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1 SIMULATION RESULTS FOR MULTICLASS LOGISTIC REGRESSION EXPERIMENTS

In this section, we consider the problem of multi-class logistic regression. Given (a, y) ∈ Rd × R, consider the multi-class
logistic model

P(y|a) = exp(a⊤x̄y)/
∑

exp(a⊤x̄l).

Here, the true parameter X̄ = {x̄1, · · · , x̄L}⊤ ∈ RL×d is assumed to be with bounded trace norm. The trace norm
constrained estimator is then given by

arg min
x∈XTR(τ)

E[log
(∑

l

exp(a⊤xl − a⊤xy)
)
],

where XTR(τ) := {X ∈ RL×d :
∑d

j=1 σj(X) ≤ τ} is the ∥.∥tr ball of radius τ . This problem fits in the setup of (1)
with ξ := (a, y) and F (X, ξ) := log

(∑
l exp(a

⊤xl − a⊤xy)
)
. Hence the stochastic gradient G(X, ξ) = ∇F (X, ξ) =

{∇1F (X, ξ), · · · ,∇LF (X, ξ)} ∈ RL×d where

∇lF (X, ξ) = [exp(a⊤x̄y)/
∑

exp(a⊤x̄l)]1{y ̸= l}a.

Note that as the iterates of Algorithm 2 is in the set Xtr(τ), we have ∥x∥ is to be always bounded for all x along the
trajectory of Algorithm 2. Hence, the (1 + α)-th moment of the stochastic gradient, i.e., E[∥G(x, ξ)∥(1+α)], is controlled by
the order of E[∥a∥(1+α)]. When the covariate a is a zero-mean multivariate t-distribution with degrees of freedom in the
interval [1, 2), or is a zero-mean multivariate Pareto distribution with parameter in the interval [1, 2), the stochastic gradients
have infinite variance but finite (1 + α)-th moment. In other words, Assumption 1.4 is satisfied, while Assumption 1.2 is not.

For our experiments, we select the degrees of freedom of t-distribution and the parameter of Pareto distribution to be
1.1. We ran Algorithm 2 with parameters as defined in (8) for 100 trails. We report the results in Figure 1. We report the
performance of Algorithm 2 with the clipped gradient estimator (5) and mini-batch average estimator (4). In our experiments
with multi-class logistic regression, we observe a similar performance as in the linear regression setting – clipped gradient
method performed the best.

2 PLOTS ILLUSTRATING MAIN THEORETICAL RESULTS

In Figure 2, we provide an illustration of the SFO complexity from Theorem 3.6. We set δ = 0.05. We split the scale of ϵ
and α from (0.2, 0.5) and (0.4, 0.9) for better visualization with the large difference in the scale of the vertical (SFO) axis.
We set d = 100 for part (b).

3 CONCENTRATION INEQUALITY FOR MARTINGALES WITH HEAVY-TAILS

We first start with two assumptions that turn out to be equivalent.
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Figure 1: The two left and two right columns corresponds to Pareto, Student-t distributions with d = 20/L = 10 and
d = 100/L = 20 respectively. Top row: Mean (solid lines) over 100 trails of iterations versus f(zN )− f(x∗) for N = 100.
Bottom row: Histogram of f(zN )− f(x∗) for N = 100. Numbers in the legend correspond to heavy-tail index/standard
deviation.

Assumption 3.1. The random variable X ∈ R satisfies

P(|X| ≥ t) ≤ 2 exp

(
−C1

ϑ2
t
1+α
α

)
,

for some ϑ2, C1 > 0 with α ∈ (0, 1], for all t ≥ 0.

Assumption 3.2. The random variable X ∈ R satisfies

E
[
exp

(
C2|X|

1+α
α

1

ϑ2

)]
≤ 2,

for some ϑ2, C2 > 0 with α ∈ (0, 1].

Lemma 3.3. Assumptions 3.1 and 3.2 are equivalent.

Proof. Suppose X satisfies Assumption 3.1 and assume C2 < C1, we have

E
[
exp

(
C2|X|

1+α
α

1

ϑ2

)]
≤ 1 + C2

∫ ∞

0

1 + α

α
t
1
α

1

ϑ2
exp

(
C2t

1+α
α /ϑ2

)
P(|X| > t)dt

≤ 1 + 2C2

∫ ∞

0

1 + α

α
t
1
α

1

ϑ2
exp

(
−(C1 − C2)t

1+α
α /ϑ2

)
dt

= 1 + 2
C2

C1 − C2
.

Then, by taking C2 ≤ C1/3, we obtain E[exp(C2|X|
1+α
α

1
ϑ2 )] ≤ 2. This completes one direction of the equivalence.

Now, suppose X satisfies Assumption 3.2 and assume C2 = 1, then

P(|X| ≥ t) = P
(
exp

(
|X|

1+α
α /ϑ2

)
≥ exp

(
t
1+α
α /ϑ2

))
≤ 2 exp

(
−t

1+α
α /ϑ2

)
.

This proves the other direction of the equivalence, thereby completing the proof.

Lemma 3.4. Let Γ(x) denote the gamma function which is defined via a convergent improper integral: Γ(x) :=∫∞
0

tx−1e−tdt. For a random variable that satisfies Assumption 3.1, the following properties hold:



Figure 2: Visualization of the SFO complexity from Theorem 3.6 part (a) (top row) and part (b) (bottom row). Note that
for smaller values of ϵ (i.e, higher accuracy) and lower values of α (i.e., when only a smaller order moment exists for the
stochastic gradients) the SFO complexity increases rapidly. Note the effect of dimension is pronounced in the bottom row
corresponding to part (b).

(a) For some positive constant C3, the moments satisfy

E|X|k ≤ (2ϑ2)
αk
α+1

αk

α+ 1
Γ

(
αk

α+ 1

)
, and (E|X|k)1/k ≤ C3(ϑ

2k)
α

1+α , for k ≥ 1.

(b) For some positive constant C4, when α+ 1/α ∈ N, we have

E[exp(tX)] ≤
(
1 + C4(t

1+α
α ϑ2)

α
1+α

)
exp

(
t
1+α
α ϑ2

)
.

Furthermore, if E[X] = 0, we have

E[exp(tX)] ≤
(
1 + C4(t

1+α
α ϑ2)

2α
1+α

)
exp

(
t
1+α
α ϑ2

)
.



Figure 3: Comparing the SFO complexity in Theorem 3.6 and Theorem 3.13. Part (a) on the left and part (b) on the right.
Note that in both cases, there is a certain threshold in dimension below which the SFO complexity of Theorem 3.13 is better
than that of Theorem 3.6.

.

Proof. For part (a), without loss of generality assume that C1 = 1. Then, we have

E[|X|k] =

∫ ∞

0

P(|X|k ≥ t)dt

=

∫ ∞

0

P(|X| ≥ t
1
k )dt

≤ 2

∫ ∞

0

exp

(
−t

1+α
αk /ϑ2

)
dt

= (2ϑ2)
αk
α+1

αk

α+ 1

∫ ∞

0

e−uu
αk
α+1−1

du

= (2ϑ2)
αk
α+1

αk

α+ 1
Γ

(
αk

α+ 1

)
.

Then, by the elementary facts that

Γ
( αk

α+ 1

)
≤ (

αk

α+ 1
)

αk
α+1 and k1/k ≤ e1/e,

we have that for any k ≥ 2,

(E[|X|k])1/k ≤ (ϑ2)
α

α+1

(
αk

α+ 1

) α
α+1

e1/e ≤ C(ϑ2k)
α

α+1 ,



which completes the proof of part (a). We now show that part(a) implies part (b). To do so, first note that

E[exp(tX)] ≤ 1 +

∞∑
k=1

tkE[|X|k]
k!

≤ 1 +

∞∑
k=1

tk(ϑ2)
αk
α+1 αk

α+1Γ(
αk
α+1 )

k!

≤ 1 +

∞∑
k=1

(t
α+1
α ϑ2)

αk
α+1 kΓ( αk

α+1 )

k!

= 1 +

α+1
α −1∑
k=1

(t
α+1
α ϑ2)

αk
α+1 kΓ( αk

α+1 )

k!
+

α+1
α −1∑
j=0

∞∑
k=1

(t
α+1
α ϑ2)k+

αj
1+α ( (α+1)k

α + j)Γ(k + αj
1+α )

( (α+1)k
α + j)!

≤ 1 + Γ
( α

1 + α

) α+1
α −1∑
k=1

(t
α+1
α ϑ2)

αk
1+α +

α+1
α −1∑
j=0

(t
α+1
α ϑ2)

αj
1+α

∞∑
k=1

(t
α+1
α ϑ2)kk!

( (α+1)k
α )!

≤ 1 + Γ
( α

1 + α

) (t 1+α
α ϑ2)

α
1+α (1− t

1+α
α ϑ2)

1− (t
1+α
α ϑ2)

α
1+α

+
α

1 + α

α+1
α −1∑
j=0

(t
α+1
α ϑ2)

αj
1+α

∞∑
k=1

(t
α+1
α ϑ2)k

k!

≤ 1 + Γ
( α

1 + α

)1 + α

α
(t

1+α
α ϑ2)

α
1+α + (exp(t

α+1
α ϑ2)− 1)

≤ (1 + C4(t
1+α
α ϑ2)

α
1+α ) exp(t

α+1
α ϑ2),

where C4 = Γ
(

α
1+α

)
1+α
α , thereby completing the proof. The second claim in part (b) follows immediately.

We now state our concentration inequality for heavy-tailed martingales.

Proposition 3.5. Suppose a sequence of random variables {Xk}∞k=1 satisfies, for α ∈ (0, 1],

E [exp(tXk)|X1, . . . , Xk−1] ≤

(
1 + C

(
t
1+α
α ϑ2

k−1

) α
1+α

)
exp

(
t
α+1
α ϑ2

k−1

)
.

If we assume that ϑ2
i ≤ n−α+1

α for all i, then, we have

P

(
n∑

k=1

Xk ≥ λ

)
≤ exp

(
− 1

α+1

(
α

α+1

)α
(λ− C)1+αn

)
.

If we further have E[Xk|X1, . . . , Xk−1] = 0, and ϑ2
i ≤ n−α+1

2α for all i, then

P

(
n∑

k=1

Xk ≥ λ

)
≤ exp(−Cαλ

1+α) when λ ≥
[
Γ

(
α

1 + α

)
1 + α

α

] 1
1−α

.

where Cα is as defined in (15).



Proof. First note that we have the following expression for the moment generating function for the sum:

EX1,...,Xn

[
exp

(
t

n∑
k=1

Xk

)]

= EX1,...,Xn−1

[
EXn

[
exp

(
t

n∑
k=1

Xk

)∣∣∣∣∣X1, . . . , Xn−1

]]

= EX1,...,Xn−1

[
exp

(
t

n−1∑
k=1

Xk

)
EXn

[exp(tXn)|X1, . . . , Xn−1]

]

≤

(
1 + C

(
t
1+α
α ϑ2

n

) α
1+α

)
exp

(
t
1+α
α /ϑ2

n

)
EX1,...,Xn−1

[
exp

(
t

n−1∑
k=1

Xk

)]
.

By repeatedly performing the above calculation for the term on the right hand side of the last inequality, we obtain

EX1,...,Xn

[
exp

(
t

n∑
k=1

Xk

)]
≤ exp

(
t
1+α
α

n∑
k=1

ϑ2
n

)
n∏

k=1

(1 + C(t
1+α
α ϑ2

k)
α

1+α ).

Hence, by Markov’s inequality and by our assumption that ϑ2
i ≤ n−α+1

α for all i, we obtain

P

(
n∑

k=1

Xk ≥ λ

)
= P

(
exp

(
t

n∑
k=1

Xk

)
≥ exp(λt)

)

≤ exp

(
t
1+α
α

n∑
k=1

ϑ2
n − λt

)
n∏

k=1

(
1 + Ctϑ

2α
1+α
k

)

≤ exp

(
t
1+α
α n− 1

α − λt+ Ct

)
≤ exp

(
− 1

α+1

(
α

α+1

)α
(λ− C)1+αn

)

where in the last step we set t =
(

α
α+1 (λ− C)n

1
α

)α
. This proves the first claim. Now, when E[Xk|X1, . . . , Xk−1] = 0

and ϑ2
i ≤ n−α+1

2α , we have

P

(
n∑

k=1

Xk ≥ λ

)
= P

(
exp

(
t

n∑
k=1

Xk

)
≥ exp(λt)

)

≤ exp
(
t
1+α
α

n∑
k=1

ϑ2
n − λt

) n∏
k=1

(
1 + Ct2ϑ

4α
1+α
k

)

≤ exp

(
t
1+α
α − λt+ Ct2

)
≤ exp(−Cαλ

1+α)

where in the penultimate step, we set t =
(

αλ
α+1

)α
, and Cα is defined in (15). Clearly, the last inequality holds when

λ >
[
Γ
(

α
1+α

)
1+α
α

] 1
1−α

.



4 PROOFS FOR SECTION 3

Proof of Lemma 3.2. First, note that by Assumption 3.1, we have

f(zk) ≤ f(wk) + ⟨∇f(wk), zk − wk⟩+
L

2
∥zk − wk∥2

≤ (1− αk)f(zk−1) + αk [f(wk) + ⟨∇f(wk), xk − wk⟩] +
Lα2

k

2
∥xk − xk−1∥2, (1)

where the second inequality follows from the convexity of f , and the definition of the sequence wk and zk from Algorithm 2.
Also note that by definition of the sequence xk from Algorithm 2 (based on Algorithm 1), we have

−µk ≤ ⟨Ḡk + γk(xk − xk−1), u− xk⟩ ∀u ∈ X . (2)

Letting u = x∗ in the above inequality and multiplying it by αk, summing it up with (1), and denoting ∆̄k = Ḡk−∇f(wk),
we obtain

f(zk) ≤ (1− αk)f(zk−1) + αkf(x∗) + αk

[
µk + ⟨∆̄k + γk(xk − xk−1), x∗ − xk⟩

]
+

Lα2
k

2
∥xk − xk−1∥2,

which together with the facts that

∥xk−1 − x∗∥2 = ∥xk − xk−1∥2 + ∥xk − x∗∥22 + 2⟨xk−1 − xk, xk − x∗⟩,

αk⟨∆̄k, x∗ − xk⟩ ≤ αk⟨∆̄k, x∗ − xk−1⟩+
∥∆̄k∥2

2L
+

Lα2
k

2
∥xk − xk−1∥2,

imply

f(zk) ≤ (1− αk)f(zk−1) + αkf(x∗) + αk

[
µk +

2Lαk − γk
2

∥xk − xk−1∥2 + ⟨∆̄k, x∗ − xk−1⟩
]

+
αkγk
2

[
∥xk−1 − x∗∥2 − ∥xk − x∗∥2

]
+
∥∆̄k∥2

2L
.

Recalling the definition of Γ̂k and Γ̂1, subtracting f(x∗) from both sides, dividing by Γ̂k, summing them up, we obtain

f(zN )− f(x∗)

Γ̂N

≤ γ1
2
∥x0 − x∗∥2 +

N∑
i=1

αkµk

Γ̂k

+

N∑
i=1

αk

Γ̂k

⟨∆̄k, x∗ − xk−1⟩+
N∑

k=1

∥∆̄k∥2

2LΓ̂k

, (3)

which completes the proof.

Proof of Theorem 3.3. By Lemma 3.2, we have (3) where we recall that ∆̄k = Ḡk −∇f(wk) with Ḡk as defined in (4).
Now, note that the first two terms on the right hand side of (3) are bounded by the constant 3LD0.

Hence, we proceed to getting a handle on the third and fourth terms in the right hand side of (3) with high probability.
Considering the fourth term, note that according to Assumption 1.2, we have

E
[
exp

{∥∥∆̄k

σ

∥∥2mk

}∣∣∣∣Fk−1

]
≤ exp{1}, (4)

where Fk−1 = σ(ξ1, · · · , ξk−1) is the σ-algebra generated by the random sequence ξ1, · · · , ξk−1. Now, by defining

πk :=
1

Γ̂kmk

, and θk :=
πk∑
k πk

,

we obtain the inequality corresponding to the fourth term on the right hand side of (3):

exp

{
N∑

k=1

θk∥∆̄k∥2mk

σ2

}
≤

N∑
k=1

θk exp

{
∥∆̄k∥2mk

σ2

}
.



Taking expectations on both sides, and using (4) we then obtain

E

exp

∑N

k=1
1

Γ̂kmk
∥∆̄k∥2mk(

σ2
∑N

k=1
1

Γ̂kmk

)

 ≤ N∑

k=1

θkE
[
exp

{
∥∆̄k∥2mk

σ2

}]

=

N∑
k=1

θkE
[
E
[
exp

{
∥∆̄k∥2mk

σ2

} ∣∣∣Fk−1

]]
≤ exp{1}.

It then follows by Markov’s inequality that for all λ ≥ 0, we have

P

(
N∑

k=1

∥∆̄k∥2

Γ̂k

≥ λ
(
σ2

N∑
k=1

1

Γ̂kmk

))
≤ exp{−λ}.

Note that, by our choice of αk and mk, we have 1
Γ̂kmk

≤ D0

N , where D0 = ∥x0 − x∗∥2. Substituting this fact in the above
bound, we hence obtain for all λ ≥ 0,

P

(
N∑

k=1

∥∆̄k∥2

Γ̂k

≥ λσ2D0

)
≤ exp{−λ}. (5)

This completes the high-probability bound for the fourth term on the right hand side of (3). In order to bound the third term
on the right hand side of (3), we first let

ζk =
αk

Γ̂k

⟨∆̄k, x∗ − xk−1⟩.

Then Assumption 1.2 implies that,

E

[
exp

{
ζ2kmk

[αkΓ̂
−1
k D0σ]2

}∣∣∣∣Fk−1

]
≤ E

[
exp

{
mk(∥∆̄∥∥xk−1 − x∗∥)2

[σD0]2

} ∣∣∣∣Fk−1

]
≤ exp{1}.

As E[⟨∆̄k, x∗ − xk−1⟩|Fk−1] = 0 it follows that {ζk}k≥1 is a martingale difference sequence. Then by exponential
concentration inequalities for sums of martingale difference sequence (specifically by [?, Lemma 2]), we have for all λ ≥ 0

P

(
N∑

k=1

ζk ≥ λσD0

[ N∑
k=1

(Γ̂−1
k m

− 1
2

k αk)
2
] 1

2

)
≤ exp{−λ2/3}.

We remark that while more refined exponential inequalities exist in the literature (for example, ?) in our above calculation,
it suffices to use the version from ?. Now, note that, by our choice of αk and mk we have Γ̂−1

k m
− 1

2

k αk ≤ (N/D0)
−1/2.

Substituting this fact in the above inequality, we obtain

P

(
N∑

k=1

ζk ≥ λσD0

)
≤ exp{−λ2/3}. (6)

Combine (3), (5) and (6), we get the high probability bound stated in Theorem 3.3.

For the total number of iterations in Algorithm 1, from the classical analysis of the CG method, one can show that the
FW-gap (−hγ) of problem (3) is bounded by LD2

X /T (where L is the Lipschitz constant and maxx,y∈X ∥y − x∥ ≤ DX )
if the CG method runs for T iterations; see, for example Balasubramanian and Ghadimi [2021]. Since the gradient of the
objective function in (3) is Lipschitz continuous with constant γ, we have

−hγk
(ȳTk

) ≤ γkD
2
X

T
,

which together with the choice of µk and γk in (8), imply that at iteration k of Algorithm 2, we need to run Algorithm 1 for
at most Tk = 4D2

XN/D0 iterations. Therefore, the total number of iterations of Algorithm 1 to find an ϵ-stationary point of
problem (1) is bounded by

∑N
k=1 Tk ≤ 48LD2

X /ϵ. Hence, we obtain the oracle complexity stated in Theorem 3.3.



Proof of Lemma 3.5. We first prove part (a). For Ḡk as defined in (5), we let

Gt := G(wk, ξk,t) and Bt =

(
σ1+αt

log(1/δ)

) 1
1+α

.

Now, by Assumption 1.4, we obtain

∥∥E[Ḡk −∇f(wk)]
∥∥ =

1

mk

∥∥∥∥∥
mk∑
t=1

(E[Gt1{∥Gt∥ ≤ Bt}]−∇f(wk))

∥∥∥∥∥
≤ 1

mk

mk∑
t=1

E[∥Gt∥1{∥Gt∥ ≥ Bt}]

≤ 1

mk

mk∑
t=1

σ1+α

Bα
t

. (7)

Now, note that we have

∥∥∆̄k

∥∥ ≤ 1

mk

∥∥∥∥∥
mk∑
t=1

(∇f(wk)− E[Gt1{∥Gt∥ ≤ Bt}])

∥∥∥∥∥
+

1

mk

∥∥∥∥∥
mk∑
t=1

(E[Gt1{∥Gt∥ ≤ Bt}]−Gt1{∥Gt∥ ≤ Bt})

∥∥∥∥∥
= ∥E[Ḡk −∇f(wk)]∥+

1

mk

∥∥∥∥∥
mk∑
t=1

E[Gt1{∥Gt∥ ≤ Bt}]−Gt1{∥Gt∥ ≤ Bt}

∥∥∥∥∥ .
Furthermore, we also have that

E(∥Gt∥21 {∥Gt∥ ≤ Bt}) ≤ σ1+αB1−α.

Hence, by (7) and by vector-valued Bernstein’s inequality for bounded independent random vectors (see, for example [?,
Corollary 4.1]), we have with probability at least 1− δ,

∥∥∆̄k

∥∥ ≤ 1

mk

mk∑
t=1

σ1+α

Bα
t

+

√
2B1−α

mk σ1+α log(1/δ)

mk
+

Bmk
log(1/δ)

3mk
.

Plugging in the expression for Bt concludes the proof.

The proof of part (b) follows verbatim the proof of part (a) and by noting the fact that Gt/
√
d satisfies Assumption 1.4.

Proof of Theorem 3.6. We first prove part (a). Note that by Lemma 3.2, we can obtain the inequality (3). As before, we
note that the first two terms on the right hand side of (3) are bounded by the constant 3LD0. Hence, we proceed to bound
the last two terms on the right hand side of (3) with a high probability bound.

For the last term, according to Lemma 3.5, we have

E

[
exp

{∥∥∥∆̄k

σ

∥∥∥ 1+α
α

mk

}∣∣∣∣Fk−1

]
≤ C. (8)

where Fk−1 = σ(ξ1, · · · , ξk−1). Now, by defining

πk :=
1

Γ̂km
2α

α+1

k

, and θk :=
πk∑
k πk

,

we obtain the following inequality:

exp


( N∑

k=1

θk

∥∥∥∆̄k

σ

∥∥∥2m 2α
α+1
k

)α+1
2α

 ≤ exp

{
N∑

k=1

θk

∥∥∥∆̄k

σ

∥∥∥ 1+α
α

mk

}
≤

N∑
k=1

θk exp

{∥∥∥∆̄k

σ

∥∥∥ 1+α
α

mk

}
.



By taking expectation on both sides and using (8) we obtain

E

exp



∑N

k=1 Γ̂
−1
k m

− 2α
α+1

k

∥∥∥ ∆̄k

σ

∥∥∥2m− 2α
α+1

k(∑N
k=1 Γ̂

−1
k m

− 2α
α+1

k

)


1+α
2α




≤

N∑
k=1

θkE

[
exp

{∥∥∥∆̄k

σ

∥∥∥ 1+α
α

mk

}]

=

N∑
k=1

θkE

[
E
[
exp

{∥∥∥∆̄k

σ

∥∥∥ 1+α
α

mk

}∣∣∣∣Fk−1

]]
≤ C.

Hence, by Markov’s inequality we have for all λ ≥ 0 that

P


N∑

k=1

∥∥∆̄k

∥∥2
Γ̂k

≥ λ

 N∑
k=1

σ2

Γ̂km
2α
α+1
k


 ≤ C exp{−λ

1+α
2α }.

If we set mk = N
2α+2

α , then we obtain

Γ̂−1
k m

− 2α
α+1

k ≤ D0

N
.

Hence, we have for all λ ≥ 0 that

P

(
N∑

k=1

∥∆̄k∥2

Γ̂k

≥ λσ2D0

)
≤ exp{−λ

1+α
2α }

which equivalently leads to

P

 N∑
k=1

∥∆̄k∥2

Γ̂k

≥ σ2D0 log

(
1

δ

) 2α
1+α

 ≤ δ. (9)

corresponding to the fourth term on the right hand side of (3).

For the third term, again by setting mk = N
2α+2

α and applying Lemma 3.5, we have with probability 1− δ

N∑
i=1

αk

Γ̂k

⟨∆̄k, x∗ − xk−1⟩ ≤ D0σ

N∑
i=1

αk

Γ̂k

(
log(1/δ)

m′
k

) α
α+1
≤ σD0 log

(
1

δ

) α
1+α

(10)

Now, the claim in Theorem 3.6 follows by (3), (9) and (10). The oracle complexity results then follows by our choice of mk

and the argument similar to that used in the proof of Theorem 3.3.

Furthermore, the proof of part (b) follows verbatim the proof of part (a) as G/
√
d satisfies Assumption 1.4.

Proof of Theorem 3.8. We first require a concentration result from Cherapanamjeri et al. [2022] for (6), which we restate
below in our notation.

Lemma 4.1. Suppose G satisfies Assumption 1.5 and d ≲ log(1/δ), then the estimator Ḡk in (6), with ∆̄k := Ḡk−∇f(wk)
satisfies

P

∥∆̄k∥ ≳
(
d

n

) β
1+β

+

(
log(1/δ)

mk

) β
1+β

 ≤ δ, and E
[
exp

{
∥∆̄k∥

1+β
β mk

}]
≤ C.



Note that by Lemma 4.1, we also have

P
(
∥∆̄k∥ ≥ λ

)
≤ C exp

(
−λ

1+β
β mk

)
. (11)

With (11) in hand, the proof of Theorem 3.8 follows verbatim the proof of Theorem 3.6.

Proof of Proposition 3.11. Before proving Proposition 3.11, we introduce an intermediate result regarding the initial
estimator in (9), which is essentially [Cherapanamjeri et al., 2022, Lemma B.1], restated in our notation.

Lemma 4.2. For a given k, let G(wk, ξk,j), for t = 1, . . . ,mk be i.i.d. random vectors satisfying Assumption 1.5 for some

β ∈ (0, 1]. Then the estimator Ĝk as defined by (9), with probability at least 1− e−
mk

50 . satisfies

∥Ĝk −∇f(wk)∥ ≤ 24
√
d.

Now we are ready to prove Proposition 3.11. First, we recall the definition of Ḡk from (10):

Ḡk :=
2

mk

mk/2∑
t=1

min


[(

t
log(1/δ)

) 1
1+β

+ 24

]√
d

∥G(wk, ξk,t)− Ĝk∥
, 1


[
G(wk, ξk,t)− Ĝk)

]
+ Ĝk.

Now, under Assumption 3.10, it is straightforward to see that Ĝk is an unbiased estimator of∇f(wk) and the distribution of
Ĝk is symmetric about ∇f(wk).

Now, we proceed to first prove that Ḡk is unbiased, i.e., E[Ḡk] = ∇f(wk) by showing

E

[
min

{
B

∥G(wk, ξ)− Ĝk∥
, 1

}
[G(wk, ξ)− Ĝk] + Ĝk

]
= ∇f(wk) (12)

for any B ≥ 0 when the distribution of G(wk, ξ) is symmetric about ∇f(wk). Note that without loss of generality, one
can assume that ∇f(wk) = 0. As, if this is not true, we can define U(wk, ξ) = G(wk, ξ)−∇f(wk), for which we have
E[U(wk, ξ)] = 0, and Ûk = Ĝk −∇f(wk), which leads to

E

[
min

{
B

∥G(wk, ξ)− Ĝk∥
, 1

}
[G(wk, ξ)− Ĝk] + Ûk

]
= 0

as we have G(wk, ξ)− Ĝk = U(wk, ξ)− Ûk, which would prove (12) for the general case.

Denoting the distribution of G = G(wk, ξ) by g(x), we immediately have that g(x) = g(−x) and −Ĝk
d∼ Ĝk (i.e., −Ĝk

has the same distribution as Ĝk). Hence, we have for any B ≥ 0,

E
[
G(wk, ξ)1{∥G(wk, ξ)− Ĝk∥ ≤ B}

]
= EĜk

[∫
∥x−Ĝk∥≤B

xg(x)dx

]

= EĜk

[∫
∥x∥≤B

(x+ Ĝk)g(x+ Ĝk)dx

]

= EĜk

[∫
∥x∥≤B

(Ĝk − x)g(Ĝk − x)dx

]

= EĜk

[∫
∥x∥≤B

(Ĝk − x)g(x− Ĝk)dx

]

= EĜk

[∫
∥x∥≤B

(−Ĝk − x)g(x+ Ĝk)dx

]
.



Comparing the equation in the second and last line, we can immediately obtain that

E[G(wk, ξ)1{∥G(wk, ξ)− Ĝk∥ ≤ B}] = 0. (13)

Similarly, we can show that

E

[
1

{
∥G(wk, ξ)− Ĝk∥ ≥ B

}[ B

∥G(wk, ξ)− Ĝk∥
(G(wk, ξ)− Ĝk) + Ĝk

]]
= 0,

which together with (13) proves (12).

Next, we will prove the concentration of Ḡk. As G(wk, ξ) satisfies Assumption 1.5, we have E[∥G(wk, ξ)∥1+β ] ≤ π
2 d

1+β
2 .

Let

Bt =

( t

log(1/δ)

) 1
1+β

+ 24

√d, Gt = G(wk, ξk,t),

and

G̃t = G̃(wk, ξk,t) = min

{
Bt

∥G(wk, ξk,t)− Ĝk∥
, 1

}
[G(wk, ξk,t)− Ĝk] + Ĝk.

As G̃t, for t = 1, . . . ,mk/2 depends on Ĝk, they are only independent conditioned on Ĝk. Hence, conditioned on Ĝk, we
have the following:

∥∥E[Ḡk −∇f(wk)]
∥∥ =

2

mk

∥∥∥∥∥∥
mk/2∑
t=1

(
G̃t −∇f(wk)

)∥∥∥∥∥∥
≤ 2

mk

mk/2∑
t=1

E[(∥Gt∥+ ∥Ĝk∥)1{∥Gt∥ ≥ Bt − ∥Ĝk∥}]

≤ 2

mk

mk/2∑
t=2

(π2 + 24)d
1+β
2

(Bt − Ĝk)α
.

Now, again conditioned on Ĝk, note that we obtain

∥∥∆̄k

∥∥ ≤ ∥∥E[Ḡk −∇f(wk)]
∥∥+ 2

mk

∥∥∥ mk∑
t=1

(E[G̃(wk, ξk,t)]− G̃(wk, ξk,t))
∥∥∥

≤ 2

mk

mk/2∑
t=2

(π2 + 24)d
1+β
2

(Bt − Ĝk)α
+

2

mk

∥∥∥ mk∑
t=1

(E[G̃(wk, ξk,t)]− G̃(wk, ξk,t))
∥∥∥.

Now, by vector-valued Bernstein’s inequality for bounded independent random vectors (see, for example [?, Corollary 4.1]),
and by noting that conditioned on Ĝk we have

E[∥G̃(wk, ξk,t∥2]
∣∣∣∣Ĝk ≤

π

2
d

1+β
2 (B + ∥Ĝk∥)1−β ,

when mk ≥ 100 log(1/δ), we have, with probability at least 1− δ,

∥∥∆̄k

∥∥ ≤
 2

mk

mk/2∑
t=2

(π2 + 24)d
1+β
2

(Bt − Ĝk)α
+

√
4(Bmk

+ Ĝk)1−β π
2 d

1+β
2 log(1/δ)

mk
+

2(Bmk
+ Ĝk) log(1/δ)

3mk

 .

The high-probability statement from Proposition 3.11 then follows by setting Bt and noting that the norm of Ĝk is bounded,
i.e., Ĝk ≤ 24

√
d.



Proof of Theorem 3.13. We first prove part (a). Note that by Lemma 3.2, we can obtain the inequality (3). As before, we
note that the first two terms in the right hand side of (3) are bounded by the constant 3LD0. Hence, we proceed to bound the
last two terms on the right hand side of (3) with a high probability bound.

For the fourth term on the right hand side of (3), using the same approach as in the proof of Theorem 3.6 we have for all
λ ≥ 0 that

P

(
N∑

k=1

∥∆̄k∥2

Γ̂k

≥ λD0d

)
≤ exp

{
−λ

1+α
2α

}
.

Next, by setting mk = N
3α+3
2α , we obtain

Γ̂−1
k m

− 2α
α+1

k ≤ D0

N
.

Hence, we have for all λ ≥ 0 that

P

 N∑
k=1

∥∆̄k∥2

Γ̂k

≥ D0d log

(
1

δ

) 2α
1+α

 ≤ δ. (14)

For the third term in the right hand side of (3), define

ζk :=
αk

Γ̂k

⟨∆̄k, x∗ − xk−1⟩.

As we have that Assumption 1.4 is stronger than Assumption 1.5, Proposition 3.11 and Lemma 3.3 imply that,

E

exp

(

ζk

[αkΓ̂
−1
k D0

√
d]

) 1+α
α

mk


∣∣∣∣∣Fk−1


≤ E

exp
mk

(
∥∆̄∥∥xk−1 − x∗∥

) 1+α
α

(D0

√
d)

1+α
α


∣∣∣∣∣Fk−1

 ≤ 2.

which indicates that ζk satisfies Assumption 3.2. Consequently according to Lemma 3.3 it also satisfies Assumption 3.1. By

setting mk = N
3α+3
2α , we have

1

mk
(Γ̂−1

k αk)
1+α
α ≤ N−α+1

2α .

Now, part (b) of Lemma 3.4 and Proposition 3.5 implies that we have

P

(
N∑

k=1

ζk ≥ λD0

√
d

)
≤ exp{−Cαλ

1+α}, for all λ ≥
[
Γ
(

α
1+α

) 1 + α

α

] 1
1−α

,

where

Cα =

(
α

1 + α

)α

−
(

α

1 + α

)1+α

−
(

α

1 + α

)2α

≥ 0. (15)

The above probability bound, in turn leads to

P

 N∑
k=1

ζk ≥ D0

√
d

log(1

δ

) 1
1+α

 ≤ δ, when (log(1/δ))
1

1+α ≥
[
Γ

(
α

1 + α

)
1 + α

α

] 1
1−α

. (16)

Combining (3) with the high probability bounds in (14) and (16) proves the claim in Theorem 3.13. The oracle complexity
results then follow by our choice of mk and the argument similar to that used in the proof of Theorem 3.3.

Furthermore, the proof of part (b) follows verbatim the proof of part (a) with α replaced by β.



5 SUMMARY OF THE ROBUST MEAN ESTIMATION PROCEDURE
FROM Cherapanamjeri et al. [2022]

For the sake of completeness, we now describe the robust mean-estimation procedure from Cherapanamjeri et al. [2022].
The main algorithm from Cherapanamjeri et al. [2022] is provided in Algorithm 1.

Algorithm 1 OPTIMALMEANEST({G(wk, ξk,j)}mk
j=1)

Input: Data Points {G(wk, ξk,j)}mk
j=1 ∈ Rd, Target Confidence δ

G+ ← Initial Mean Estimate({G(wk, ξk,j)}mk/2
j=1 )

Z ← Produce Bucket Estimates({G(wk, ξk,j)}mk

j=mk/2
, G+, δ)

T ← 106 log dn
Ḡk = Gradient Descent(Z,G+, T )
Return: Ḡk

Algorithm 1 comprises of the following three sub-steps.

1. Data Pruning Step

The following algorithms correspond to the first sub-step. Algorithm 2 compute an initial estimate of the mean which is with
O(
√
d) of the mean and Algorithm 3 use this estimate to filter out data points which are far away from the estimate.

Algorithm 2 Initial Mean Estimate

Input: Set of Data Points {Gi}ni=1

µ̂← argminGi:i≤n min
{
r > 0,

∑n
j=1 1{∥Gj −Gi∥ ≤ r} ≥ 0.6n

}
Return: µ̂

Algorithm 3 Prune Data

Input: Set of Data Points {Gi}ni=1, Mean Estimate G+

τ ← max
(
100n

1
1+β d−

1−β
2(1+β) , 100

√
d
)

C ← {Gi : ∥Gi −G+∥ ≤ τ}
Return: C

2. Data Batching Step

The following algorithm corresponds to the second sub-step. The data points that survive the truncation procedure in the
data pruning stage are then divided into k bins and mean estimates are computed based on sample-averaging in each bin by
Algorithm 4.

Algorithm 4 Produce Bucket Estimates

Input: Set of Data Points {Gi}ni=1, Mean Estimate G+, Target Confidence δ
Y ← Prune Data({Gi}, G+)
m← |Y |
k ← 4000 log 1/δ
Split data points into k buckets with bucket Bi consisting of the points G(i−1)m

k +1, · · · , Gim
k

Zi ←Mean(Bi) ∀i ∈ [k] and Z ← (Zi, · · · , Zk)
Return: Z



3. Median Computation Step

The following algorithms correspond to the third sub-step. The bucket estimates from the previous stage are aggregated
to produce the final estimate following the testing-to-estimation framework. The testing program is defined in MT below.
Algorithms 5 and 6 display the estimation of distance and gradient.

Algorithm 5 Distance Estimation

Input: Data Points Z ∈ Rk×d, Current point x
d = argmaxr>0 MT(x, r, Z) ≥ 0.9k
Return: d

Algorithm 6 Gradient Estimation

Input: Data Points Z ∈ Rk×d, Current point x
d∗ = Distance Estimation(Z, x)
(v,X) = MT(x, d∗, Z)
g ← Top Singular Vector(Xv)
Return: g

The following polynomial and its semidefinite optimization MT(x, r, Z) play a key role in the subsequent analysis.
Intuitively, given a test point x, the problem searches for a direction (v) such that a large proportion of the bucket estimates,
Zi, are far away from x along v. Formally, the polynomial optimization problem, parameterized by x, r and Z, is defined
below:

max

k∑
i=1

bi

Subjectd to b2i = bi

∥v∥2 = 1,

bi(⟨v, Zi − x⟩ − r) ≥ 0 ∀i ∈ [k]

The binary variables bi indicates whether i− th bucket mean Zi is far away along v. However, the binary constraints on bi,
the restriction of v and the final constraint make this problem nonconvex and hard to optimize efficiently. Therefore, they
work with the simidefinite relaxation defined as follows:

max

k∑
i=1

X1,bi

Subjectd to X1,bi = Xbi,bi

d∑
j=1

Xvj ,vj = 1,

⟨vbi , Zi − x⟩ ≥ Xbi,bir ∀i ∈ [k]

X1,1 = 1

X ⪰ 0

where vbi = [Xbi,v1 , · · · , Xbi,vd
]. The matrix X ∈ S(k+d+1)

+ is symbolically indexed by 1 and the variables b1, . . . , bk and
v1, . . . , vd. Here, (v,X) = MT(x, r, Z) refers the optimal value v and solution X of the following semidefinite optimization
problem initialized with x, r and Z:

The estimate above is then used in Algorithm 7 to obtain an improved estimate.



Algorithm 7 Gradient Descent

Input: Bucket Means Z ∈ Rk×d, Initialization G+, Number of Iterations T
x∗, x0 ← G+ and d∗, d0 ←∞
for t = 0, . . . , T do

dt ← Distance Estimation(Z, xt)
gt ← Gradient Estimation(Z, xt)
if dt < d∗ then

x∗ ← xt

d∗ ← dt
end if
xt+1 ← xt +

1
20dtgt

end for
Output: x∗

The overall computational complexity of the algorithm is polynomial in the problem parameters Cherapanamjeri et al.
[2022]. However, from the perspective of implementation, especially on large scale datasets, it is perhaps not efficient.
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