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1 DATA STATISTICS FOR LANGUAGE MODELING

Table 1: Statistics of datasets for language modeling.

DATASET #SENT MIN; MAX; AVG; #WORD
PTB-TRAIN 41,931 2 82 21.2 887,384
PTB-VALID 3,357 2 74 21.0 70,377
PTB-TEST 3,756 2 77 209 78,664

Yahoo-TRAIN 100,000 20 200 78.7 7,872,281
Yahoo-vALID 10,000 20 200 79.1 790,680
Yahoo-TEST 10,000 20 200 78.9 788,673

Yelp-TRAIN 100,000 20 201 96.0 9,603,135
Yelp-VALID 10,000 20 200 96.1 961,392
Yelp-TEST 10,000 20 200 95.7 956,556

Table [T shows the data statistics for three benchmarks for language modeling. PTB-TRAIN contains about 41K sentence,
with an average length of 21.2 words. Both Yahoo-Train and Yelp-Train contain 100K sentences with an average length of
more than 78 words.

2 DIALOG RESPONSE GENERATION ON DAILYDIALOG

Language modeling are typical unconditional text generation tasks. Both text summarization and data2text are conditional
text generation tasks. We use dialogue response generation on DailyDialog [Li et al., 2017] as an example to investigate our
model for conditional text generation. For this task, a dialogue context is given and the goal is to generate an utterance as the
response according to the dialogue context. The following Table 2] shows the results.

Table 2: Conditional text generation results on DailyDialog.

MODEL BLEU-R BLEU-P BLEU-FI1
SEQGAN [YUET AL.,[2017]] 27.0 27.0 27.0
CONDITIONALVAE [ZHAO ET AL.,|2017|] 26.5 22.2 24.2
IVAE; [FANG ET AL., 2019 35.5 23.9 28.5
OURS 30.6 28.6 29.6

Table 2 shows that the conditional VAE gives the worst results. SeqGAN is better than the conditional VAE. iVAEmi gives
better results than simple conditional VAE and SeqGAN. Our model gives better BLEU-P and BLEU-F1 scores than iVAEmi.
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This suggests that our model can be beneficial for dialogue response generation. We believe that our model can also work
for other conditional text generation tasks including text summarization and data2text. We will consider investigating such
settings in future.
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