Star

Figure 7: Qualitative visualization of the samples generated by a classical flow - RealNVP (Middle Row) and its VQ-
counterpart (Bottom Row) trained on Toy 3D data distributions (Top Row).
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Figure 8: Qualitative visualization of the samples generated by a classical flow - MAF (Middle Row) and its VQ-counterpart
(Bottom Row) trained on Toy 3D data distributions (Top Row).
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Figure 9: Qualitative visualization of the samples generated by a classical flow - MAF (Middle Row) and its VQ-counterpart
(Bottom Row) trained on Toy 3D data distributions (Top Row).
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Figure 10: Qualitative visualization of the samples generated by CEF (Middle Row) and its VQ-counterpart (Bottom Row)
trained on Toy 3D data distributions (Top Row). CEF consists of a 2-dimensional RealNVP flow post composed with a
conformal embedding that raises it to 3D.
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Figure 11: Qualitative visualization of the samples generated by CEF (Middle Row) and its VQ-counterpart (Bottom Row)
trained on Toy 3D data distributions (Top Row). CEF consists of a 2-dimensional RealNVP flow post composed with a
conformal embedding that raises it to 3D.
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