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A THEORETICAL STATEMENTS

Definition A.1 ((e, n)-clusterable data set). We say that a data set D = {(x;,y;)}1; is (e, n)-clusterable for fixed ¢ > 0
and n € [0, 1] if there exists a partitioning of it into subsets {C1, ..., Ck }, which we call clusters, each with their associated
unit-norm cluster center c;, that satisfy the following conditions:

. U@K:1 Ci; =Dand C; N Cj = @,Vi,j S [K],
* all the points in a cluster lie in the e-neighborhood of their corresponding cluster center, i.e. ||x — ¢;||2 < € forall x € C;

and alli € [K];

* a fraction of at least 1 — n of the points in each cluster C; have the same label, which we call the cluster label and denote
y*(¢;). The remaining points suffer from label noise;

* iftwo cluster C; and C; have different labels, then their centers are 2¢ far from each other, i.e. ||c; — c;l||2 > 2¢;

s the clusters are balanced i.e. for all i € [K], a1 7+ < |Ci| < az g, where a1 and oz are two positive constants.

In our case, for a fixed label ¢ € ), we assume that the set S U (U, ¢) is (e, n)-clusterable into K clusters. We further assume
|Cin(Ugs
ol

that each cluster C; only includes a few noisy samples from (U, ), i.e. ‘ <)l < 7 and that for clusters C; whose

cluster label is not ¢, i.e. y*(¢;) # ¢, it holds that C; N (Upop, ¢) = 0.

We define the matrices C' := [c1, ...,cx]T € REX4 and ¥ := (CCT) O E,4[¢'(Cg)¢' (Cg)T], with g ~ N(0, 1) and
where (5) denotes the elementwise product. We use || - || and A,,,;,, () to denote the spectral norm and the smallest eigenvalue
of a matrix, respectively.

sl le]ls

i () We can write this

For prediction, we consider a 2-layer neural network model with p hidden units, where p >
model as follows:

x = flo; W) = UT¢(Wx), €))

The first layer weights W are initialized with random values drawn from N (0, 1), while the last layer weights v have fixed
values: half of them are set to 1/p and the other half is —1/p. We consider activation functions ¢ with bounded first and
second order derivatives, i.e. |¢/(z)| < T and ¢"(z) < T. We use the squared loss for training, i.e. L(W) = 2 37" (y; —
f(z;; W))? and take gradient descent steps to find the optimum of the loss function, i.e. W41 = W, — nVL(W,), where
the step size is set to 1) ~ ﬁ

In the informal Proposition we use the notation )%N ‘= Apmin(2). Intuitively, 3 can be seen as a kernel matrix
associated with the two-layer neural network, as discussed in|Li et al|[2020]]. In particular, 3 depends on the choice of the
nonlinear activation function of the neural network. For instance, for ReLU activations, A,,;,(2) can be lower bounded like

Amin(E) 2 7%, where p is the minimum distance between two clusters.
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We can now state the following proposition:

Proposition A.1. Assume thatn < §/8 and € < a6\ in(X)? /K2, where § is a constant such that § < D;Qfl‘ and acis a

constant that depends on T'. Then it holds with high probability 1 — 3/ K0 — Ke=194 oyer the initialization of the weights

that the neural network trained on S U (U, c) perfectly fits S, (Ufpy, ¢) and (Uoop, ¢), but not (U, ¢), after T = ¢4 >\,|,|?H(22)
iterations.

This result shows that there exists an optimal stopping time at which the neural network predicts the correct label on all
ID points and the label c on all the OOD points. As we will see later in the proof, the proposition is derived from a more
general result which shows that the early stopped model predicts these labels not only on the points in U but also in an
e-neighborhood around cluster centers. Hence, an ERD ensemble can be used to detect holdout OOD samples similar to the
ones in U, after being tuned on U. This follows the intuition that classifiers regularized with early stopping are smooth and
generalize well.

The clusterable data model is generic enough to include data sets with non-linear decision boundaries. Moreover, notice that
the condition in Proposition[A.1]is satisfied when S U (Urp, c) is (€, )-clusterable and (Uoop, ¢) is e-clusterable and if
the cluster centers of (Upop, ¢) are at distance at least 2¢ from the cluster centers of S U (Urp, ¢). A situation in which
these requirements are met is, for instance, when the OOD data comes from novel classes, when all classes (including the
unseen ones that are not in the training set) are well separated, with cluster centers at least 2e away in Euclidean distance. In
addition, in order to limit the amount of label noise in each cluster, it is necessary that the number of incorrectly labeled
samples in (Uyy, ¢) is small, relative to the size of S.

In practice, we only need that the decision boundary separating (Uoop, ¢) from S is easier to learn than the classifier
required to interpolate the incorrectly labeled (Ujs, ¢), which is often the case, provided that (Uoop, ¢) is large enough and
the OOD samples come from novel classes.

We now provide the proof for Proposition [A.T}

Proof. We begin by restating a result from |Li et al.| [2020]:

Theorem A.1 ([Li et al} 2020]). Let D := {(z;,y;)} € R? x Y be an (e,n)-clusterable training set, with ¢ <
c10Amin(X)?/K? and n < §/8, where § is a constant that satisfies § < D’I%l Consider a two-layer neural network
as described above, and train it with gradient descent starting from initial weights sampled i.i.d. from N (0,1). Assume
% Under these
conditions, it holds with probability at least 1 — 3/ K10 — Ke=1909 over the random draws of the initial weights, that after

further that the step size is n = C2ﬁ and that the number of hidden units p is at least c3

2
T =cyx |‘?|‘(Z gradient descent steps, the neural network x — f(x; Wr) predicts the correct cluster label for all points in
the e-neighborhood of the cluster center, namely:

arg max |[f(z; W) —w(y)| = y* (i), forall z with ||z — ¢;||2 < € and all clusters i € K], )
ye

where w : Y — {0, 1}|y | yields one-hot embeddings of the labels. The constants c1, ¢2, cs, ¢4 depend only on T.

Notice that, under the assumptions introduced above, the set S U (U, ¢) is (e, n)-clusterable, since the incorrectly labeled ID
points in (U[$, ¢) constitute at most a fraction 7 of the clusters they belong to. As a consequence, Proposition follows
directly from Theorem [A.T]

O

B DISAGREEMENT SCORE FOR NOVELTY DETECTION

As we argue in Section [3] Algorithm [I] produces an ensemble that disagrees on OOD data, and hence, we want to
devise a scalar score that reflects this model diversity. Previous works [Lakshminarayanan et al.| 2017 [Ovadia et al.|
2019] first average the softmax predictions of the models in the ensemble and then use the entropy as a metric, i.e.
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Figure 1: Cartoon illustration showing a diverse ensemble of linear binary classifiers. We compare novelty detection performance for
two aggregation scores: (H o Avg) (Left) and (Avg o p) with p(f1(x), f2(2)) = Lsgn(f1 (x))ssen(f2(x)) (Right). The two metrics achieve
similar TPRs, but using (H o Avg) instead of our score, (Avg o p), leads to more false positives, since the former simply flags as OOD a
band around the averaged model (solid black line) and does not take advantage of the ensemble’s diversity.

(Ho Avg)(f1(x), ..., fx(x)) = — Zg‘l(f(az))l log(f(x)); where f(x) := % Zfil fi(x) and (f(x)); is the i element
of f(z) € [0,1]¥ ‘ We argue later that averaging discards information about the diversity of the models.

Recall that our average pairwise disagreement between the outputs of ' models in an ensemble readsﬂ

(Avg 0 )i (@). e @) = ooy D P @), (@) )
i

where p is a measure of disagreement between the softmax outputs of two predictors, for example the total variation distance
prv(fi(@), fi(x)) = 3| fi(x) — f;j(z)]1 used in our experiments.

We briefly highlight the reason why averaging softmax outputs first like in previous works relinquishes all the benefits of
having a more diverse ensemble, as opposed to the proposed pairwise score in Equation 3} Recall that varying thresholds
yield different true negative and true positive rates (TNR and TPR, respectively) for a given statistic. In the sketch in Figure[T]
we show that the score we propose, (Avg o p), achieves a higher TNR compared to (H o Avg), for a fixed TPR, which is
a common way of evaluating statistical tests. Notice that the detection region for (H o Avg) is always limited to a band
around the average model for any threshold value ¢. In order for the (H o Avg) to have large TPR, this band needs to be
wide, leading to many false positives. Instead, our disagreement score exploits the diversity of the models to more accurately
detect OOD data.

We now provide further quantitative evidence to support the intuition presented in Figure [I] The aggregation metric is
tailored to exploit ensemble diversity, which makes it particularly beneficial for ERD. On the other hand, Vanilla Ensembles
only rely on the stochasticity of the training process and the random initializations of the weights to produce diverse models,
which often leads to classifiers that are strikingly similar as we show in Figure 2] for a few 2D data sets. As a consequence,
using our disagreement score (Avg o p) for Vanilla Ensembles can sometimes hurt novelty detection performance. To see
this, consider the extreme situation in which the models in the ensemble are identical, i.e. f; = f. Then it follows that
(Avgo p)(f1(x), fo(x)) = 0, for all test points 2 and for any function p that satisfies the distance axioms.

We note that the disagreement score that we propose takes a form that is similar to previous diversity scores, e.g.Zhang
and Zhou! [2010], 'Yu and Aizawal[2019]]. In the context of regression, one can measure uncertainty using the variance of
the outputs metric previously employed in works such as|Gal and Ghahramani|[2016]. However, we point out that using
the output variance requires that the ensemble is the result of sampling from a random process (e.g. sampling different
training data for the models, or sampling different parameters from a posterior). In our framework, we obtain the ensemble
by solving a different optimization problem for each of the models by assigning a different label to the unlabeled data.

'We abuse notation slightly and denote our disagreement metric as (Avg o p) to contrast it with the ensemble entropy metric (Ho Avg),
which first takes the average of the softmax outputs and only afterwards computes the score.

>We abuse notation slightly and denote our disagreement metric as (Avgo p) to contrast it with the ensemble entropy metric (Ho Avg),
which first takes the average of the softmax outputs and only afterwards computes the score.
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Figure 2: Relying only on the randomness of SGD and of the weight initialization to diversify models is not enough, as it
often yields similar classifiers. Each column shows a different predictor trained from random initializations with Adam. All
models have the same 1-hidden layer MLP architecture.

Therefore, despite their similarities, our disagreement score and the output variance are, on a conceptual level, fundamentally
different metrics.

Table shows that (Avg o p) leads to worse novelty detection performance for Vanilla Ensembles, compared to using the
entropy of the average softmax score, (H o Avg), which was proposed in prior work. However, if the ensembles are indeed
diverse, as we argue is the case for our method ERD (see Section E[), then there is a clear advantage to using a score that,
unlike (H o Avg), takes diversity into account, as shown in Tablefor 5-model ERD ensembles.

Table 1: The disagreement score that we propose (Avgo p) exploits ensemble diversity and benefits in particular ERD ensembles. Novelty
detection performance is significantly improved when using (Avg o p) compared to the previously proposed (H o Avg) metric. Since
Vanilla Ensemble are not diverse enough, a score that relies on model diversity can hurt novelty detection performance. We highlight the
AUROC and the TNR @95 obtained with the score function that is best for Vanilla Ensemble and the best for ERD.

Vanilla Vanilla

ERD ERD
ID data OOD data Ensembles Ensembles
(H o Avg) (Avg o p) (Ho Avg) (Avg o p)
AUROC 1/ TNR@95 1
SVHN CIFAR10 0.9710.88 0.96/0.89 0.86/0.85 0.99/0.97
CIFAR10 SVHN 0.9270.78 091/0.78 0.92/0.92 1.00/1.00
CIFAR100 SVHN 0.8410.48 0.79/0.46 0.36/0.35 1.00/1.00
SVHN[0:4] SVHNI[5:9] 0.92/0.69 0.91/0.69 0.94/0.66 0.94/0.66
CIFAR10[0:4] CIFAR10[5:9] 0.80/0.39 0.80/0.39 0.91/0.65 0.91/0.66
CIFAR100[0:49] CIFAR100[50:99] 0.7810.35 0.76 /0.34 0.63/0.38 0.81/0.40
Average | 0.87/0.60 0.86/0.59 0.77/0.64 0.94/0.78

We highlight once again that other methods that attempt to obtain diverse ensembles, such as MCD, fail to train models with
sufficient disagreement, even when they use oracle OOD for hyperparameter tuning (Figure 3a).

0.2 = ID scores 0.2 = ID scores
= OOD scores = OOD scores
0.1
1 2 00 1 2
Disagreement score Disagreement score
(a) Not enough diversity (MCD) (b) Regularized diversity (ERD)

Figure 3: Distribution of disagreement scores on ID and OOD data for an ensemble that is not diverse enough (Left), and an
ensemble with regularized disagreement (Right). Note that MCD is early-stopped using oracle OOD data. ID=CIFAR10[0:4],
OOD=CIFAR10[5:9].



C TAXONOMY OF OOD DETECTION METHODS ACCORDING TO OVERALL
OBJECTIVE

We now provide more details regarding the categorization of OOD detection approaches based on the different surrogate
objectives that they use in order to detect OOD samples.

Learning the ID marginal Px. We loosely define OOD samples as all = for which Px (z) < «, for a small constant
a > 0. Therefore, if we had access to the marginal training distribution Py, we would have perfect OOD detection.
Realistically, however, Px is unknown, and we need to resort to estimating it. Explicit density estimation with generative
models [[Akcay et al. 2018| [Nalisnick et al, 2019] is inherently difficult in high dimensions. Alternatively, one-class
classification [Munoz-Mari et al., 2010, |Ruff et al.,[2020, |Sohn et al., |2021]] and PU learning approaches [du Plessis et al.|
2014, Kiryo et al., 2017] try to directly learn a discriminator between ID and OOD data in the presence of known (e.g.
A-UND) or unknown (e.g. SSND) OOD data. However, these methods tend to produce indistinguishable representations for
inliers and outliers when the ID distribution consists of many diverse classes.

Learning Px using label information (ours). Since in a prediction problem, the ID training set has class labels, one
can take advantage of that additional information to distinguish points in the support of Px from OOD data. For instance,
Lee et al.[[2018]], Sastry and Oore [2019] propose to use the intermediate representations of neural networks trained for
prediction to detect OOD data. Often, the task is to also simultaneously predict well on ID data, a problem known as open-set
recognition [Geng et al.,|2021]] and tackled by approaches like OpenHybrid [Zhang et al., 2020al].

Learning uncertainty estimates for Py x. In the prediction setting, calibrated uncertainty estimates error could naturally
be used to detect OOD samples. Many uncertainty quantification methods are based on a Bayesian framework [Gal and
Ghahramani, |2016| Malinin and Gales}, 2018] or calibration improvement [Liang et al., 2018} |Hatner et al., 2019]. However,
neither of them perform as well as other OOD methods mentioned above [Ovadia et al., 2019].

D EXPERIMENT DETAILS

D.1 BASELINES

In this section we describe in detail the baselines with which we compare our method and describe how we choose their
hyperparameters. For all baselines we use the hyperparameters suggested by the authors for the respective data sets (e.g.
different hyperparameters for CIFAR10 or ImageNet). For all methods, we use pretrained models provided by the authors.
However, we note that for the novel-class settings, pretraining on the entire training set means that the model is exposed to
the OOD classes as well, which is undesirable. Therefore, for these settings we pretrain only on the split of the training set
that contains the ID classes. Since the classification problem is similar to the original one of training on the entire training
set, we use the same hyperparameters that the authors report in the original papers.

Moreover, we point out that even though different methods use different model architectures, that is not inherently
unreasonable when the goal is novelty detection, since it is not clear if a complex model is more desirable than a smaller
model. For this reason, we use the model architecture recommended by the authors of the baselines and which was used to
produce the good results reported in their published works. For Vanilla Ensembles and for ERD we show results for different
architectures in Appendix [F.§]

 Vanilla Ensembles [Lakshminarayanan et al.,[2017]]: We train an ensemble on the training set according to the true
labels. For a test sample, we average the outputs of the softmax probabilities predicted by the models, and use the
entropy of the resulting distribution as the score for the hypothesis test described in Section[2.3] We use ensembles of
5 models, with the same architecture and hyperparameters as the ones used for ERD. Hyperparameters are tuned to
achieve good validation accuracy.

¢ Gram method [Sastry and Oorel |2019]: The Gram baseline is similar to the Mahalanobis method in that both use the
intermediate feature representations obtained with a deep neural network to determine whether a test point is an outlier.
However, what sets the Gram method apart is the fact that it does not need any OOD data for training or calibration.
We use the pretrained models provided by the authors, or train our own, using the same methodology as described for
the Mahalanobis baseline. For OOD detection, we use the code published by the authors. We note that for MLP models,
the Gram method is difficult to tune and we could not find a configuration that works well, despite our best efforts and
following the suggestions proposed during our communication with the authors.



¢ Deep Prior Networks (DPN) [Malinin and Gales, 2018]]: DPN is a Bayesian Method that trains a neural network
(Prior Network) to parametrize a Dirichlet distribution over the class probabilities. We train a WideResNet WRN-28-10
for 100 epochs using SGD with momentum 0.9, with an initial learning rate of 0.01, which is decayed by 0.2 at epochs
50, 70, and 90. For MNIST, we use EMINST/Letters as OOD for tuning. For all other settings, we use Tinylmages as
OOD for tuning.

¢ Outlier Exposure [Hendrycks et al.,|2019]]: This approach makes a model’s softmax predictions close to the uniform
distribution on the known outliers, while maintaining a good classification performance on the training distribution. We
use the WideResNet architecture (WRN). For fine-tuning, we use the settings recommended by the authors, namely we
train for 10 epochs with learning rate 0.001. For training from scratch, we train for 100 epochs with an initial learning
rate of 0.1. When the training data set is either CIFAR10/CIFAR100 or ImageNet, we use the default WRN parameters
of the author’s code, namely 40 layers, 2 widen-factor, droprate 0.3. When the training dataset is SVHN, we use the
author’s recommended parameters of 16 layers, 4 widen-factor and droprate 0.4. All settings use the cosine annealing
learning rate scheduler provided with the author’s code, without any modifications. For all settings, we use TinyImages
as known OOD data during training. In Section[F.6| we show results for known OOD data that is similar to the OOD
data used for testing.

* Mahalanobis [Lee et al.| [2018]]: The method pretrains models on the labeled training data. For a test data point, it uses
the intermediate representations of each layer as “extracted features”. It then performs binary classification using logistic
regression using these extracted features. In the original setting, the classification is done on “training” ID vs “training”
OOD samples (which are from the same distribution as the test OOD samples). Furthermore, hyperparameter tuning
for the optimal amount of noise is performed on validation ID and OOD data. We use the WRN-28-10 architecture,
pretrained for 200 epochs. The initial learning rate is 0.1, which is decayed at epochs 60, 120, and 160 by 0.2. We use
SGD with momentum 0.9, and the standard weight decay of 5 - 10, The code published for the Mahalanobis method
performs a hyperparameter search automatically for each of the data sets.

The following baselines attempt to leverage the unlabeled data that is available in applications such as the one depicted in
Figure ([T} similar to ERD.

* Non-negative PU learning (nnPU) [Kiryo et al., 2017]]: The method trains a binary predictor to distinguish between a
set of known positives (in our case the ID data) and a set that contains a mixture of positives and negatives (in our case
the unlabeled set). To prevent the interpolation of all the unlabeled samples, Kiryo et al.|[2017] proposes a regularized
objective. It is important to note that most training objectives in the PU learning literature require that the ratio between
the positives and negatives in the unlabeled set is known or easy to estimate. For our experiments we always use the
exact OOD ratio to train the nnPU baseline. Therefore, we obtain an upper bound on the AUROC/TNR@95. If the
ratio is estimated from finite samples, then estimation errors may lead to slightly worse OOD detection performance.
We perform a grid search over the learning rate and the threshold that appears in the nnPU regularizer and pick the
option with the best validation accuracy measured on a holdout set with only positive samples (in our case, ID data).

e Maximum Classifier Discrepancy (MCD) [[Yu and Aizawa, 2019]]: The MCD method trains two classifiers at the
same time, and makes them disagree on the unlabeled data, while maintaining good classification performance. We use
the WRN-28-10 architecture as suggested in the paper. We did not change the default parameters which came with the
author’s code, so weight decay is 10~*, and the optimizer is SGD with momentum 0.9. When available (for CIFAR10
and CIFAR100), we use the pretrained models provided by the authors. For the other training datasets, we use their
methodology to generate pretrained models: We train a WRN-28-10 for 200 epochs. The learning rate starts at 0.1 and
drops by a factor of 10 at 50% and 75% of the training progress.

¢ Mahalanobis-U: This is a slightly different version of the Mahalanobis baseline, for which we use early-stopped
logistic regression to distinguish between the training set and an unlabeled set with ID and OOD samples (instead of
discriminating a known OOD set from the inliers). The early stopping iteration is chosen to minimize the classification
errors on a validation set that contains only ID data (recall that we do not assume to know which are the OOD samples).

In addition to these approaches that have been introduced in prior work, we also propose a strong novel baseline that that
bares some similarity to PU learning and to ERD.

* Binary classifier The approach consists in discriminating between the labeled ID training set and the mixed unlabeled
set, that contains both ID and OOD data. We use regularization to prevent the trivial solution for which the entire
unlabeled set is predicted as OOD. Unlike PU learning, the binary classifier does not require that the OOD ratio in the
test distribution is known. The approach is similar to a method described in [Scott and Blanchard| [2008|] which also



requires that the OOD ratio of the unlabeled set is known. We tune the learning rate and the weight of the unlabeled
samples in the training loss by performing a grid search and selecting the configuration with the best validation accuracy,
computed on a holdout set containing only ID samples. We note that the binary classifier that appears in Section[G]in
the medical benchmark, is not the same as this baseline. For more details on the binary classifier that appears in the
medical data experiments we refer the reader to|Cao et al.[[2020].

D.2 TRAINING CONFIGURATION FOR ERD

For ERD we always use hyperparameters that give the best validation accuracy when training a model on the ID training set.
In other words, we pick hyperparameter values that lead to good ID generalization and do not perform further hyperparameter
tuning for the different OOD data sets on which we evaluate our approach. We point out that, if the ID labeled set is known
to suffer from class imbalance, subpopulation imbalance or label noise, any training method that addresses these issues can
be used instead of standard empirical risk minimization to train our ensemble (e.g. see|Li et al.|[2020]).

For MNIST and FashionMNIST, we train ensembles of 3-layer MLP models with ReLU activations. Each intermediate
layer has 100 neurons. The models are optimized using Adam, with a learning rate of 0.001, for 10 epochs.

For SVHN, CIFAR10/CIFAR100 and ImageNet, we train ensembles of ResNet20 [He et al.|[2016]. The models are initialized
with weights pretrained for 100 epochs on the labeled training set. We fine-tune each model for 10 epochs using SGD with
momentum 0.9, and a learning rate of 0.001. The weights are trained with an ¢, regularization coefficient of 5¢ — 4. We use
a batch size of 128 for all scenarios, unless explicitly stated otherwise. We used the same hyperparameters for all settings.

For pretraining, we perform SGD for 100 epochs and use the same architecture and hyperparameters as described above,
with the exception of the learning rate that starts at 0.1, and is multiplied by 0.2 at epochs 50, 70 and 90.

Apart from ERD, which fine-tunes the ensemble models starting from pretrained weights, we also present in the Appendix
results for ERD++. This variant of our method trains the models from random initializations, and hence needs more iterations
to converge, making it more computationally expensive than ERD. We train all models in the ERD++ ensembles for 100
epochs with a learning rate that starts at 0.1, and is multiplied by 0.2 at epochs 50, 70 and 90. All other hyperparameters are
the same as for ERD ensembles.

For the medical data sets, we train a Densenet-121 as the authors do in the original paper [Cao et al.,|2020]]. For ERD++,
we do not use random weight initializations, but instead we start with the ImageNet weights provided with Tensorflow.
The training configuration is exactly the same as for ResNet20, except that we use a batch size of 32 due to GPU memory
restrictions, and for fine tuning we use a constant learning rate of 1075,

D.3 COMPUTATIONAL CONSIDERATIONS FOR ERD

We note that ERD models reach the optimal stopping time within the first 10 epochs on all the data sets that we consider,
which amounts to around 6 minutes of training time if the models in the ensemble are fine-tuned in parallel on NVIDIA
1080 Ti GPUs. This is substantially better than the cost of fine-tuning a large ViT transformer model (which takes about 1
hour for 2500 iterations on the same hardware). Moreover, since the loss we use to train the ensemble decouples over the
models, it allows for easy parallelization, unlike objectives like MCD where the ensemble models are intertwined.

E 1ID AND OOD DATA SETS

For evaluation, we use the following image data sets: MNIST [Lecun et al.| [1998]], Fashion MNIST [Xiao et al., [2017],
SVHN [Netzer et al., 2011]], CIFAR10 and CIFAR100 [Krizhevskyl, 2009].
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Figure 4: Samples for the settings with novel classes. (a) Data samples for the MNIST/FashionMNIST splits. (b) Data
samples for the CIFAR10/SVHN splits.

For the MNIST and FashionMNIST experiments, the training set size is S0K, the validation size is 10K, and the test ID
and test OOD sizes are both 10K. For SVHN, CIFAR10 and CIFAR100, the training set size is 40K, the validation size is
10K, and the unlabeled set contains 10K samples: 5K are ID and 5K are OOD. For evaluation, we use a holdout set of 10K
examples (half ID, half OOD). When half of the classes are used as ID and the other half as OOD, all the sizes are halved.



F MORE EXPERIMENTS

We now present more experimental results that provide additional insights about the proposed approach. We note that, unless
otherwise specified, we use 5-model ERD ensembles in this section.

F.1 EVALUATION ON THE UNLABELED SET

In the main text we describe how one can leverage the unlabeled set U to obtain an novelty detection algorithm that
accurately identifies outliers at test time that similar to the ones in U. It is, however, possible to also use our method ERD to
flag the OOD samples contained in the same set U used for fine-tuning the ensemble. In Table[2] we show that the novelty
detection performance of ERD is similar regardless of whether we use U for evaluation, or a holdout test set 7" drawn from
the same distribution as U.

Table 2: Comparison between the novelty detection performance of ERD when using a holdout test set 7" for evaluation, or
the same unlabeled set U that was used for fine-tuning the models.

ERD ERD
ID data OOD data (eval on T") (eval on U)
AUROC 1/TNR@95 1

SVHN CIFAR10 1.00/0.99 1.00/0.99
CIFARI10 SVHN 1.00/1.00 1.00/1.00
CIFAR100 SVHN 1.00/1.00 1.00/1.00
FMNIST[0,2,3,7,8] FMNIST[1,4,5,6,9] 0.94/0.67 0.94/0.67
SVHN[0:4] SVHNI[5:9] 0.95/0.74 0.96/0.79
CIFAR10[0:4] CIFARI10[5:9] 0.93/0.70 0.93/0.69
CIFAR100[0:49] CIFAR100[50:99] 0.82/0.44 0.80/0.36
Average \ 0.95/0.79 0.95/0.79

F.2 COMPARISON WITH OTHER RELATED WORKS

We compare 5-model ERD ensembles to more OOD detection approaches. For various reasons we did not run these methods
ourselves on the data sets for which we evaluate our method in Section [] (e.g. code not available, unable to replicate
published results, poor performance reported by the authors etc). We collected the AUROC numbers presented in Table[3]
from the papers that introduce each method. We note that our approach shows an excellent overall performance, being
consistently better than or on par with the related works that we consider. While the method of |Fort et al.| [2021] performs
significantly better than all other baselines on CIFAR10/CIFAR100 tasks, we argue in Appendix [F3]that this is primarily due
to the convenient choice of the data set used for pretraining the transformer models (i.e. Imagenet21k) which is strikingly
similar to the ID and OOD data.

Table 3: AUROC numbers collected from the literature for a number of relevant OOD detection methods. We note that the method of
Fort et al.|[2021]] (7) uses a large scale visual transformer models pretrained on a superset of the OOD data, i.e. ImageNet21k, while
the method of |Sehwag et al.|[2021] (*) uses oracle OOD samples for training from the same data set as test OOD. For the settings with
random classes, the numbers are averages over 5 draws and the standard deviation is always strictly smaller than 0.01 for our method.

ID data OOD data [Fort_et al! |Zhang et al.| [Winkens Tack et all [Sehwag Liu and  [Zhang et al| ERD (ours) ERD++

[2021)F [2020a] et al.|[2020] [2020] et all |Abbeel [2020b] (ours)
[2021]* [2020]

CIFARI10 CIFAR100 98.52 0.95 0.92 0.92 0.93 091 - 0.92 0.95

CIFAR100 CIFARIO  96.23 0.85 0.78 - 0.78 - - 0.91 0.94

SVHN: 6 SVHN: 4

random random - 0.94 - - - - 0.91 0.94 0.94

classes classes

CIFARI0: 6  CIFARIO: 4

random random - 0.94 - - - - 0.85 0.94 0.97

classes classes

OpenHybrid [Zhang et al.| [2020a] is an open set recognition approach which reports great near OOD detection performance.
We note that, despite our best efforts, we did not manage to match in our own experiments the results reported in the paper,
even after communicating with the authors and using the code that they have provided. Moreover, we point out that the
performance of OpenHybrid seems to deteriorate significantly when the ID data consists of numerous classes, as is the case
for CIFAR100.

Furthermore, we note that generative models [Nalisnick et al., 2019| |Akcay et al., 2018]] and one-class classification



approaches [Ruff et al., 2020, Tack et al.l 2020, |Sohn et al.l 2021]] showed generally bad performance, in particular on near
OOD data. When the ID training set is made up of several diverse classes, it is difficult to represent accurately all the ID
data, and only the ID data.

F.3 SHORTCOMINGS OF PRETRAINED VIT MODELS FOR NOVELTY DETECTION

In this section we provide further experimental results pointing to the fact that large pretrained transformer models [Fort
et al.| 2021] can only detect near OOD samples from certain specific data sets, and do not generalize well more broadly.

Implementation details. We fine-tune visual transformer (ViT) models pretrained on Imagenet2 1k according the method-
ology described in Fort et al.| [2021[]. We report results using the ViT-S-16 architecture ( 22 million trainable parameters)
which we fine-tune for 2500 iterations on labeled ID data. We use the hyperparameters suggested by the authors and always
ensure that the prediction accuracy of the fine-tuned model on ID data is in the expected range. The code published by the
authors uses three different test statistics to detect OOD data: the maximum softmax probability [Hendrycks and Gimpel,
2017], the vanilla Mahalanobis distance [Lee et al., 2018|] and a recently proposed variant of the Mahalanobis approach
[Ren et al.| 2021]). In Table [ we present only the metrics obtained with the best-performing test statistic for ViT. We stress
that this favors the ViT method significantly, as different test statistics seem to perform better on different data sets. Since
test OOD data is unknown, it is not possible to select which test statistic to use a priori, and hence, we use oracle knowledge
to give ViT models an unfair advantage.

Experimental results. In Table[d] we compare pretrained visual transformers with 5-model ERD and ERD++ ensembles.
Notably, the data sets can be partitioned in two clusters, based on ViT novelty detection performance. On the one hand, if the
ID or OOD data comes from CIFAR10 or CIFAR100, ViT models can detect novel-class samples well. Perhaps surprisingly,
ViT fails short of detecting OOD data perfectly (i.e. AUROC and TNR@95 of 1) on easy tasks such as CIFAR10 vs SVHN
or CIFAR100 vs SVHN, unlike ERD and a number of other baseline approaches.

On the other hand, ViT shows remarkably poor performance on all other data sets, when neither the ID nor the OOD data
come from CIFAR10/CIFAR100. This includes some of the novel disease use cases from the medical OOD detection
benchmark (see Appendix [G]for more details about the data sets). This unsatisfactory performance persists even for larger
ViT models (we have tried ViT-S-16 and ViT-B-16 architectures), when fine-tuning for more iterations (we have tried both
2500 and 10000 iterations), or when varying hyperparameters such as the learning rate.

Table 4: Pretrained ViT models tend to perform well when the ID and OOD data is semantically similar to (or even included in)

the pretraining data, e.g. CIFAR10, CIFAR100 (top part), and their detection performance deteriorates drastically otherwise

(bottom part). We compare ViT-S-16 models pretrained on Imagenet21k with 5-model ERD and ERD++ ensembles and
the best method. See Appendix for more details about the medical data sets.

ID data 0OOD data ViT ERD ERD++
AUROC 1 /TNR@95 1

SVHN CIFAR10 0.98/0.90

CIFAR10 SVHN 0.99/0.98

CIFAR100 SVHN 0.96/0.84

CIFAR10[0:4] CIFAR10[5:9] 0.93/0.70  0.96/0.79
CIFAR100[0:49] CIFAR100[50:99] 0.82/0.44  0.85/045
FMNISTI0,2,3,7,8] FMNIST([1,4,5,6,9] 0.88/0.49  0.94/0.67

SVHN[0:4] SVHN][5:9] 0.89/0.68 0.95/0.74

NIH ID (Xray) PC (Xray) 0.87/0.38  0.94/0.63

NIH ID (Xray) NIH OOD (Xray) 0.46/0.04  0.50/0.04
PC ID (Xray) PC UC2 (Xray) 0.89/0.61 10.99

PC ID (Xray) PC UC3 (Xray) 0.54/0.07 0.72/0.08
DRD (fundus) RIGA (fundus) 0.61/0.20 0.91/0.73

Intuition for why ViT fails. We conjecture that the novelty detection performance with pretrained ViT models relies
heavily on the choice of the pretraining data set. In particular, we hypothesize that, since CIFAR10/CIFAR100 classes are
included in the Imagenet21k data set used for pretraining, the models learn features that are useful for distinguishing ID
and OOD classes when the ID and/or OOD data comes from CIFAR10/CIFAR100. Hence, this would explain the good
performance of pretrained models on the data sets at the top of Table @ On the other hand, when ID and OOD data is
strikingly different from the pretraining data, both ID and OOD samples are projected to the same concentrated region of
the representation space, which makes it difficult to detect novel-class points. Moreover, the process of fine-tuning as it is
described in |Fort et al.|[2021]] seems to not help to alleviate this problem. This leads to the poor performance observed on
the near OOD data sets at the bottom of Table [4



In conclusion, having a large pretraining data set seems to be beneficial when the OOD data shares many visual and semantic
features in common with the pretraining data. However, in real-world applications it is often difficult to collect such large
data sets, which makes the applicability of pretrained ViT models limited to only certain specific scenarios.

F4 OOD DETECTION FOR DATA WITH COVARIATE SHIFT

In this section we evaluate the baselines and the method that we propose on settings in which the OOD data suffers from
covariate shift. The goal is to identify all samples that come from the shifted distribution, regardless of how strong the shift
is. Notice that mild shifts may be easier to tackle by domain adaptation algorithms, but when the goal is OOD detection they
pose a much more difficult challenge.

We want to stress that in practice one may not be interested in identifying all samples with distribution shift as OOD, since a
classifier may still produce correct predictions on some of them. In contrast, when data suffers from covariate shift we can
try to learn predictors that perform well on both the training and the test distribution, and we may use a measure of predictive
uncertainty to identify only those test samples on which the classifier cannot make confident predictions. Nevertheless, we
use these covariate shift settings as a challenging OOD detection benchmark and show in Table 6] that our method ERD does
indeed outperform prior baselines on these difficult settings.

We use as outliers corrupted variants of CIFAR10 and CIFAR100 [Hendrycks and Dietterichl, 2019], as well as a scenario
where ImageNet 2009] is used as ID data and ObjectNet [Barbu et al., 2019]] as OOD, both resized to 32x32.
Figure 5] shows samples from these data sets. The Gram and nnPU baselines do not give satisfactory results on the difficult
CIFAR10/CIFAR100 settings in Table [T]and thus we do not consider them for the covariate shift cases. For the SSND
methods (e.g. MCD, Mahal-U and ERD/ERD++) we evaluate on the same unlabeled set that is used for training (see the
discussion in Section[F.).
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Figure 5: Left: Samples from ObjectNet. Figure from Barbu et a1.| [|2019|]. Right: Corrupted samples from CIFAR10-C.

Furthermore, we present results on distinguishing between CIFAR10 [Krizhevsky}, [2009] and CIFAR10v2
2019], a data set meant to be drawn from the same distribution as CIFAR10 (generated from the Tiny Images collection). In
[Recht et al| [2019], the authors argue that CIFAR10 and CIFAR10v2 come from very similar distributions. They provide
supporting evidence by training a binary classifier to distinguish between them, and observing that the accuracy that is
obtained of 52.9% is very close to random.




Our experiments show that the two data sets are actually distinguishable, contrary to what previous work has argued. First,
our own binary classifier trained on CIFAR10 vs CIFAR10v2 obtains a test accuracy of 67%, without any hyperparameter
tuning. The model we use is a ResNet20 trained for 200 epochs using SGD with momentum 0.9. The learning rate is decayed
by 0.2 at epochs 90, 140, 160 and 180. We use 1600 examples from each data set for training, and we validate using 400
examples from each data set.

Table 5: OOD detection performance on CIFAR10 vs CIFAR10v2. We highlight the best ERD variant and the best baseline.

[Ddata OOD data | Y2nilla DPN OE Mahal. MCD Mahal-U ERD ERD++
Ensembles
AUROC 1/ TNR@95 1
CIFAR10 CIFARI0V2| 0.64/0.13 0.63/0.09 0.6410.12 0.55/0.08 0.58/0.10 0.56/0.07 0.76/0.26 0.91/0.80

Our OOD detection experiments (presented in Table[3]) show that most baselines are able to distinguish between the two
data sets, with ERD achieving the highest performance. The methods which require OOD data for tuning (Outlier Exposure
and DPN) use CIFAR100.

Table 6: OOD detection performance on data with covariate shift. For ERD and vanilla ensembles, we train 5 ResNet20
models for each setting. The evaluation metrics are computed on the unlabeled set. We highlight the best ERD variant and
the best baseline.

ID data 00D data Vanilla DPN OE Mahal, MCD Mahal-U ERD ERD++
Ensembles
AUROC 1/ TNR@95 1

CIFARI0 CIFARIO-Csev2 (A) | 068/020  073/031  070/020  0.84/0.53  082/050  075/038  096/086  0.99/0.95
CIFARI0 CIFARIO-Csev2 (W) | 0.51/005  047/0.03  052/006  0.58/0.05  052/006  055/007  0.68/019  0.86/0.41
CIFARI0 CIFARIO-Csev5(A) | 0.84/049  089/0.60  086/054  094/080  0.95/0.84  088/063  1.00/099  1.00/1.00
CIFARI0 CIFARIO-C sev 5 (W) | 0.60/0.10  072/0.10  063/011  0.78/0.27  0.60/008  068/0.12  0.98/086  1.00/1.00
CIFARIO0  CIFARIO0-Csev2(A) | 068/020  0.62/0.18  0.65/0.19  0.62/0.48  072/029  067/022  094/076  0.97/0.86
CIFARIO0  CIFARIOO-Csev2(W)| 052/0.06  032/003  052/006  0.55/0.07  052/006  055/0.06 071/0.19  0.86/0.44
CIFARIO0  CIFARIO0-Csev 5 (A) | 0.78/037  074/036  076/037  0.92/0.72  091/065  084/055  099/097  100/0.99
CIFARIO0  CIFARIO0-Csev 5 (W)| 0.64/0.14  049/012  0.62/0.13  0.71/0.19  060/0.10  0.63/013  096/071  0.98/0.89
Tiny TmageNet Tiny ObjectNet | 082/049  070/032  079/037  075/026  0.99/0.95  072/025  098/088  0.99/0.98

Average | 067/023  063/023  0.67/023  0.76/038  074/0.39  070/027  091/071  0.96/0.83

F.5 RESULTS WITH A SMALLER UNLABELED SET

We now show that our method performs well even when the unlabeled set is significantly smaller. In particular, we show in
the table below that ERD maintains a high AUROC and TNR@95 even when only 1,000 unlabeled samples are used for
fine-tuning (500 ID and 500 OOD).

Table 7: Experiments with a test set of size 1,000, with an equal number of ID and OOD test samples. For ERD and vanilla
ensembles, we train 5 ResNet20 models for each setting. The evaluation metrics are computed on the unlabeled set. We
highlight ERD and the best baseline.

ID data 00D data Vanilla DPN OE Mahal. MCD Mahal-U ERD
Ensembles
AUROC 1/ TNR@95 1

SVHN CIFAR10 0.97/0.88 1.00/1.00 1.00/1.00 0.99/0.98 0.97/0.85 0.99/0.95 1.00/0.99
CIFAR10 SVHN 0.92/0.78 0.95/0.85 0.97/0.89 0.9910.96 1.00/0.98 0.99/0.96 1.00 / 1.00
CIFAR100 SVHN 0.84/0.48 0.77/0.44 0.82/0.50 0.9810.90 0.97/0.73 0.98/0.92 0.99 / .00
SVHN{[0:4] SVHN[5:9] 0.9210.69 0.87/0.19 0.85/0.52 0.9210.71 0.91/0.51 0.91/0.63 0.97/0.86
CIFARIO[0:4]  CIFARI0[5:9] 0.80/0.39 0.8210.32 0.8210.41 0.79/0.27 0.69/0.25 0.64/0.13 0.87/0.50
CIFAR100[0:49] CIFAR100[50:99] 0.7810.35 0.70/0.26 0.7410.31 0.72/0.20 0.70/0.26 0.72/0.19 0.79/0.38
CIFAR10 CIFARIO-C sev 2 (A) | 0.68/0.20 0.73/0.31 0.70/0.20 0.8410.53 0.82/0.50 0.75/0.38 0.91/0.71
CIFARI10 CIFARIO-C sev2 (W) | 0.51/0.05 0.47/0.03 0.52/0.06 0.5810.08 0.52/0.06 0.55/0.07 0.57 /0.0
CIFARI0 CIFARI0-C sev 5 (A) | 0.84/0.49 0.89/0.60 0.86/0.54 0.9410.80 0.95/0.84 0.88/0.63 0.99/0.95
CIFARI10 CIFAR10-C sev 5 (W) | 0.60/0.10 0.72/0.10 0.63/0.11 0.7810.27 0.60/0.08 0.68/0.12 0.92/0.67
CIFAR100 CIFAR100-C sev 2 (A) | 0.68/0.20 0.62/0.18 0.65/0.19 0.8210.48 0.72/0.29 0.67/0.22 0.84/0.48
CIFAR100 CIFAR100-C sev 2 (W)| 0.52/0.06 0.32/0.03 0.52/0.06 0.5510.07 0.52/0.06 0.55/0.06 0.55/0.07
CIFAR100 CIFARI100-C sev 5 (A) | 0.78/0.37 0.74/0.36 0.76/0.37 0.9210.72 0.91/0.65 0.84/0.55 0.96 /0.80
CIFAR100 CIFAR100-C sev 5 (W)| 0.64/0.14 0.49/0.12 0.62/0.13 0.7110.19 0.60/0.10 0.63/0.13 0.81/0.25

Average ‘ 0.75/0.37 0.72/0.34 0.75/0.38 0.82/0.51 0.78 /0.44 0.77/0.42 0.87/0.62




F.6  MORE RESULTS FOR OUTLIER EXPOSURE

The Outlier Exposure method needs access to a set of OOD samples during training. The numbers we report in the rest of
paper for Outlier Exposure are obtained by using the Tinylmages data set as the OOD samples that are seen during training.
In this section we explore the use of an OODy,;, data set that is more similar to the OOD data observed at test time. This is a
much easier setting for the Outlier Exposure method: the closer OODyi, is to OODy.g, the easier it will be for the model
tuned on OODy, to detect the test OOD samples.

In the table below we focus only on the settings with corruptions. For each corruption type, we use the lower severity
corruption as OODy.,;, and evaluate on the higher severity data and vice versa. We report for each metric the average taken
over all corruptions (A), and the value for the worst-case setting (W).

ID data OOD data OE (trained on sev5)  OE (trained on sev2)
AUROC 1

CIFAR10 CIFAR10-C sev 2 (A) 0.89 N/A
CIFAR10 CIFAR10-C sev 2 (W) 0.65 N/A
CIFAR10 CIFAR10-C sev 5 (A) N/A 0.98
CIFAR10 CIFAR10-C sev 5 (W) N/A 0.78
CIFAR100 CIFAR100-C sev 2 (A) 0.85 N/A
CIFAR100 CIFAR100-C sev 2 (W) 0.59 N/A
CIFAR100 CIFAR100-C sev 5 (A) N/A 0.97
CIFAR100 CIFAR100-C sev 5 (W) N/A 0.67

Average ‘ 0.87 0.98

Table 8: Results for Outlier Exposure, when using the same corruption type, but with a higher/lower severity, as OOD data
seen during training.

F.7 RESULTS ON MNIST AND FASHIONMNIST

Table 9: Results on MNIST/FashionMNIST settings. For ERD and vanilla ensembles, we train five 3-hidden layer MLP
models for each setting. The evaluation metrics are computed on the unlabeled set. We highlight the best ERD variant and
the

ID data 00D data Vanilla DPN OE Mahal. nnPU MCD Mahal-U B ERp ERD++
Ensembles Classif.
AUROC 1/ TNR@95 1

MNIST FMNIST 0.81/0.01 / / / / /0.98 / 1.00/1.00 1.00/1.00 1.00/1.00
FMNIST MNIST 0.87/0.42 / 0.68/0.16 0.99/0.97 / / 0.99/0.96 1.00/1.00 1.00/1.00 1.00/1.00
MNIST[0:4] MNISTJ[5:9] 0.94/0.72 1097 0.95/0.78 / 1097 0.96/0.76 / 0.99/0.94 0.99/0.96 0.99/0.97
FMNIST[0,2,3,7,8] FMNIST[1,4,5,69]| 0.64/0.07 0.77/0.15 0.66/0.12 0.77/0.20 / 0.78/0.30 0.82/0.39 0.95/0.66 0.94/0.67 0.94/0.68

Average | 0.82/0.30 0.94/0.78 0.82/0.51 0.94/0.79 / 0.94/0.76 0.95/0.83 0.98/0.90 0.98/0.91 0.98/0.91

For FashionMNIST we chose this particular split (i.e. classes 0,2,3,7,8 vs classes 1,4,5,6,9) because the two partitions are
more similar to each other. This makes novelty detection more difficult than the 0-4 vs 5-9 split.

F.8 VANILLA AND ERD ENSEMBLES WITH DIFFERENT ARCHITECTURES

In this section we present OOD detection results for 5-model Vanilla and ERD ensembles with different architecture choices,
and note that the better performance of our method is maintained across model classes. Moreover, we observe that ERD
benefits from employing more complex models, like the WideResNet.



Table 10: Results with three different architectures for Vanilla and ERD ensembles. All ensembles comprise 5 models. For
the corruption data sets, we report for each metric the average taken over all corruptions (A), and the value for the worst-case
setting (W). The evaluation metrics are computed on the unlabeled set.

VGG16 ResNet20 WideResNet-28-10
Vanilla Vanilla Vanilla
ID data 00D data Ensembles ERD Ensembles ERD Ensembles ERD
AUROC 1/ TNR@95 1

SVHN CIFAR10 0.97/0.88 0.99/0.94 0.97/0.88 0.99/0.97 0.96/0.86 1.00/0.99
CIFAR10 SVHN 0.88/0.69 1.00/1.00 0.92/0.78 1.00/1.00 0.94/0.81 1.00/1.00
SVHN[0:4] SVHN[5:9] 0.89/0.60 0.93/0.63 0.92/0.69 0.94/0.66 0.91/0.62 0.96/0.78
CIFAR10[0:4] CIFAR10[5:9] 0.74/0.29 0.91/0.63 0.80/0.39 0.91/0.66 0.80/0.35 0.94/0.71
CIFAR10 CIFARI0-C sev 2 (A) 0.66/0.17 0.94/0.79 0.68/0.20 0.96/0.86 0.69/0.18 0.98/0.90
CIFAR10 CIFARI10-C sev 2 (W) 0.51/0.05 0.68/0.19 0.51/0.05 0.68/0.19 0.51/0.05 0.84/0.35
CIFAR10 CIFAR10-C sev 5 (A) 0.80/0.41 0.99/0.96 0.84/0.49 1.00/0.99 0.84/0.47 1.00/1.00
CIFAR10 CIFARI10-C sev 5 (W) 0.58/0.10 0.95/0.72 0.60/0.10 0.98/0.86 0.59/0.09 0.99/0.97
Average 0.75/0.40 0.92/0.73 0.78 /0.45 0.93/0.77 0.78/0.43 0.96/0.84

F.9 IMPACT OF THE ENSEMBLE SIZE AND OF THE CHOICE OF ARBITRARY LABEL

In this section we show novelty detection results with our method using a smaller number of models for the ensembles.
We notice that the performance is not affected substantially, indicating that the computation cost of our approach could be
further reduced by fine-tuning smaller ensembles.

Table 11: Results obtained with smaller ensembles for ERD. The numbers for K < 5 are averages over 3 runs, where we
use a different set of arbitrary labels for each run to illustrate our method’s stability with respect the choice of labels to be
assigned to the unlabeled set. We note that the standard deviations are small (¢ < 0.01 for the AUROC values and o < 0.08
for the TNR @95 values).

K=2 K=3 K=4 K=5
ID data OOD data ERD ERD++ ERD ERD++ ERD ERD++ ERD ERD++
AUROC 1/ TNR@95 1

SVHN CIFAR10 0.99/0.98 0.99/0.99 0.99/0.98 1.00/0.99 0.99/0.98 1.00/0.99 1.00/0.99 1.00/0.99
CIFAR10 SVHN 1.00/1.00 1.00/1.00 1.00/1.00 1.00/1.00 1.00/1.00 1.00/1.00 1.00/1.00 1.00/1.00
CIFAR100 SVHN 1.00/1.00 1.00/1.00 1.00/1.00 1.00/1.00 1.00/1.00 1.00/1.00 1.00/1.00 1.00/1.00
SVHNI0:4] SVHN[5:9] 0.9570.69 0.9470.68 0.95/0.73 0.95/0.75 0.96/0.76 0.96/0.77 0.95/0.74 0.96/0.77
CIFAR10[0:4]  CIFAR10[5:9] 0.89/0.55 0.92/0.58 0.89/0.57 0.94/0.70 0.90/0.57 0.95/0.73 0.93/0.70 0.96/0.79
CIFAR100[0:49] CIFAR100[50:99] 0.81/0.40 0.82/0.43 0.81/0.41 0.84/0.44 0.81/0.41 0.84/0.44 0.82/0.44 0.85/0.45
Average 0.94/0.77 0.95/0.78 0.94/0.78 0.95/0.81 0.94/0.79 0.96/0.82 0.95/0.81 0.96/0.83

Impact of the choice of arbitrary labels. Furthermore, we note that in the table we report averages over 3 runs of our
method, where for each run we use a different subset of ) to assign arbitrary labels to the unlabeled data. We do this in
order to assess the stability of ERD ensembles to the choice of the arbitrary labels and notice that the novelty detection
performance metrics do not vary significantly. Concretely, the standard deviations are consistently below 0.01 for all data
sets for the AUROC metric, and below 0.07 for the TNR @95 metric.

F.10 DETECTION PERFORMANCE ON DIFFERENT OOD DATA

In this section we investigate whether the proposed method maintains its good novelty detection performance when the
test-time OOD data comes from a different data set compared to the OOD data that is present in the unlabeled set used for
fine-tuning. In particular, we are interested if our approach can still identify outliers in situations when they suffer from
various corruptions. This scenario can sometimes occur in practice, when machine failure or uncurated data can lead to mild
distribution shift.

Concretely, we focus on the difficult near OOD scenarios and take as ID half of the CIFAR10 or CIFAR100 classes, while
the other half is OOD. For this experiment, we fine-tune the ERD ensembles using clean OOD data from the other half of
CIFAR10 and CIFAR100, respectively. For evaluation, we use clean ID data and corrupted OOD samples from CIFAR10-C
and CIFAR100-C, respectively. We give more details on these corrupted data sets in Appendix [F.4] We consider corruptions
of severity 2 and 5 from all corruptions types.

In Table[I2] we show the average AUROC and the worst AUROC over all corruption types for vanilla and ERD ensembles.
Note that our approach maintains a similar performance compared to the numbers presented in Table[T] for same test-time
OOD data. It is also noteworthy that all the average AUROC values are consistently larger than the baselines in Table [I]



Table 12: Results obtained when evaluating on an OOD data set different from the one used for fine-tuning. All ERD
ensembles are tuned on clean ID and OOD data and are evaluated on OOD data with corruptions.

OOD data in Test-time Vanilla
ID data unlabeled set OOD data Ensemble ERD
AUROC 1

CIFAR10[0:4] CIFAR10[5:9] CIFAR10[5:9]-C sev 2 (A) 0.82 0.93
CIFAR10[0:4] CIFAR10[5:9] CIFAR10[5:9]-C sev 2 (W) 0.77 0.88
CIFAR10[0:4] CIFAR10[5:9] CIFAR10[5:9]-C sev 5 (A) 0.85 0.91
CIFAR10[0:4] CIFAR10[5:9] CIFAR10[5:9]-C sev 5 (W) 0.79 0.86
CIFAR100[0:49] CIFAR100[50:99] CIFAR100[50:99]-C sev 2 (A) 0.78 0.84
CIFAR100[0:49] CIFAR100[50:99] CIFAR100[50:99]-C sev 2 (W) 0.75 0.78
CIFAR100[0:49] CIFAR100[50:99] CIFAR100[50:99]-C sev 5 (A) 0.77 0.83
CIFAR100[0:49] CIFAR100[50:99] CIFAR100[50:99]-C sev 5 (W) 0.63 0.78

G MEDICAL OOD DETECTION BENCHMARK

The medical OOD detection benchmark is organized as follows. There are four training (ID) data sets, from three different
domains: two data sets with chest X-rays, one with fundus imaging and one with histology images. For each ID data set, the
authors consider three different OOD scenarios:

1. Use case 1: The OOD data set contains images from a completely different domain, similar to our category of easy OOD
detection settings.

2. Use case 2: The OOD data set contains images with various corruptions, similar to the hard covariate shift settings that
we consider in Section [E4]

3. Use case 3: The OOD data set contains images that come from novel classes, not seen during training.

Hard OOD data
Training data Easy OOD data (unseen diseases)

7

-

Figure 6: Samples from the medical image benchmark. There are 3 ID data sets containing frontal and lateral chest X-rays
and retinal images. Hard OOD samples contain images of diseases that are not present in the training set.

The authors evaluate a number of methods on all these scenarios. The methods can be roughly categorized as follows:

1. Data-only methods: Fully non-parametric approaches like kKNN.

2. Classifier-only methods: Methods that use a classifier trained on the training set, e.g. ODIN [Liang et al. 2018],
Mahalanobis 2018].. ERD falls into this category as well.

3. Methods with Auxiliary Models: Methods that use an autoencoder or a generative model, like a Variational Autoencoder

or a Generative Adversarial Network. Some of these approaches can be expensive to train and difficult to optimize and
tune.




We stress the fact that for most of these methods the authors use (known) OOD data during training. Oftentimes the OOD
samples observed during training come from a data set that is very similar to the OOD data used for evaluation. For exact

details reearding the data sets and the methods used for the benchmark. we refer the reader to[Cao et al.| [2020].
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Figure 7: AUROC averaged over all scenarios in the medical OOD detection benchmark [Cao et al., 2020]. The values for
all the baselines are computed using code made available by the authors of [2020]). Notably, most of the baselines
assume oracle knowledge of OOD data at training time.

In addition, in Figure[§]we present the average taken over only the novel-class settings in the medical benchmark. We observe
that the performance of all methods is drastically affected, all of them performing much worse than the average presented in
Figure[7] This stark decrease in AUROC and TNR @95 indicates that novelty detection is indeed a challenging task for
OOD detection methods even in realistic settings. Nevertheless, 2-model ERD ensembles maintain a better performance
than the baselines.
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Figure 8: AUROC averaged over the novel-class scenarios in the medical OOD detection benchmark [Cao et al., 2020], i.e.
only use case 3.

In Figures 9] [T0} [TT] we present AUROC and AUPR (Area under the Precision Recall curve) for ERD for each of the training
data sets, and each of the use cases. Figure [7] presents averages over all settings that we considered, for all the baseline
methods in the benchmark. Notably, ERD performs well consistently across data sets. The baselines are ordered by their
average performance on all the settings (see Figure[7).

For all medical benchmarks, the unlabeled set is balanced, with an equal number of ID and OOD samples (subsampling the
bigger data set, if necessary). We use the unlabeled set for evaluation.



AUROC, data-only AUROC, classifier only AUROC, with auxilary NN _________________ ~ 100
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Figure 9: Comparison between ERD and the various baselines on the NIH chest X-ray data set, for use case 1 (top), use case
2 (middle) and use [
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Figure 10: Comparison between ERD and the various baselines on the PC chest X-ray data set, for use case 1 (top), use case
2 (middle) and use case 3 (bottom). Baselines ordered as in Figurem
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Figure 11: Comparison between ERD and the various baselines on the DRD fundus imaging data set, for use case 1 (top),
use case 2 (middle) and use case 3 (bottom). Baselines ordered as in Figurem

H EFFECT OF LEARNING RATE AND BATCH SIZE

We show now that ERD ensembles are not too sensitive to the choice of hyperparameters. We illustrate this by varying the
learning rate and the batch size, the hyperparameters that we identify as most impactful. As Figure[I2]shows, many different
configurations lead to similar novelty detection performance.
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Figure 12: AUROCS obtained with an ensemble of WRN-28-10 models, as the initial learning rate and the batch size are
varied. We used the hardest setting, CIFAR100:0-50 as ID, and CIFAR100:50-100 as OOD.



I ADDITIONAL FIGURE SHOWING THE DEPENDENCE ON THE UNLABELED SET
CONFIGURATION

The configuration of the unlabeled set (i.e. the size of the unlabeled set, the ratio of OOD samples in the unlabeled set)
influences the performance of our method, as illustrated in Figure @ Below, we show that the same trend persists for
different data sets too, e.g. when we consider CIFAR10 as ID data and SVHN as OOD data.
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Figure 13: The AUROC of a 3-model ERD ensemble as the number and proportion of ID (CIFAR10) and OOD (SVHN)
samples in the unlabeled set are varied.
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J LEARNING CURVES FOR OTHER DATA SETS

In addition to Figure[d we present in this section learning curves for other data sets as well. The trend that persists throughout
all figures is that the arbitrary label is learned first on the unlabeled OOD data. Choosing a stopping time before the validation
accuracy starts to deteriorate prevents the model from fitting the arbitrary label on unlabeled ID data.

Impact of near OOD data on training ERD ensembles. The learning curves illustrated in Figure [T4] provide insight
into what happens when the OOD data is similar to the ID training samples and the impact that has on training the proposed
method. In particular, notice that for CIFAR10[0-4] vs CIFAR10[5-9] in Figure [T4d] the models require more training
epochs before reaching an accuracy on unlabeled OOD samples of 100%. The learning of the arbitrary label on the OOD
samples is delayed by the fact that the ID and OOD data are similar, and hence, the bias of the correctly labeled training set
has a strong effect on the predictions of the models on the OOD inputs. Since we early stop when the validation accuracy
starts deteriorating (e.g. at around epoch 8 in Figure [[4d), we end up using models that do not interpolate the arbitrary
label on the OOD samples. Therefore, the ensemble does not disagree on the entirety of the OOD data in the unlabeled set,
which leads to lower novelty detection performance. Importantly, however, our empirical evaluation reveals that the drop in
performance for ERD ensembles is substantially smaller than what we observe for other OOD detection methods, even on
near OOD data sets.

K EVOLUTION OF DISAGREEMENT SCORE DURING FINE-TUNING

In this section we illustrate how the distribution of the disagreement score changes during fine-tuning for ID and OOD data,
for a 5-model ERD ensemble. Thus, we can further understand why the performance of the ERD ensembles is impacted by
near OOD data.

Figure [T5]reveals that for far OOD data (the left column) the disagreement scores computed on OOD samples are well
separated from the disagreement scores on ID data (note that disagreement on OOD data is so concentrated around the
maximum value of 2 that the boxes are essentially reduced to a line segment). On the other hand, for near OOD data (the
right column) there is sometimes significant overlap between the disagreement scores on ID and OOD data, which leads to
the slightly lower AUROC values that we report in Table[I]

The figures also illustrate how the disagreement on the ID data tends to increase as we fine-tune the ensemble for longer, as
a consequence of the models fitting the arbitrary labels on the unlabeled ID samples. Conversely, in most instances one
epoch suffices for fitting the arbitrary label on the OOD data.

We need to make one important remark: While in the figure we present disagreement scores for the ensemble obtained after
each epoch of fine-tuning, we stress that the final ERD ensemble need not be selected among these. In particular, since each
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(f) ID = CIFAR100[0-49]; OOD = CIFAR100[50-99].

Figure 14: Accuracy measured while fine-tuning a model pretrained on S (epoch 0 indicates values obtained with the initial pretrained
weights). The samples in (Uoob, ¢) are fit first, while the model reaches high accuracy on (Urp, ¢) much later. We fine-tune for at least
one epoch and then early stop when the validation accuracy starts decreasing.

model for ERD is early stopped separately, potentially at a different iteration, it is likely that the ERD ensemble contains
models fine-tuned for a different number of iterations. Since we select the ERD ensembles from a strictly larger set, the final
ensemble selected by the our proposed approach will be at least as good at distinguishing ID and OOD data as the best

ensemble depicted in Figure[I3]
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(a) ID = SVHN; OOD = CIFAR10. (b) ID = SVHN[0-4]; OOD = SVHN[5-9].
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(c) ID = CIFAR10; OOD = SVHN. (d) ID = CIFAR10[0-4]; OOD = CIFAR10[5-9].
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(e) ID = CIFAR100; OOD = SVHN. (f) ID = CIFAR100[0-49]; OOD = CIFAR100[50-99].

Figure 15: The distribution of the disagreement score measured during fine-tuning on ID and OOD data (blue and orange boxes,
respectively). The box indicates the lower and upper quartiles of the distribution, while the middle line represents the median and the
whiskers show the extreme values. Notice that the distributions of the scores are easier to distinguish for far OOD data (left column), and
tend to overlap more for near OOD settings (right column).
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