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A PROOF OF THEOREM 3

Proof. The theorem is based on Theorem 20 of [Sabato and Tishby, 2012]. Using the fact that ψp is 1-Lipschitz for all p
and RS which is shown in the proof of Theorem 20 of [Sabato and Tishby, 2012], we can obtain the target theorem.

B PROOF OF PROPOSITION 5

Proof. First we have that f̂ = f2 ◦ g is a convex function of w′ because f2 is a nondecreasing convex and ⟨w′, z⟩ is a
convex function of w′ (see, e.g., Eq. (3.11) in Boyd and Vandenberghe [2004]). Subsequently, we show that Ψp ◦ f̂ is
a convex function. Without loss of generality, we can consider Ψp as a function Rm → R where m is the size of the
set x′. Ψp is a nondecreasing function in each argument and f̂ is convex and thus Ψp ◦ ĥ is convex. Finally, because
−Ψp({f2(⟨w′, z⟩) | z ∈ x′}) is concave and f1 is nonincreasing convex, f1(−Ψp({f2(⟨w′, z⟩) | z ∈ x′}) is convex Boyd
and Vandenberghe [2004].

C PROOF OF PROPOSITION 6

Proof. Because f1(c) is a homogeneous function of degree 1 for c ∈ [−1, 1], we have f1(−Ψp({f2(⟨w′, z⟩) | z ∈ x′})) =
−f1(Ψp({f2(⟨w′, z⟩) | z ∈ x′})). As we proved in Proof of Proposition 5, f1(−Ψp({f2(⟨w′, z⟩) | z ∈ x′})) is convex.
Moreover, we have f1(Ψp({f2(⟨w′, z⟩) | z ∈ x′})) = −f1(−Ψp({f2(⟨w′, z⟩) | z ∈ x′})) and thus f1(Ψp({f2(⟨w′, z⟩) |
z ∈ x′})) is concave. Therefore, we have that f1(Ψp({f2(⟨w′, z⟩) | z ∈ x′})) + f1(−Ψp({f2(⟨w′, z⟩) | z ∈ x′})) is a DC
function.

D DC ALGORITHM FOR THE REDUCED MIL PROBLEM

The algorithm is shown in Algorithm 1. The subproblem (A-1) is a convex programming problem that can be solved in
polynomial time.

E PROOF OF LEMMA 1

Proof. Based on the assumption of D′, the expected risk RLC
D′ (h) is represented using D, k, and θ as follows:

RLC
D′ (h) = E

(x,y)∼D

θI ((y ̸= h(x))) + (1− θ)
∑
ȳ ̸=y

1

k − 1
I (ȳ = h(x)) .
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Algorithm 1 MIL optimization via DC Algorithm

Inputs:
S′, λ

Initialize:
w′

0 ∈ Rd′

for t = 1, . . . , (until convergence) do
Compute the subgradient:

st ∈ ∇w′

 ∑
i:yi=−1

f1 (Ψp ({f2 (⟨w′, z⟩) | z ∈ x′i}))


at w′

t−1.
Solve the following subproblem:

w′
t ← arg min

w′:∥w′∥≤C1

λ∥w′∥2 +
∑

i:yi=+1

f1 (Ψp ({f2 (⟨w′, z⟩) | z ∈ x′i}))− s⊤t w′ (A-1)

end for
return wt

Let ρ1 = I (y ̸= h(x)) in RMC
D (h) and let ρ2 = θI ((y ̸= h(x))) + (1 − θ)

∑
ȳ ̸=y

1
k−1I ((ȳ = h(x))) in RLC

D′ (h). We
consider two cases of h for any h ∈ H as follows: For a fixed (x, y), (i) If h(x) = y: ρ1 = 0 and ρ2 = 0, and thus there is
no gap. (ii) If h(x) ̸= y:, the first term of ρ2 is θ and the second term is equal to (1− θ)/(k − 1), because there exists a
unique ŷ : ŷ ̸= y that satisfies ŷ = h(x). Therefore, ρ2 is equal to θ + 1−θ

k−1 . In this case, ρ1 = 1. Thus, we have the bound
k−1

θ(k−2)+1R
LC
D′ (h) = RMC

D (h).

F PROOF OF THEOREM 10

Proof. We use η(x,y) defined in (5.1.1). On the MIL-reduction scheme, suppose that p = ∞; f1(c) = Γ(2cC1C2);
f2(c) = c/2C1C2 (shifting function to [−1,+1]); α(x, (γ, y)) = (x′(x,y), y

′) where x′(x,y) = {η(x,j) − η(x,y) | ∀j ∈ Y\y};
y′ = I(γ = True); for any z ∈ Rkd, G = {g : z 7→ ⟨(w′

1, . . . , w
′
k), z⟩ | w′

j ∈ Rd,∀j ∈ [k], ∥W ′∥ ≤ C1} where

W ′ = (w′
1, . . . , w

′
k) and ∥W ′∥ =

√∑k
j=1 ∥w′

j∥2; β(h′) : x 7→ argmaxj∈[k]⟨w′
j , x⟩. Then, for any (x, y) and h ∈ H,

ℓ′(x′, y′, h′) =f1

(
y′Ψp

(
{f2

(
g(z) | z ∈ x′(x,y)}

)))
=Γ
(
I(γ = True)×Ψ∞

(
{g(z) | z ∈ x′(x,y)}

))
=Γ

(
I(γ = True)×

(
max
j∈Y\y

(⟨wj , x⟩ − ⟨wy, x⟩)
))

=ℓ(x, (γ, y), h).

G MULTI-TASK LEARNING PROBLEM

In multi-task learning, the learner finds a common rule in multiple-tasks, which correctly predicts the outputs of the instances.
For example, in the multi-classification-task problem, there are three different binary classification tasks for image data, cat
or dog, car or train, and apple or tomato.



Problem setting Let X ⊆ Rd be an input space and Y ∈ {−1, 1} be an output space. We assume that the
learner has T different tasks with different data distributions. The learner receives T sets of samples S = S1, . . . , ST

where St = ((xt1, y
t
1), . . . , (x

t
n, y

t
n)) is drawn i.i.d. according to unknown distribution Dt. (xt, yt) denote an in-

stance and its label, respectively. Let H = {h : (xt) 7→ sign(⟨wt, x
t⟩) | wt ∈ Rd⟩} be a hypothesis class. Let

ℓ : ((x1, . . . , xT ), (y1, . . . , yT ), h) 7→ 1
T

∑T
t=1 Γ(−yt⟨wt, x

t⟩) where Γ : R → [0, 1] is a convex, nondecreasing and
b-Lipschitz function. The generalization risk and empirical risk are formulated as:

E
t
[RDt

(h)] =
1

T

T∑
t=1

E
(xt,yt)∼Dt

[
Γ(−yt⟨wt, x

t⟩)
]
,

R̂S(h) =
1

T

T∑
t=1

1

n

n∑
i=1

Γ(−yti⟨wt, x
t
i⟩) =

1

n

n∑
i=1

ℓ
(
(x1i , . . . , x

T
i ), (y

1
i , . . . , y

T
i ), h

)
.

Reduction to MIL

Theorem 1. Multi-task learning is MIL-reducible.

Proof. For simplicity, we denote (x1, . . . , xT ) by x and denote (y1, . . . , yT ) by y. On the MIL-reduction scheme, suppose
that p = 1; f1 : f1(a) = −a; f2 is Γ; α(x,y) = (x′(x,y)), y

′) where x′(x,y) = {(y
1x1, 1), . . . , (yTxT , T )}; y′ = −1; G =

{g : (z, t) 7→ ⟨w′
t, z⟩ | ∀j ∈ [T ], w′

t ∈ Rd and ∥W ′∥ ≤ C1} where W ′ = (w′
1, . . . , w

′
T ); β(h

′) : (xt) 7→ sign(⟨w′
t, x

t)⟩.
For any ((x1, . . . , xT ), (y1, . . . , yT )) and h ∈ H, we have that

ℓ′(x′, y′, h′) =f1

(
y′Ψp

({
f2 (g(z)) | z ∈ x′(x,y)

}))
=

1

|x′(x,y)|
∑

(x,t)∈x′
(x,y)

Γ
(
−⟨wt, y

txt⟩
)

=ℓ((x1, . . . , xT ), (y1, . . . , yT ), h)

ERM algorithm

Corollary 2. The reduced ERM of the MIL from multi-task learning is a convex programming problem.

As shown in the proof of Theorem 1, f1 is nonincreasing and y′i = −1 for all i ∈ [n]. Thus, by Proposition 5, if we consider
Γ that is nondecreasing and convex, the reduced MIL problem is a convex programming problem and solved in polynomial
time.

Generalization bound

Corollary 3. We assume that ∥xti∥ ≤ C2 for any i ∈ [n] and t ∈ [T ]. In the reduced problem, the empirical Rademacher
complexity of Ĥ′ is given as follows:

RS′(Ĥ′) = O

(
log
(
2n2T

)
(bC1C2 ln(n))√
n

)
,

where we assume ∥w′∥ ≤ C1.

We can derive the above from the same argument from the proof of Theorem 1. Using Corollary 2, we can obtain the
generalization risk bound for the multi-task learning problem.
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Proof. On the MIL-reduction scheme, suppose that p = ∞; f1 : f1(a) = −a for a ∈ R; f2 is Γ; α(x, y) = (x′(x,y), y
′)

where x′(x,y) = {(−y
1x, 1), . . . , (−ykx, k)}; y′ = −1; G = {g : (z, j) 7→ ⟨w′

j , z⟩ | w′
j ∈ Rd,∀j ∈ [k], ∥W ′∥ ≤ 1} where

W ′ = (w′
1, . . . , w

′
k); W

′ = (w′
1, . . . , w

′
k); β(h

′) : (x, j) 7→ ⟨w′
j , x⟩. For any (x, y) and h ∈ H, we have that

ℓ′(x′, y′, h′) =f1

(
y′Ψp

({
f2 (g(z)) | z ∈ x′(x,y)

}))
= max

(yjx,j)∈x′
(x,y)

Γ
(
−⟨wj , y

jx⟩
)

=ℓ(x, y, h)

I PROOF OF THEOREM 19

Proof. On the MIL-reduction scheme, suppose that p =∞; f1(c) = Γ(2cC1C2); f2(c) = c/2C1C2; α(A, x∗) = (x′, y′)
where x′ = {x− x∗ | x ∈ A\x∗}; y′ = −1; G = {g : z 7→ ⟨w′, z⟩ | ∥w′∥ ≤ C1}; β(h′) : A 7→ argmaxx∈A⟨w′, x⟩. For
any (A, x∗) and h ∈ H, the following holds:

ℓ′(x′, y′, h′) =f1

(
y′Ψp

(
{f2

(
g(z) | z ∈ x′(x,y)}

)))
=Γ
(
−Ψ∞

(
{g(z) | z ∈ x′(x,y)}

))
=Γ

(
−
(

max
j∈A\x∗

(⟨w, x⟩ − ⟨w, x∗⟩)
))

=ℓ(A, x∗, h)

J TOP-1 RANKING LEARNING WITH NEGATIVE FEEDBACK

As an extension of the Top-1 rank learning problem, we consider the following scenario. In practice, some item sets do not
include the user-preferred item. Therefore, we assume that the item sets are partitioned into two types: the item sets that
include the most preferred item and those that do not include the preferred item. For the second type of item set, we assume
that we can receive information on non-preferred items as negative feedback from the user.

More formally, we assume that the target user has a scoring function s and a parameter γi ∈ {−1,+1}, where γ takes
+1 for an item set that includes the preferred item and takes −1 otherwise. The learner receives the sequence of the
sets of items and the chosen item with positive or negative information S = (A1, (x

∗
1, γ1)), . . . , (An, (x

∗
n, γn). γi = +1

indicates that item set Ai includes the preferred item, and γi = −1 indicates that the item set Ai does not include the
preferred item. For the item set Ai with γ = +1, x∗i = maxx∈Ai

s(x). Conversely, for the item set Ai with γ = −1,
x∗i ∈ {A′ = A\x′ | x′ = maxx∈Ai

r(x)}, that is, if γ = −1, the user selects an item except for the best-scored item by s.
Note that we assume that γ is a known parameter only in the training phase. The other settings are the same as those in
Sec. 5.2.2.

A reasonable goal of the learner is to predict the best item from a given set of items even in this setting. Therefore, the learner
can recommend the most preferred item if γ = +1 and can recommend a preferable item if γ = −1. Similar to top-1 ranking
learning, we consider a loss function ℓ : (A, (x∗, γ), h) 7→ Γ(γ(⟨w, x∗⟩ −maxx∈A\x∗⟨w, x⟩)) where Γ : R → [0, 1] is a
convex, nonincreasing and a-Lipschitz function. The generalization risk and empirical risk are formulated as follows:

RD(h) = E
(A,γ)∼D

[ℓ (A, (x∗, γ), h)] ,

R̂S(h) =
1

n

n∑
i=1

ℓ (A, (x∗i , γi), h) ,

where x∗ = argmaxx∈A s(x).



Reduction to MIL

Theorem 4. Top-1 ranking learning with negative feedback is MIL-reducible.

The difference from the top-1 ranking learning is just y′i = −γi, and thus we can easily prove it.

Proof. On the MIL-reduction scheme, suppose that p =∞; f1(c) = Γ(2cC1C2); f2(c) = c/2C1C2; α(A, x∗) = (x′, y′)
where x′ = {x − x∗ | x ∈ A\x∗}; y′ = −γ; G = {g : z 7→ ⟨w′, z⟩ | ∥w′∥ ≤ 1}; β(h′) : A 7→ argmaxx∈A⟨w′, x⟩. For
any (A, x∗) and h ∈ H, the following holds:

ℓ′(x′, y′, h′) =f1

(
y′Ψp

(
{f2

(
g(z) | z ∈ x′(x,y)}

)))
=Γ
(
γ
(
Ψ∞

(
{g(z) | z ∈ x′(x,y)}

)))
=Γ

(
γ

(
max

j∈A\x∗
(⟨w, x⟩ − ⟨w, x∗⟩)

))
=ℓ(A, x∗, h)

Generalization bound

Corollary 5. We assume that ∥x∥ ≤ C2 for any x ∈ Ai∀i ∈ [n]. In the reduced MIL problem, the empirical Rademacher
complexity of Ĥ′ is given as follows:

RS′(Ĥ′) = O

(
log
(
â2n2(k − 1)

) (
2â ln(â2n)

)
√
n

)
,

where â = 2aC1C2 we assume ∥w′∥ ≤ C1.

Using Corollary 2, we can obtain the generalization risk bound for the Top-1 ranking learning with negative feedback.

ERM algorithm

Corollary 6. The reduced ERM of MIL from top-1 ranking learning with negative feedback is a DC programming problem.

In top-1 ranking learning, y′ ∈ {−1, 1}. By the proof of Theorem 4 and by Proposition 6, if we consider a loss function Γ(c)
as a nondecreasing and homogeneous function of degree 1 for c ∈ [−1, 1] such as hinge-loss, we can solve the problem by
DC algorithm as shown in Algorithm 1.

K PROOF OF THEOREM 22

Proof. For the optimization problem (5), we can apply the standard representer theorem (see, e.g., Theorem 6.11 of Mohri
et al. [2018]). We define H1 as the subspace spanned by {⟨z, ·⟩ | z ∈ PS′}, namely, H1 = {w ∈ H | w =

∑
z∈PS′ µzz, µz ∈

R}. For any w ∈ H, we can consider the decomposition w = w1 + w⊥
1 , where w1 ∈ H1, and w⊥

1 ∈ H⊥
1 is its orthogonal

component. Because H1 is a subspace of H, ∥w∥H =
√
∥w1∥2H + ∥w⊥

1 ∥2H ≥ ∥w1∥H. Moreover, by the definition of H1,
⟨w, z⟩ = ⟨w1, z⟩. Thus, f1(y′iΨp({f2(⟨w, z⟩) | z ∈ x′i})) = f1(y

′
iΨp({f2(⟨w1, z⟩) | z ∈ x′i})) and ∥w1∥H ≤ ∥w∥H. This

implies that the optimal solution is contained in H1.

L DC ALGORITHM FOR KERNELIZED EXTENSION

The algorithm is shown in Algorithm 2.



Algorithm 2 MIL optimization via DC Algorithm (kernelized)

Inputs:
S′, λ

Initialize:
µ0 ∈ R|PS′ |

for t = 1, . . . , (until convergence) do
Compute the subgradient:

st ∈ ∇µ

 ∑
i:yi=−1

f1

Ψp

f2
 ∑

v∈PS′

µv⟨v, z⟩

 | z ∈ x′i



at µt−1.
Solve the following subproblem:

µt ← arg min
µ∈R|P

S′ |
λ
∑

v,v̂∈PS′

µvµv̂⟨v, v̂⟩

+
∑

i:yi=+1

f1

Ψp

f2
 ∑

v∈PS′

µz⟨z, x⟩

 | z ∈ x′i



− s⊤t µ

end for
return µt

M EXAMPLE OF THE REDUCTION OF KERNELIZED LEARNING PROBLEMS:
MULTI-CLASS LEARNING

M.1 REDUCTION TO MIL WITH KERNEL

Theorem 7. Multi-class learning with kernel is MIL-reducible.

Proof. For any (x, y), we define

η(x,y) = (0H, . . . , 0H, Φ(x)︸ ︷︷ ︸
y−th block

, 0H, . . . , 0H) ∈ Hk, (A-2)

where 0H is a point in H satisfying ⟨0H, v⟩ = 0 for any v ∈ H. On the MIL-reduction scheme, suppose that p = ∞;
f1(c) = Γ(cC1C2); f2(c) = c/C1C2; α(x, y) = (x′(x,y), y

′) where x′(x,y) = {η(x,j) − η(x,y) | ∀j ∈ Y\y}; y
′ = −1; G =

{g : z 7→ ⟨(w′
1, . . . , w

′
k), z⟩ | ∀j ∈ [k], w′

j ∈ H, ∥W ′∥Hk ≤ C1} where W ′ = (w′
1, . . . , w

′
k), ∥W ′∥Hk =

√∑k
j=1 ∥w′

j∥2H.
Then, for any (x, y) and h ∈ H,

ℓ′(x′, y′, h′) =f1

(
y′Ψp

(
{f2

(
g(z) | z ∈ x′(x,y)}

)))
=Γ
(
−Ψ∞

(
{g(z) | z ∈ x′(x,y)}

))
=Γ

(
−
(
max
j∈Y\y

(
⟨W ′, η(x,j) − η(x,y)⟩

)))
=Γ

(
−
(
max
j∈Y\y

(⟨wj ,Φ(x)⟩ − ⟨wy,Φ(x)⟩)
))

=ℓ(x, y, h)



M.2 CONSTRUCTION OF β

By Theorem 22, W ′ is returned by using µ as

W ′ =
∑

z∈PS′

µzz.

Moreover, w′
j can be represented as:

w′
j =

∑
z[j]∈PS′,j

µz[j]v[j],

where PS′,j = {z[j] | z ∈
⋃n

i=1 x
′
i} and z[j] is j-th block of z. That is, z[j] can be rewritten as Φ(x̃j) for some x̃j . Note

that, because z is based on η(x,y) as shown in (A-2), z[j] is in the Hilbert space H in the original problem. Based on the
relationship between W ′ = (w′

1, . . . , w
′
k) and W = (w1, . . . , wk), therefore, the hypothesis h(x) in the original problem is

obtained by:

h(x) = argmax
j∈[k]
⟨wj ,Φ(x)⟩

=argmax
j∈[k]
⟨w′

j ,Φ(x)⟩

=argmax
j∈[k]

∑
z[j]∈PS′,j

µz[j]⟨z[j],Φ(x)⟩

=argmax
j∈[k]

∑
x̃j

µx̃j
K(x̃j , x).

M.3 REDUCTION OF OTHER KERNELIZED LEARNING PROBLEMS

We can show that the other learning problems presented in this paper can be kernelized. For the other learning problems
introduced in this study, there are two types of the domains of z: the concatenation of the Hilbert vector (complementarily
labeled learning problems, multi-label learning, multi-task learning) and difference of the Hilbert vector (top-1 ranking
learning). For the difference in the Hilbert vector, that is, for z = Φ(x1)− Φ(x2) and Φ(x), ⟨z,Φ(x)⟩ can be computed as:

⟨z,Φ(x)⟩
=⟨Φ(x1)− Φ(x2),Φ(x)⟩
=K(x1, x)−K(x2, x),

and thus h(x) is computed by h′ in polynomial time.

N COMPARISON TO THE EXISTING GENERALIZATION BOUND FOR
COMPLEMENTARILY LABELED LEARNING

Ishida et al. [2017] stated that, for a linear-hypothesis class, the following bound holds with a probability of at least 1− δ:
RMC

D (h) ≤ R̂(h) + ak(k − 1)C1C2√
n

+ (k − 1)
√

8 ln(2/δ)/n. They used the empirical risk R̂(h) for complementarily labeled
instances, which is different from the risk that we defined [see details in Ishida et al., 2017]. According to this difference,
the proposed generalization bound is incomparable to the existing bound. However, we can say that if we achieve a small
empirical risk close to zero, the proposed risk bound is k times tighter than the existing bound.

O ARTIFICIAL DATASETS ON COMPLEMENTARILY LABELED LEARNING

We prepared three datasets, artificial1, artificial2, and artificial3. Each dataset has 1000 training and 1000 test instances. The
number of dimension d is 50. They have 5, 10, and 25 classes, respectively. The feature values of each data is determined
by the following rule: If the data belongs to class j, { (j−1)d

k + 1, . . . , jdk }-th features have the values drawn according to
N (2, 1) and other features have the values drawn according to N (0, 1).
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