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A GRAPHICAL PRELIMINARIES

Graphs A graph G = (V,E) is a tuple of a node set V and an edge set E. We consider simple directed graphs where
there is at most one edge between any pair of vertices and the edges are of the form→.

Walks, paths and cycles Two vertices are adjacent if there is an edge between them. A walk between X and Y is a
sequence of vertices (X, . . . , Y ) such that successive vertices are adjacent. A path between X and Y is a walk between X
and Y where all vertices are distinct. A directed path from X to Y is a path between X and Y where all the edges point
towards Y . A cycle is a path (X,Z, . . . , Y ) plus an edge between Y and X . A directed cycle is a directed path (X,Z, . . . , Y )
from X to Y plus an edge Y → X . Given a path p = (V1, . . . , Vk), let p(Vi, Vj), i < j denote the path segment from Vi to
Vj and let −p = (Vk, . . . , V1). Given two paths p = (V1, . . . , Vk) and q = (Vk, . . . , Vq), let p⊕ q = (V1, . . . , Vk, . . . , Vq).
We call any node Vi on a path p = (V1, . . . , Vk) such that Vi−1 → Vi ← Vi+1 a collider on p and any node that is not a
collider on p, a non-collider on p.

DAG A directed acyclic graph (DAG) is a directed graph without directed cycles.

Parents, children, ancestors and descendants If X → Y , then X is a parent of Y and Y is a child of X . If there is
a directed path from X to Y , then X is an ancestor of Y and Y is a descendant of X . Any node is an ancestor and a
descendant of itself. For any node X ∈ V, the sets of parents, children, ancestors and descendants of X in G are denoted
by pa(X,G), ch(X,G), an(X,G) and de(X,G), respectively. This definition applies disjunctively to sets of nodes. For
example, the parents of the set of vertices X are defined as pa(X,G) = ∪X∈Xpa(X,G). The non-descendants of X are
nonde(X,G) = V \ de(X,G).

d-separation A path p between X and Y is blocked by a set Z if at least one of the following conditions holds:

(i) There is a non-collider on p that is in Z;

(ii) There is a collider on p such that neither itself nor any other of its descendants are in Z.

A path that is not blocked is said to be open. If all paths between X ∈ X and Y ∈ Y are blocked by Z, then X and Y are
d-separated by Z, denoted by X ⊥G Y | Z. Otherwise, they are said to be d-connected by Z.

Faithfulness Consider a DAG G = (V,E) such that V follows a linear structural equation model compatible with G.
If for all disjoint subsets X,Y and Z of V such that X is independent of Y given Z, X ⊥G Y | Z then we say that the
distribution of V is faithful to G.
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B PROOFS

B.1 PROOF OF THEOREM 1

Proof. Consider the set Zi. By assumption, forb(X,Y,G0)∩Zi = ∅ and, nonetheless, Zi is not a valid adjustment set. Thus,
there must exist a non-causal path p from X to Y in G0 that is open given Zi. Suppose that p is of the form X → C ← Y .
By assumption Y ∈ de(X,G0) and therefore Y ∈ forb(X,Y,G0) which in turn implies that de(Y,G0) ⊆ forb(X,Y,G0).
As a result, C ∈ forb(X,Y,G0). But as Zi ∩ forb(X,Y,G0) = ∅ it follows that de(C,G0) ∩ Zi = ∅, which contradicts our
assumption that p is open given Zi. We can therefore assume that p is not of the form X → C ← Y which implies that p
must contain at least one non-collider. If every non-collider on p is in forb(X,Y,G0), it follows that every node on p is in
forb(X,Y,G0). But this contradicts our assumption that p is non-causal and open given Zi. We can therefore conclude that
p contains at least one non-collider that is not in forb(X,Y,G0). But as (V \ forb(X,Y,G0)) ⊆ ∪kj=1Zj by assumption, p
must be blocked by some set Zj .

Consider the potential colliders C1, . . . , Cm on p. As p is open given Zi for each collider Ck, there must exist a causal path
qk to some node in Zi, where we choose qk to be the shortest possible such path. If any of the qk intersects, drop the longer
of the two paths. If any qk contains X , replace p with −qk(X,Ck)⊕ p(Ck, Y ) and repeat our argument. Consider now the
following linear structural equation: set all edge coefficients not on p or our list of paths q1, . . . , qm′ to 0. The resulting
model is clearly compatible with G but also to a pruned graph G′ where we drop all edges with edge coefficient 0. Clearly, in
G′ the path p is still open given Zi and closed given Zj . Furthermore, p is the only path from X to Y in G′, and as a result,
we can conclude that βyx.zi ̸= 0 and βyx.zj = 0. We have therefore shown that there exists a linear structural equation
model compatible with G, such that βyx.zi

− βyx.zj
̸= 0.

Consider now the term βyx.zi − βyx.zj as a function in the edge coefficients and error variances from the underlying linear
structural equation model. By the same arguments as given in Section 13.3 of Spirtes et al. [2000] the function βyx.zi

−βyx.zj

is equivalent to a polynomial in the edge coefficients and error variances of the linear structural equation model. As we have
shown that there exists one linear structural equation model such that βyx.zi

− βyx.zj
̸= 0, this polynomial is non-trivial.

Our claim then follows from the fact that the zero set of non-trivial polynomials has Lebesgue measure 0.

B.2 PROOF OF LEMMA 3

Lemma 1 (Orthogonality between covariates and regression residual, [Buja et al., 2019]). In a least squares regression of X
on Z, the minimiser of the optimisation problem minβ E(X−Z⊤β)2 is the population regression coefficient βxz = Σ−1

zz Σzx.
The residual δxz = X − Z⊤βxz is orthogonal to Z, i.e., E(Zδxz) = 0.

Unless specified otherwise, serif letters denote random samples for scalar random variables. For example, X =
(X1, X2, . . . , Xn)

⊤ is an n-dimensional vector containing n i.i.d. copies of X . Bold serif letters denote random samples for
vector random variables. For example, Z = (Z1, . . . ,Zn)

⊤ is an n× p matrix where each row is i.i.d. as Z ∈ Rp.

Lemma 2 (Regression error representation of OLS coefficients, [Buja et al., 2019]). The difference between sample and
population regression coefficient of X from regressing Y on Z′ = (X,Z⊤)⊤ is

β̂yx.z − βyx.z =
⟨rxz, δyz′⟩
∥rxz∥2

,

where rxz = X− Zβ̂xz is the vector of sample residuals from regressing X on Z.

Proof of Lemma 3. The proof is inspired by the results in Appendix E.5 of Buja et al. [2019]. We first observe from Lemma
2 that for every set Zi, i = 1, 2, . . . , k,

n1/2(β̂yx.zi − βyx.zi) =
n−1/2⟨rxzi

, δyz′
i
⟩

n−1∥rxzi∥2
, (1)

where rxzi
= X− Ziβ̂xzi

is the sample residuals from regressing X on Zi.



Numerator of (1).

n−1/2⟨rxzi
, δyz′

i
⟩ = n−1/2⟨X− Ziβ̂xzi

, δyz′
i
⟩

= n−1/2⟨δxzi
− Zi(β̂xzi

− βxzi
), δyz′

i
⟩

= n−1/2⟨δxzi , δyz′
i
⟩ − n−1/2⟨Zi(β̂xzi

− βxzi
), δyz′

i
⟩.

For the second term on the last line it holds that

n−1/2⟨Zi(β̂xzi
− βxzi

), δyz′
i
⟩ =

(
n−1δ⊤yz′

i
Zi

)
· n1/2(β̂xzi

− βxzi
)

= op(1) ·Op(1) = op(1),

since E(δyz′
i
Zi) = 0 by Lemma 1 and n1/2(β̂xzi

−βxzi
) converges in distribution to a multivariate normal random variable

by the central limit theorem, which is appropriate since by assumption, the fourth moments of V are finite.

Denominator of (1).

Using the convention that the hat matrix Hn = Zi(Z
⊤
i Zi)

−1Z⊤
i , the average squared sample residuals

n−1∥rxzi∥2 = n−1X⊤(I−Hn)X

= n−1∥X∥2 −
(
n−1X⊤Zi

) (
n−1Z⊤

i Zi

)−1 (
n−1Z⊤

i X
)

p→ E(X2)− E(XZ⊤
i )[E(ZiZ

⊤
i )]

−1 E(ZiX)

= E(X2)− E(XZ⊤
i βxzi

)

= E(X − Z⊤
i βxzi

)2 = E(δ2xzi
).

The second to last step follows because E[Zi(X − Z⊤
i βxzi

)] = E(Ziδxzi) = 0 by Lemma 1.

We are now ready to present the asymptotic joint normality of β̂yx.Z . Since E(δxzi
δyzi

) = E[(X − Z⊤
i βxzi

)δyz′
i
] = 0,

together with the fact that the fourth moments of V are finite, we can apply the multivariate central limit theorem to conclude
that (

n−1/2⟨δxz1
, δyz′

1
⟩, . . . , n−1/2⟨δxzk

, δyz′
k
⟩
)

d→ N(0,Ψ)

where the entries have the form Ψij = E(δxzi
δyz′

i
δxzj

δyz′
j
) for all 1 ≤ i, j ≤ k. Therefore, the random vector

n−1/2⟨rxz1 , δyz′
1
⟩

n−1/2⟨rxz2
, δyz′

2
⟩

...
n−1/2⟨rxzk

, δyz′
k
⟩

 =


n−1/2⟨δxz1 , δyz′

1
⟩

n−1/2⟨δxz2
, δyz′

2
⟩

...
n−1/2⟨δxzk

, δyz′
k
⟩

−

n−1/2⟨Z1(β̂xz1

− βxz1
), δyz′

1
⟩

n−1/2⟨Z2(β̂xz2
− βxz2

), δyz′
2
⟩

...
n−1/2⟨Zk(β̂xzk

− βxzk
), δyz′

k
⟩


d→ N(0,Ψ),

due to the fact that the second vector converges in distribution to a vector of zeroes. Based on the discussion of the
denominator term, we can conclude that

n−1diag(∥rxz1
∥2, ∥rxz2

∥2, . . . , ∥rxzk
∥2) p→ diag(E(δ2xz1

),E(δ2xz2
), . . . ,E(δ2xzk

)) = Υ.

The target quantity can then be written as

n1/2(β̂yx.Z − βyx.Z) =


n−1∥rxz1

∥2 0 · · · 0
0 n−1∥rxz2

∥2 · · · 0
...

...
. . .

...
0 0 0 n−1∥rxzk

∥2


−1

n−1/2⟨rxz1 , δyz′
1
⟩

n−1/2⟨rxz2
, δyz′

2
⟩

...
n−1/2⟨rxzk

, δyz′
k
⟩


d→ N(0,ΣZ),

where the convergence follows from Slutsky’s Theorem, and the asymptotic covariance matrix ΣZ = Υ−1ΨΥ−1 is as
specified in the theorem statement.



Remark. If Z1, . . . ,Zk are all valid adjustment sets relative to (X,Y ) in G for a linear structural equation model compatible
with a DAG G, we can simplify the diagonal terms ∆Z,ii = E(δ2xzi

δ2yz′
i
) = E(δ2xzi

) E(δ2yz′
i
) due to the independence

between δxzi
and δyz′

i
(see proof of Proposition 3.1 in Supplement from Henckel et al. [2022]). Therefore, the corresponding

terms are ΣZ,ii = E(δ2yz′
i
)/E(δ2xzi

). It can also be shown that β̂yx.z is root-n consistent for the total effect τyx for any valid
adjustment set Z [Nandy et al., 2017]. In this case, in order to apply the central limit theorem separately on every entry
of (n−1/2⟨δxz1

, δyz′
1
⟩, . . . , n−1/2⟨δxzk

, δyz′
k
⟩)⊤, we only need the finite variance assumption for the error terms ϵ of the

linear structural equation model. In such a model, both δxzi
and δyz′

i
can be expressed as linear functions of the error terms,

say θ⊤
i ϵ and ξ⊤i ϵ. Furthermore,

Var(δxzi
δyz′

i
) = E(δ2xzi

δ2yz′
i
)− [E(δxzi

δyz′
i
)︸ ︷︷ ︸

=0

]2

= E(δ2xzi
) E(δ2yz′

i
) = E(θ⊤

i ϵ)
2 E(ξ⊤i ϵ)

2, (2)

due to the independence between δxzi
and δyz′

i
. The order of each ϵvi term cannot be larger than 2 in (2) for all Vi ∈ V.

Therefore, Var(δxzi
δ′yzi

) is finite for all Zi whenever E(ϵ2vi) <∞ for all Vi ∈ V.

We also show that a consistent estimator of the covariance matrix can be obtained by plugging in the sample residuals.

Lemma 3 (Consistency of plug-in estimator of ΣZ ). Consider the setting in Lemma 3. The plug-in estimator Σ̂Z of ΣZ
with entries

Σ̂Z,ij =
n
∑n

s=1 rxzi,s · ryz′
i,s
· rxzj ,s · ryz′

j ,s

∥rxzi∥2∥rxzj∥2
,

for all 1 ≤ i, j ≤ k, is consistent.

Proof of Lemma 3. Consider

Σ̂Z,ij =
n−1

∑n
s=1 rxzi,s · ryz′

i,s
· rxzj ,s · ryz′

j ,s

n−1∥rxzi
∥2n−1∥rxzj

∥2
.

The denominator converges in probability to E(δ2xzi
) E(δ2xzj

) by the proof of Lemma 3. The numerator can be written as

n−1
n∑

s=1

rxzi,sryz′
i,s
rxzj ,sryz′

j ,s
= n−1

n∑
s=1

[
(δxzi,s − Z⊤

i,s(β̂xzi
− βxzi

))(δyz′
i,s
− Z

′⊤
i,s(β̂yz′

i
− βyz′

i
))

(δxzj ,s − Z⊤
j,s(β̂xzj

− βxzj
))(δyz′

j ,s
− Z

′⊤
j,s(β̂yz′

j
− βyz′

j
))
]

= n−1
n∑

s=1

δxzi,sδyz′
i,s
δxzj ,sδyz′

j ,s
+R,

where the remainder term R contains the rest of the products from the expansion: 1 product with no δ-term, 4 products with
1 δ-term, 6 products with 2 δ-terms and 4 products with 3 δ-terms. Below we will show that the remainder term R

p→ 0,
and it follows that the numerator converges in probability to E(δxzi

δyz′
i
δxzj

δyz′
j
). By the continuous mapping theorem,

Σ̂Z,ij
p→ ΣZ,ij follows.

We will discuss one case from each category, as the results can be shown similarly for other products in the same category.
The use of parentheses in the subscript denotes a particular entry of a vector. For example, Zi(t),s is the t-th entry of the
s-th observation Zi,s and β̂xzi(t) is the t-th entry of the vector β̂xzi

. With the finite fourth moment assumption on V,
β̂xzi(t)

p→ βxzi(t) and β̂yz′
i(t)

p→ βyz′
i(t)

for any Zi and 1 ≤ t ≤ |Zi|.



No δ-term.

n−1
n∑

s=1

Z⊤
i,s(β̂xzi

− βxzi
)Z

′⊤
i,s(β̂yz′

i
− βyz′

i
)Z⊤

j,s(β̂xzj
− βxzj

)Z
′⊤
j,s(β̂yz′

j
− βyz′

j
)

=
∑

t,u,v,w

(
n−1

n∑
s=1

Zi(t),sZ
′
i(u),sZj(v),sZ

′
j(w),s

)
(β̂xzi(t) − βxzi(t))(β̂yz′

i(u)
− βyz′

i(u)
)

(β̂xzj(v) − βxzj(v))(β̂yz′
j(w) − βyz′

j(w))

p→
∑

t,u,v,w

const · 0 · 0 · 0 · 0

= 0,

where 1 ≤ t ≤ |Zi|, 1 ≤ u ≤ |Z′
i|, 1 ≤ v ≤ |Zj |, 1 ≤ w ≤ |Z′

j |, the constant term E(Zi(t)Z
′
i(u)Zj(v)Z

′
j(w)) exists due to

the finite fourth moment assumption on V.

One δ-term.

− n−1
n∑

s=1

δxzi,sZ
′⊤
i,s(β̂yz′

i
− βyz′

i
))Z⊤

j,s(β̂xzj
− βxzj

)Z
′⊤
j,s(β̂yz′

j
− βyz′

j
)

=
∑
u,v,w

(
n−1

n∑
s=1

δxzi,sZ
′
i(u),sZj(v),sZ

′
j(w),s

)
(β̂yz′

i(u)
− βyz′

i(u)
)(β̂xzj(v) − βxzj(v))(β̂yz′

j(w) − βyz′
j(w))

p→
∑
u,v,w

const · 0 · 0 · 0

= 0,

where 1 ≤ u ≤ |Z′
i|, 1 ≤ v ≤ |Zj |, 1 ≤ w ≤ |Z′

j |, the constant term E(δxzi
Z ′
i(u)Zj(v)Z

′
j(w)) exists due to the finite fourth

moment assumption on V.

Two δ-terms.

n−1
n∑

s=1

δxzi,sδyz′
i,s
Z⊤

j,s(β̂xzj
− βxzj

)Z
′⊤
j,s(β̂yz′

j
− βyz′

j
)

=
∑
v,w

(
n−1

n∑
s=1

δxzi,sδyz′
i,s
Zj(v),sZ

′
j(w),s

)
(β̂xzj(v) − βxzj(v))(β̂yz′

j(w) − βyz′
j(w))

p→
∑
v,w

const · 0 · 0

= 0,

where 1 ≤ v ≤ |Zj |, 1 ≤ w ≤ |Z′
j |, the constant term E(δxzi

δyz′
i
Zj(v)Z

′
j(w)) exists due to the finite fourth moment

assumption on V.

Three δ-terms.

− n−1
n∑

s=1

δxzi,sδyz′
i,s
δxzj ,sZ

′⊤
j,s(β̂yz′

j
− βyz′

j
)

=
∑
w

(
n−1

n∑
s=1

δxzi,sδyz′
i,s
δxzj ,sZ

′
j(w),s

)
(β̂yz′

j(w) − βyz′
j(w))

p→
∑
w

const · 0

= 0,

where 1 ≤ w ≤ |Z′
j |, the constant term E(δxzi

δyz′
i
δxzj

Z ′
j(w)) exists due to the finite fourth moment assumption on V.

Remark. If the Zi’s are valid adjustment sets, the diagonal terms simplify to (Σ̂Z)ii = ∥ryz′
i
∥22/∥rxzi

∥22, and their
convergence follows by the proof of Lemma 3 on the denominator.



B.3 PROOF OF PROPOSITION 7

Proof. The proof aims to show that the half-vectorised asymptotic covariance matrix estimator Σ̂Z , after subtracting their
true values in ΣZ , will converge to a zero-mean normal distribution.

For the (i, j)-th entry, we write

n1/2(Σ̂Z,ij −ΣZ,ij) =
n−1/2

∑n
s=1 rxzi,sryz′

i,s
rxzj ,sryz′

i,s

n−1
∑n

s=1 r
2
xzi,sn

−1
∑n

s=1 r
2
xzj ,s

−
n1/2 E(δxzi

δyz′
i
δxzj

δyz′
i
)

E(δ2xzi
) E(δ2xzj

)

=
N

E(δ2xzi
) E(δ2xzj

)n−1
∑n

s=1 r
2
xzi,sn

−1
∑n

s=1 r
2
xzj ,s

.

The numerator N of the expression above is expanded as

E(δ2xzi
) E(δ2xzj

)n−1/2
n∑

s=1

rxzi,sryz′
i,s
rxzj ,sryz′

i,s
− E(δxzi

δyz′
i
δxzj

δyz′
j
)n1/2n−1

n∑
s=1

r2xzi,sn
−1

n∑
s=1

r2xzj ,s

= E(δ2xzi
) E(δ2xzj

)n−1/2
n∑

s=1

δxzi,sδyz′
i,s
δxzj ,sδyz′

i,s
− E(δxziδyz′

i
δxzj

δyz′
j
)n1/2n−1

n∑
s=1

δ2xzi,sn
−1

n∑
s=1

δ2xzj ,s +R,

where R collects the remainder term resulting from replacing the sample residuals with population residuals.

We now subtract and add back the expected squared population residuals from the average squared population residuals.
That is,

n1/2(Σ̂Z,ij −ΣZ,ij) = E(δ2xzi
) E(δ2xzj

)n−1/2
n∑

s=1

δxzi,sδyz′
i,s
δxzj ,sδyz′

i,s

− E(δxzi
δyz′

i
δxzj

δyz′
j
)n1/2

(
n−1

n∑
s=1

δ2xzi,s − E(δ2xzi
)

)(
n−1

n∑
s=1

δ2xzj ,s − E(δ2xzj
)

)

− E(δxzi
δyz′

i
δxzj

δyz′
j
)n−1/2

n∑
s=1

(
E(δ2xzi

)δ2xzj ,s + E(δ2xzj
)δ2xzi,s

)
+ E(δxzi

δyz′
i
δxzj

δyz′
j
)n1/2 E(δ2xzi

) E(δ2xzj
) +R

= n−1/2
n∑

s=1

[
E(δ2xzi

) E(δ2xzj
)δxzi,sδyz′

i,s
δxzj ,sδyz′

i,s

− E(δxziδyz′
i
δxzjδyz′

j
)
(
E(δ2xzi

)δ2xzj ,s + E(δ2xzj
)δ2xzi,s

)
+E(δxziδyz′

i
δxzjδyz′

j
) E(δ2xzi

) E(δ2xzj
)
]
+R′.

The first term converges to a zero-mean normal distribution by the central limit theorem and the finite fourth moment
assumption on V. The remainder term R = op(1) by analogous arguments to the ones used in the proof of Lemma 3. The
second term on the second to last line disappears asymptotically, which entails that R′ = op(1).

The asymptotic covariance between two entries in vech(Σ̂Z)

a.Cov(n1/2(Σ̂Z,ij −ΣZ,ij), n
1/2(Σ̂Z,kl −ΣZ,kl)) =

γij,kl
ωij,kl

,



where

γij,kl := E(δ2xzi
) E(δ2xzj

) E(δ2xzk
) E(δ2xzl

) Cov(δxzi
δyz′

i
δxzj

δyz′
j
, δxzk

δyz′
k
δxzl

δyz′
l
)

− E(δ2xzi
) E(δ2xzj

) E(δ2xzk
) E(δxzk

δyz′
k
δxzl

δyz′
l
) Cov(δxzi

δyz′
i
δxzj

δyz′
j
, δ2xzl

)

− E(δ2xzi
) E(δ2xzj

) E(δ2xzl
) E(δxzk

δyz′
k
δxzl

δyz′
l
) Cov(δxzi

δyz′
i
δxzj

δyz′
j
, δ2xzk

)

− E(δ2xzi
) E(δ2xzk

) E(δ2xzl
) E(δxzi

δyz′
i
δxzj

δyz′
j
) Cov(δxzk

δyz′
k
δxzl

δyz′
l
, δ2xzj

)

− E(δ2xzj
) E(δ2xzk

) E(δ2xzl
) E(δxzi

δyz′
i
δxzj

δyz′
j
) Cov(δxzk

δyz′
k
δxzl

δyz′
l
, δ2xzi

)

+ E(δxzi
δyz′

i
δxzj

δyz′
j
) E(δxzk

δyz′
k
δxzl

δyz′
l
) E(δ2xzi

) E(δ2xzk
) Cov(δ2xzj

, δ2xzl
)

+ E(δxzi
δyz′

i
δxzj

δyz′
j
) E(δxzk

δyz′
k
δxzl

δyz′
l
) E(δ2xzi

) E(δ2xzl
) Cov(δ2xzj

, δ2xzk
)

+ E(δxzi
δyz′

i
δxzj

δyz′
j
) E(δxzk

δyz′
k
δxzl

δyz′
l
) E(δ2xzj

) E(δ2xzk
) Cov(δ2xzi

, δ2xzl
)

+ E(δxzi
δyz′

i
δxzj

δyz′
j
) E(δxzk

δyz′
k
δxzl

δyz′
l
) E(δ2xzj

) E(δ2xzl
) Cov(δ2xzi

, δ2xzk
) and

ωij,kl := [E(δ2xzi
)]2[E(δ2xzj

)]2[E(δ2xzk
)]2[E(δ2xzl

)]2.

Analogous to the proof of Lemma 3, the joint normality follows by the multivariate Central Limit Theorem, which we can
apply due to Slutsky’s Theorem and the assumption that the fourth moments of the errors are finite.

Define a deterministic mapping for subscript g(a) = (ij), a = 1, 2, . . . , k(k + 1)/2 such that it maps the a-th element of
vech(ΣZ) to the (i, j)-th entry of ΣZ . The asymptotic covariance matrix F of vech(Σ̂Z) is a k(k + 1)/2× k(k + 1)/2
matrix whose entries are related to the expression of ω·,· and γ·,· by the mapping g(·) such that

Fab =
γg(a),g(b)

ωg(a),g(b)
,

for 1 ≤ a, b ≤ k(k + 1)/2. The asymptotic covariance matrix C of vech(∆̂Z) follows from the linear relationship
vech(∆Z) = Πvech(ΣZ).

Remark. Again we discuss the special situation where the Zi’s are valid adjustments sets. In this case, the diagonal terms

n1/2(Σ̂Z,ii −ΣZ,ii) =
n1/2n−1

∑n
s=1 r

2
yz′

i,s

n−1
∑n

s=1 r
2
xzi,s

−
E(δ2yz′

i
)

E(δ2xzi
)

=
n−1/2

∑n
s=1[E(δ

2
xzi

)r2yz′
i,s
− E(δ2yz′

i
)r2xzi,s]

E(δ2xzi
)n−1

∑n
s=1 r

2
xzi,s

.

The numerator

n−1/2
n∑

s=1

[E(δ2xzi
)r2yz′

i,s
− E(δ2yz′

i
)r2xzi,s] = n−1/2

n∑
s=1

[
E(δ2xzi

)(δxzi,s − Z
′⊤
i,s(β̂yz′

i
− βyz′

i
))2

− E(δ2yz′
i
)(δxzi,s − Z⊤

i,s(β̂xzi
− βxzi

))2
]

= n−1/2
n∑

s=1

[E(δ2xzi
)δ2xzi,s − E(δ2yz′

i
)δ2xzi,s] +R

d→ N(0, [E(δ2xzi
)]2 Var(δ2yz′

i
) + [E(δ2yz′

i
)]2 Var(δ2xzi

)),

where we can apply the central limit theorem because to the first term because E(E(δ2xzi
)δ2yz′

i,s
− E(δ2yz′

i
)δ2xzi,s) = 0 and

Var(E(δ2xzi
)δ2yz′

i,s
− E(δ2yz′

i
)δ2xzi,s) = [E(δ2xzi

)]2 Var(δ2yz′
i
) + [E(δ2yz′

i
)]2 Var(δ2xzi

). The remainder term R = op(1) by
analogous arguments used in the proof of Lemma 3. Similarly, the denominator E(δ2xzi

)n−1
∑n

s=1 r
2
xzi,s converges in

probability to [E(δ2xzi
)]2. Then by Slutsky’s Theorem,

n1/2(Σ̂Z,ii −ΣZ,ii)
d→ N

(
0,

[E(δ2xzi
)]2 Var(δ2yz′

i
) + [E(δ2yz′

i
)]2 Var(δ2xzi

)

[E(δ2xzi
)]4

)
.
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Proof of Theorem 6. Lemma 3 states that n1/2(β̂yx.Z − βyx.Z) is asymptotically normal. We first show that to quantify
the degrees of freedom of a Wald-type statistic, one only needs to look at the rank of covariance matrix ∆Z = ΓΣZΓ

⊤.

Suppose rank(∆Z) = r0 ≤ l where l = k − 1. Consider the eigendecomposition of ∆Z = QΦQ⊤, where Q =
(q1 · · · ql) is the orthonormal matrix containing the eigenvectors of ∆Z , and Φ = diag(ϕ1, . . . , ϕl) with eigenvalues
ϕ1 ≥ · · · ≥ ϕr0 > ϕr0+1 = · · · = ϕl = 0. It can be verified that the (unique) Moore-Penrose inverse of ∆Z is defined as

∆†
Z =

r0∑
s=1

ϕ−1
j qsq

⊤
s ,

because of the semi-positive definiteness. Under H0 : Γβyx.Z = 0, denote n1/2Γβ̂yx
d→ G ∼ N(0,∆Z). For all

1 ≤ s ̸= t ≤ r0, Cov(q⊤
s G,q⊤

t G) = q⊤
s ∆Zqt = 0. By joint normality of G, q⊤

s G and q⊤
t G are independent. Moreover,

since q⊤
s G ∼ N(0, ϕs),

n(Γβ̂yx.Z)
⊤∆†

Z(Γβ̂yx.Z) =

r0∑
s=1

ϕ−1
s (q⊤

s n
1/2Γβ̂yx.Z)

2

d→
r0∑
s=1

ϕ−1
s (q⊤

s G)2 ∼ χ2
r0 . (3)

The consistency of r̂, i.e., limn→∞ P(|r̂ − r0| < ϵ) = 1, ∀ϵ > 0, implies that limn→∞ P(r̂ = r0) = 1 when taking ϵ < 1,
since both r̂ and r0 are integer-valued.

Since ∆̂Z is positive semidefinite, its spectral decomposition is P̂Λ̂P̂⊤, where Λ̂ = diag(λ̂1, . . . , λ̂k) with λ̂1 ≥ · · · ≥
λ̂k ≥ 0. The rank-r̂ spectral approximation of ∆̂Z is then P̂Λ̂r̂P̂

⊤, where Λ̂r̂ = diag(λ̂r̂,1, . . . , λ̂r̂,r̂, 0, . . . , 0). Following
Weyl’s inequality [Stewart, 1998] and Proposition 7, we have Λ̂

p→ Λ since the asymptotic covariance matrix of vech(∆̂Z)

is finite. We now show that Λ̂r̂
p→ Λ. For any ℓ ∈ {1, . . . , k},

lim
n→∞

P(|λ̂r̂,ℓ − λ̂ℓ| < ϵ)

= lim
n→∞

P(|λ̂r̂,ℓ − λ̂ℓ| < ϵ | r̂ = r0)P(r̂ = r0)

+ lim
n→∞

P(|λ̂r̂,ℓ − λ̂ℓ| < ϵ | r̂ ̸= r0)P(r̂ ̸= r0)

= lim
n→∞

P(|λ̂r0,ℓ − λ̂ℓ| < ϵ | r̂ = r0).

If ℓ ≤ r0, λ̂r0,ℓ = λ̂ℓ and P(|λ̂r0,ℓ − λ̂ℓ| < ϵ | r̂ = r0) = 1. Otherwise if ℓ > r0, limn→∞ P(|λ̂r0,ℓ − λ̂ℓ| < ϵ | r̂ = r0) =

limn→∞ P(|λ̂ℓ| < ϵ | r̂ = r0) = 1 because λ̂ℓ
p→ λℓ = 0. Hence, λ̂r̂,ℓ

p→ λ̂ℓ for all ℓ. Since all entries of P̂ are bounded by
1, ∆̂Z,r̂ − ∆̂Z = P̂(Λ̂r̂ −Λ)P̂⊤ p→ 0. Then ∆̂Z,r̂

p→∆Z by consistency of ∆̂Z .

The rank of ∆̂Z,r̂ is equal to r̂ by construction. With the condition that P(rank(∆̂Z,r̂) = rank(∆Z))→ 1, it follows from

Theorem 2 in Andrews [1987] that ∆̂
†
Z,r̂

p→∆†
Z . By Slutsky’s theorem, the convergence in distribution in (3) still holds if

we use a consistent estimator ∆̂
†
Z,r̂ of ∆†

Z instead. Therefore, n(Γβ̂yx.Z)
⊤∆̂

†
Z,r̂(Γβ̂yx.Z)

d→ χ2
r0 .

B.5 PROOF OF LEMMA 8

Lemma 4 (Modified Lemma D.1 in Henckel et al. [2022]). Consider a causal DAG G = (V,E) such that X,Y ∈ V and
that Z ⊂ V \ {X,Y } is a valid adjustment set relative to (X,Y ) in G. Given a partition Z = Z1 ∪ Z2, if X ⊥G Z1 | Z2,
then Z2 is a valid adjustment set relative to (X,Y ) in G.

Theorem 5 (Spirtes, 1995). Consider DAG G containing X , Y and Z, where X ̸= Y and Z does not contain X or Y , X is
d-separated from Y given Z if and only if the partial correlation coefficient ρxy.z = 0 for all linear structural equation
models compatible with G.



Corollary 6. Consider nodes X and Y , and a set Z in a DAG G. Then X is d-separated from Y given Z if and only if
βyx.z = 0 for some linear structural equation model compatible with and faithful to G.

Lemma 7. Consider a causal DAG G = (V,E) and let V follow a linear structural equation model compatible with G. Let
ϵ = {ϵv1 , ϵv2 , . . . , ϵvp} be the set of independent errors from the linear structural equation model, where p is the number of
nodes in G. Given two nodes X,Y ∈ V such that Y ∈ de(X,G) and any valid adjustment set Z relative to (X,Y ) in G, the
population regression residual δyz′ is a linear combination of the error terms ϵ, in which the coefficient of ϵy is 1.

Proof. We refer to the proof of Lemma B.4 in Henckel et al. [2022]. The residual δyz′ can be written as a linear combination
of errors. In particular, the coefficient of ϵY is

τyy −
∑

N∈de(Y,G)∩Z′

βyn.z′
−n

τny.

Since Z is a valid adjustment set relative to (X,Y ) in G, it cannot contain descendants of Y , which are forbidden nodes.
Then the set de(Y,G)∩Z′ is empty, because X /∈ de(Y,G). The result is immediate using the convention that τyy = 1.

We are now ready to present the proof of Lemma 8.

Proof of Lemma 8. Consider a linear structural equation model that is faithful to G. We will first only consider the minimal
valid adjustment sets Z1, . . . ,Zk in the collection Z . The first step of the proof is to show that the regression residuals
(δxz1

, . . . , δxzk
) cannot be linearly dependent. Suppose on the contrary that there is a linear combination ℓ =

∑
i αiδxzi

such
that ℓ = 0 for some α1, . . . , αk not all equal to 0. Without loss of generality, suppose that α1 ̸= 0. Consider the first minimal
valid adjustment set Z1. It contains at least one unique node N /∈ ∪2≤j≤kZj . We can thus write δxz1 = X−β⊤

xz1
Z1, where

βxz1
is the population OLS regression coefficient of X on Z1. Since Z1 is a minimal adjustment set, node N is d-connected

with X in G given Z1 \ {N} by Lemma 6. It follows from Corollary 8 that the regression coefficient βxn.z1,−n
of N in

βxz1
cannot be zero. In this case, expanding δxzi

into X − β⊤
xzi

Zi and rearranging the terms, the equation ℓ = 0 can be
expressed equivalently as

N =
1

α1βxn.z1,−n

α1

X −
∑

V ∈Z1\{N}

βxv.z1,−v
V

+
∑
i ̸=1

αi(X − β⊤
xzi

Zi)

 =
∑
V ̸=N

γvV, (4)

where γv = −(α1βxn.z1,−n)
−1
(∑

i I(V ∈ Zi)βxv.zi,−v

)
for V ̸= X and γx = (α1βxn.z1,−n)

−1
∑

i αi. Equation (4)
cannot hold due to the fact that the covariance matrix of V is non-singular. Therefore, we conclude that ℓ ̸= 0 when α1 ̸= 0.
On the contrary, when α1 = 0, the argument above can be repeated for minimal adjustment sets Z2 with α2 ̸= 0, so on and
so forth until αk ̸= 0. Since the linear combination ℓ cannot evaluate to zero whenever αi ̸= 0 for any i ∈ {1, . . . , k}, the
inequality ℓ ̸= 0 holds generally for all αi’s not all equal to zero.

The second step is to show that the regression residual products (δxz1
δyz′

1
, . . . , δxzk

δyz′
k
) cannot be linearly dependent

either. Lemma 9 states that each δyz′
i

contains the error term ϵy . For any valid adjustment set Zi, δyz′
i
⊥⊥ δxzi

(see proof of
Proposition 3.1 in Supplement from Henckel et al. [2022]). Therefore, δxzi , when written in the form of error terms only,
cannot contain ϵy . Consider now another linear combination ℓ∗ =

∑
i ξiδyz′

i
δxzi . Suppose that ℓ∗ = 0 for some ξi’s not all

equal to 0. We can expand δyz′
i

into ϵy plus some linear combination of the other errors. Singling out the terms involving ϵy
in ℓ∗, we have that

ϵY
∑
i

ξiδxzi = 0, (5)

since ℓ∗ = 0 and ϵy is independent from the other errors. Due to the non-degeneracy of ϵy , the linear combination
∑

i ϵiδxzi

must evaluate to 0 for some ξi’s not all equal to 0. However, this is impossible by independence between δxzi ’s shown in the
first step, and we have reached a contradiction.

Following the proof of Lemma 3, the asymptotic covariance matrix Ψ is precisely the covariance matrix of
(δxz1

δyz′
1
, . . . , δxzk

δyz′
k
)⊤, which is non-singular due to linear independence among δxzi

δyz′
i
’s. Hence, the corresponding

asymptotic covariance matrix ΣZ\nonforb(X,Y,G) also has full rank.

Now we consider the set of non-forbidden nodes. Let N = nonforb(X,Y,G). The d-connection condition of a unique node
N ∈ N and faithfulness ensures a non-zero coefficient in front of N in δxn. Since nonforb(X,Y,G) is a valid adjustment



set relative to (X,Y ) in G, we can repeat the argument above and conclude that the enlarged asymptotic covariance matrix
ΣZ is also non-singular.

When the edge coefficients and the error variances in the linear structural equation model are sampled from an absolutely
continuous distribution P with respect to the Lebesgue measure, the model is faithful with probability 1 [Spirtes et al., 2000].
Therefore, since we showed that for all faithful models ΣZ is invertible our claim follows.

B.6 LEMMA 10 AND ITS PROOF

Lemma 8. Consider nodes X and Y in a DAG G such that Y ∈ de(X,G). Then nonforb(X,Y,G) is a valid adjustment
set relative to (X,Y ) in G.

Proof. Obviously, nonforb(X,Y,G) does not contain any forbidden nodes so it only remains to show that it blocks all paths
from X to Y that are not directed. Note first the only possible path from X to Y that does not contain a non-collider is
X → C ← Y . By assumption de(Y,G) ⊆ forb(X,Y,G) and therefore this path is blocked by nonforb(X,Y,G). Let p
be any other path from X to Y that is not directed. It must therefore contain at least one non-collider. If any non-collider
on p is in nonforb(X,Y,G), p is blocked so suppose this is not the case, i.e., all non-collider on p are in forb(X,Y,G).
Any collider on p must be a descendant of a non-collider on p and is therefore also in forb(X,Y,G). In this case p is again
blocked given nonforb(X,Y,G) and therefore we can assume that p does not contain any colliders and is therefore of the
form X ← · · · ← F → · · · → Y . But any node in forb(X,Y,G) that is not X is a descendant of X and therefore F = X
or we would have a violation of the acyclicity assumption. But then p is a directed path which contradicts out starting
assumption for p.

C SIMULATION SETUP

C.1 SIMULATION IN EXAMPLE 9

The definition of the probability-probability plot that we employ in Example 6 is described as follows. Given a sample
of p-values p1, p2, . . . , pR, we sort them in the increasing order: p(1), . . . , p(R). Then we apply the empirical distribution
function to get the empirical probabilities P̂(j) for j = 1, . . . , R, i.e., P̂(j) =

∑R
i=1 I(p(i) ≤ p(j))/R. These are simply j/R

assuming no ties. Since we wish to compare the sample to the standard uniform distribution, whose cumulative distribution
function is F (t) = t for t ∈ [0, 1], we compute the theoretical probabilities P(j) = F (p(j)) = p(j). The plot is finally
obtained by plotting P̂(j) against P(j).

C.2 SIMULATION IN SECTION 4

True graph We generate causal DAGs as Erdős–Rényi random graphs. There are in total 50 DAGs with 10 nodes and
50 DAGs with 15 nodes. The expected neighbourhood size for each DAG is drawn uniformly from {2, 3, 4, 5}, with the
function randDAG in R package pcalg [Kalisch et al., 2012].

Linear structural equation model For our compatible linear structural equation we sample edge coefficients uniformly
from [−2,−0.1] ∪ [0.1, 2]. We then draw an error distribution uniformly from one of four distributions: normal, uniform, t,
or logistic. Note that we use the same error distribution for all errors in the model. We than sample variances for each error
in our model as follows. The variance parameter of the normal errors is sampled uniformly from 0.5 to 1.5. The location
parameter of the uniform errors symmatric around zero is sampled uniformly from 1.2 to 2.1. The t-errors are sampled from
a t-distribution with 5 degrees of freedom and then scaled by

√
3/5 times the square root of a uniformly sampled number

from 0.5 to 1.5. The scale parameter of the logistic errors centred around zero is sampled uniformly from 0.4 to 0.7. By
sampling our parameters this way we ensure that the variances are approximately in the interval from 0.4 to 1.6.

The pair (X,Y ) The node X is randomly drawn from the true DAG G0, where we weight each node in G0 by the number
of its descendants minus 1. Once X is fixed, we sample Y uniformly from the set de(X,G0) \ {X}. The sampling procedure
is repeated until there are at least two valid adjustment sets relative to the selected pair (X,Y ) in the completed partially
directed acyclic graph (CPDAG) of G0.



Factor
Strategy S = Min+ S = All

Hypothesis H∗
0 ¬H∗

0 ∧H0 ¬H0 H∗
0 ¬H∗

0 ∧H0 ¬H0

Expected graph
accuracy

Low 42.82 1.98 55.20 36.14 1.98 61.88
High 85.64 5.48 8.88 84.71 5.27 10.02

Graph
size

10 81.12 3.08 15.8 77.73 3.08 19.19
15 55.24 7.46 37.3 54.31 6.99 38.69

Neighbourhood
size

2 92.18 0.00 7.82 88.83 0.00 11.17
3 93.31 1.49 5.20 88.61 1.24 10.15
4 63.14 6.34 30.53 62.56 6.34 31.10
5 54.52 7.47 38.01 52.49 7.24 40.27

Table 1: Percentage of true hypotheses in the simulation normalised within each combination of factor and strategy.

Causal structure learning We use causal structure learning algorithms to generate large numbers of reasonable candidate
graphs for our test procedure. If the error distribution is normal, we apply Greedy Equivalence Search (GES, Chickering
[2002]) to estimate a completed partially directed acyclic graph (CPDAG). Note that the adjustment criterion also applies to
CPDAGs. Otherwise, we apply LiNGAM [Shimizu, 2014] and estimate a DAG. We use the functions ges and lingam from
R package pcalg with default options [Kalisch et al., 2012].

Untestable cases If there is only one or no adjustment set in the candidate graph G, the proposed test cannot be performed
so we discard these cases. If Y /∈ de(X,G) the valid adjustment sets are simply those sets that d-separate X from Y . As
there is a large literature on conditional independence tests which are more suitable here than our test procedure, we discard
this case. If the rank of ΣZ is estimated to be 1, there is no effective over identifying constraint for our test procedure, so we
discard these cases as well.

AUC calculation Recall that for each candidate graph and sample size for testing n, we perform our test 100 times. We
plot the probability-probability plot between the corresponding 100 p-values and the standard uniform distribution. We
compute the area under the curve (AUC) of this curve with the function auc from R package MESS [Ekstrøm, 2020].

Determining whether null hypothesis is true For every estimated graph and test strategy, we check using the true linear
structural equation model whether the null hypothesis H0 is true or false by computing the population level regression
coefficients and checking whether they are all equal.

Version control The simulation studies were conducted using R version 4.1.1.

C.3 EXTRA SIMULATION RESULTS

Figure 1 and Figure 2 show additional plots of the AUCs from the simulation study. In Figure 1 the AUCs are grouped by
error distribution of the linear structural equation model, graph size of the true graph and expected neighbourhood size of
the true graph, respectively. In Figure 1 they are additionally grouped by the sample size used for testing and the candidate
graph accuracy. The plots show that of the three parameters only the error distribution seems to have an impact on the
performance of our testing procedure. This is likely due to the fact that in cases with normally distributed errors we can only
learn a CPDAG, which contain fewer valid adjustment sets than DAGs.

Table 1 summarises the proportions of candidate graphs (and strategies) where the null-hypothesis H∗
0 is true, the null

hypothesis H∗
0 is false but the actual test null hypothesis H0 is true and both are false, respectively. Unsurprisingly H∗

0 is
true more often for the high accuracy candidate graphs. We can also see that the strategy S = All always result in a higher
proportions of cases where H0 is false when compared to S = Min+, which is due to the fact that S = Min+ consider a
subset of the adjustment sets S = All considers. The problematic cases where ¬H∗

0 ∧H0 generally occur in around 10% of
the cases, and interestingly are more common for the larger graphs than for the smaller graphs.

Minimal adjustment sets in large sparse graphs We ran a small simulation to demonstrate the scalability of the algorithm
for minimal adjustment sets proposed by Van der Zander et al. [2014]. We simulated Erdős–Rényi graphs with graph size
100, 250, 500, 1000, 2500, 5000 and expected neighbourhood size 2, 3, 4, 5. For each combination above, we generated
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Figure 1: Extra violin plots (layered with boxplots) of AUCs from the simulation study.
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Figure 2: Extra violin plots (layered with boxplots) of AUCs from the simulation study, partitioning H0 into H∗
0 and

¬H∗
0 ∧H0.
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Figure 3: Violin plots (layered with boxplots) of AUCs from the simulation study using only the Min+ strategy, partitioning
H0 into H∗

0 and ¬H∗
0 ∧H0.

Cand. graph H∗
0 ¬H∗

0 ∧H0 ¬H0

accuracy n S = Min+ S = All S = Min+ S = All S = Min+ S = All

Low

50 0.0751 0.0909 0.0788 0.0759 0.5570 0.7396
100 0.0636 0.0636 0.0587 0.0385 0.6352 0.7880
200 0.0543 0.0510 0.0488 0.0516 0.7132 0.8341
400 0.0493 0.0466 0.0525 0.0503 0.7887 0.8812

High

50 0.0786 0.0897 0.0711 0.0712 0.1543 0.1697
100 0.0634 0.0587 0.0585 0.0557 0.2026 0.2094
200 0.0559 0.0500 0.0558 0.0476 0.2838 0.3010
400 0.0543 0.0471 0.0492 0.0475 0.3838 0.4152

Table 2: Proportion of hypotheses rejected at level 0.05 in the simulation study.

10 DAGs. For each DAG, we selected the pair of (X,Y ) nodes in the same way as in the main simulation described in
Section 4. We then ran the algorithm to extract minimal adjustment sets relative to (X,Y ) and performed the rest of the
testing procedure according to Algorithm 1. We allowed up to one hour on each DAG to finish the computation of minimal
adjustment sets, and for the graph sizes 100, 250, 500, 1000, 2500, 5000, the percentages of completed algorithm runs were
100%, 57.5%, 92.5%, 100%, 95%, 35%, respectively. The results suggest that the extraction of minimal adjustment sets
is possible even for graphs with sizes in the order of 1000s. We also noted, however, that the space required to store the
adjustment sets can also exceed the 4 GB RAM allocated.

Min+ strategy-only simulation on larger graphs We conducted another simulation on graphs of size 20, 40 and 80
with precisely the same setup as the simulation in Section 4 using only the Min+ strategy. As the Min+ strategy is
computationally much fast than the All strategy we, we were able to increase the graph sizes while keeping the other
configurations unchanged. It is worth pointing out that attempting to run the simulation on graphs of 20 nodes with the All
strategy in the same setup almost always exceeded the one-hour timeout. Figure 3 contains violin plots of AUCs framed by
different parameters used in the simulation and coloured by their respective true hypotheses. The results are very similar to



what we saw in the simulation in Section 4. The small bulks around AUC 0.25 to 0.3 for ¬H∗
0 ∧H0 in Figure 3 are due to a

specific DAG and structural equation model where our procedure was very conservative. One particular simulated graph of
size 80 was not included in the plots due to memory overflow during the computation of the minimal adjustment sets, which
indicated that for graphs larger than 80, memory might have to be taken into account.
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