Supplementary Material

The supplementary material is organized as follows. In Section [A](#page-0-0) we provide proof of **Lemma 1, Lemma 2** and **Theorem** 1. For reader's convenience the results are repeated in this supplementary material. Section [B](#page-3-0) recalls the MSDA-WJDOT algorithm and defines the projection to the simplex implemented in the algorithm. Finally, in Section [C](#page-3-1) we present additional numerical experiments.

A PROOFS

A.1 PROOF OF LEMMA 1

Lemma 1. For any hypothesis $f \in H$, denote as $\varepsilon_{p_T}(f)$ and $\varepsilon_{p_S^{\alpha}}(f)$, the expected loss of f on the target and on the *weighted sum of the source domains, with respect to a loss function* L *bounded by* B*. We have*

$$
\varepsilon_{p_T}(f) \le \varepsilon_{p_S^{\mathbf{\alpha}}}(f) + B \cdot D_{TV}\left(p_S^{\mathbf{\alpha}}, p_T\right) \tag{1}
$$

where $p_S^{\bm{\alpha}} = \sum_{j=1}^J \alpha_j p_{S,j}$ is a convex combination of the source distributions with weights $\bm{\alpha} \in \Delta^J$, and D_{TV} is the total *variation distance.*

Proof. We define the error of an hypothesis f with respect to a loss function $L(\cdot, \cdot)$ and a joint probability distribution $p(x, y)$ as

$$
\varepsilon_p(f) = \int p(x, y) L(y, f(x)) dx dy
$$

then using simple arguments, we have

$$
\varepsilon_{p_T}(f) = \varepsilon_{p_T}(f) + \varepsilon_{p_S^{\alpha}}(f) - \varepsilon_{p_S^{\alpha}}(f)
$$
\n
$$
\leq \varepsilon_{p_S^{\alpha}}(f) + |\varepsilon_{p_T}(f) - \varepsilon_{p_S^{\alpha}}(f)|
$$
\n
$$
\leq \varepsilon_{p_S^{\alpha}}(f) + \int |p_S^{\alpha}(x, y) - p_T(x, y)||L(y, f(x)|dxdy)
$$
\n
$$
\leq \varepsilon_{p_S^{\alpha}}(f) + B \int |p_S^{\alpha}(x, y) - p_T(x, y)|dxdy
$$
\n(2)

 \Box

and using the definition of the total variation distance between distribution we conclude the proof.

A.2 PROOF OF THEOREM 1

The proof of this theorem follows the same steps as the one proposed by [4] and we reproduce it here for a sake of completeness.

Definition 1 (Probabilistic Transfer Lipschitzness – PLT Property). Let p_S and p_T be respectively the source and target *distributions. Let* $\phi : \mathbb{R} \to [0,1]$ *. A labeling function* $f : \mathcal{G} \to \mathbb{R}$ *and a joint distribution* $\pi \in \Pi(p_S, p_T)$ *over* p_S *and* p_T *are* ϕ*-Lipschitz transferable if for all* λ > 0*, we have*

$$
\text{Prob}_{(x_S, x_T) \sim \pi} \left[|f(x_S) - f(x_T)| \right] > \lambda D(x_S, x_T) \le \phi(\lambda)
$$

with D *being a metric on* G*.*

This property provides a bound on the probability of finding a couple of source-target examples that are differently labeled in a $(1/\lambda)$ -ball with respect to π and the metric D.

Definition 2. (Similarity measure) Let H be a space of M-Lipschitz labelling functions. Assume that, for every $f \in H$ and $x, x' \in \mathcal{G}$, $|f(x) - f(x')| \leq M$. The similarity between p_S^{α} and p_T can defined [1, Def. 5] as

$$
\Lambda(p_S^{\mathbf{\alpha}}, p_T) = \min_{f \in \mathcal{H}} \varepsilon_{p_S^{\mathbf{\alpha}}}(f) + \varepsilon_{p_T}(f),\tag{3}
$$

where the risk is measured w.r.t. to a symmetric and k*-Lipschitz loss function that satisfies the triangle inequality.*

Lemma 2. *Let* H *be the space described in Definition [2](#page-0-1) and assume that the function* f [∗] *minimizing the Similarity measure in Eq. [3](#page-0-1) satisfies the PTL property. Then, for any* $f \in H$ *, we have*

$$
\varepsilon_{p_T}(f) \le W_D\left(p_S^{\alpha}, p_T^f\right) + \Lambda(p_S^{\alpha}, p_T) + kM\phi(\lambda),\tag{4}
$$

where $\phi(\lambda)$ *is a constant depending on the PTL of f*.*

Proof. We have that

$$
\varepsilon_{p_T}(f) \equiv \mathbb{E}_{(x,y)\sim p_T} [L(y, f(x))]
$$

\n
$$
\leq \mathbb{E}_{(x,y)\sim p_T} [L(y, f^*(x)) + L(f^*(x), f(x))]
$$

\n
$$
= \varepsilon_{p_T}(f^*) + \mathbb{E}_{(x,y)\sim p_T} [L(f^*(x), f(x))]
$$

\n
$$
= \varepsilon_{p_T}(f^*) + \mathbb{E}_{(x,y)\sim p_T^f} [L(f^*(x), f(x))]
$$

\n
$$
= \varepsilon_{p_T}(f^*) + \varepsilon_{p_T^f}(f^*) + \varepsilon_{p_T^g}(f^*) - \varepsilon_{p_T^g}(f^*)
$$

\n
$$
\leq |\varepsilon_{p_T^f}(f^*) - \varepsilon_{p_T^g}(f^*)| + \varepsilon_{p_T^g}(f^*) + \varepsilon_{p_T}(f^*)
$$

where the second equality comes from the symmetry of the loss function and the third one is due to the fact that $\mathbb{E}_{(x,y)\sim p_T}L(f^*(x),f(x)) = \mathbb{E}_{(x,y)\sim p_T^f}L(f^*(x),f(x)) = \mathbb{E}_{x\sim \mu_T}L(f^*(x),f(x))$ since the label y is not used in the expectation.

Now, we analyze the first term in the r.h.s. of the last inequality. Note that samples drawn from p_T^f distribution can be expressed as $(x_T, y_T^f) \sim p_T^f$ with $y_T^f = f(x_T)$.

$$
\begin{split}\n|\varepsilon_{p_T^f}(f^*) - \varepsilon_{p_S^{\infty}}(f^*)| &= \left| \int_{\mathcal{G} \times \mathbb{R}} L(y, f^*(x)) (p_T^f(x, y) - p_S^{\infty}(x, y)) dx dy \right| \\
&= \left| \int_{\mathcal{G} \times \mathbb{R}} L(y, f^*(x)) d(p_T^f - p_S^{\infty}) \right| \\
&\leq \int_{(\mathcal{G} \times \mathbb{R})^2} \left| L(y_T^f, f^*(x_T)) - L(y_{\alpha}, f^*(x_{\alpha})) \right| d\pi^*((x_{\alpha}, y_{\alpha}), (x_T, y_T^f)) \\
&\leq \int_{(\mathcal{G} \times \mathbb{R})^2} \left[\left| L(y_T^f, f^*(x_T)) - L(y_T^f, f^*(x_{\alpha})) \right| \right] d\pi^*((x_{\alpha}, y_{\alpha}), (x_T, y_T^f)) \\
&\leq \int_{(\mathcal{G} \times \mathbb{R})^2} \left[k | f^*(x_T) - f^*(x_{\alpha}))| + \left| L(y_T^f, f^*(x_{\alpha})) - L(y_{\alpha}, f^*(x_{\alpha})) \right| \right] d\pi^*((x_{\alpha}, y_{\alpha}), (x_T, y_T^f)) \\
&\leq \int_{(\mathcal{G} \times \mathbb{R})^2} \left[k | f^*(x_T) - f^*(x_{\alpha}))| + \left| L(y_T^f, f^*(x_{\alpha})) - L(y_{\alpha}, f^*(x_{\alpha})) \right| \right] d\pi^*((x_{\alpha}, y_{\alpha}), (x_T, y_T^f))\n\end{split} \tag{6}
$$

$$
\leq k M \phi(\lambda) + \int_{(\mathcal{G}\times\mathbb{R})^2} \left[k \lambda D(x_T, x_\alpha) + \left| L(y_T^f, f^\star(x_\alpha)) - L(y_\alpha, f^\star(x_\alpha)) \right| \right] d\pi^*((x_\alpha, y_\alpha), (x_T, y_T^f))
$$
\n(7)

$$
\leq k M \phi(\lambda) + \int_{(\mathcal{G}\times\mathbb{R})^2} \left[\beta D(x_T, x_\alpha) + \left| L(y_T^f, y_\alpha) \right| \right] d\pi^\star((x_\alpha, y_\alpha), (x_T, y_T^f)) \tag{8}
$$

$$
=kM\phi(\lambda)+W_D(p_S^{\alpha},p_T^f).
$$
\n(9)

Inequality in line [\(5\)](#page-1-0) is due to the Kantorovitch-Rubinstein theorem stating that for any coupling $\pi \in \Pi(p_S^{\alpha}, p_T)$ the following inequality holds

$$
\left|\int_{\mathcal{G}\times \mathbb{R}}L(y,f^{\star}(x))d(p_{T}^{f}-p_{S}^{\boldsymbol{\alpha}})\right|\leq \left|\int_{(\mathcal{G}\times \mathbb{R})^2}\left|L(y_{T}^{f},f^{\star}(x_{T}))-L(y_{\boldsymbol{\alpha}},f^{\star}(x_{\boldsymbol{\alpha}})\right|d\pi((x_{\boldsymbol{\alpha}},y_{\boldsymbol{\alpha}}),(x_{T},y_{T}^{f}))\right|,
$$

followed by an application of the triangle inequality. Since, the above inequality applies for any coupling, it applies also for π^* . Inequality [\(6\)](#page-1-1) is due to the assumption that the loss function is k-Lipschitz in its second argument. Inequality [\(7\)](#page-1-2) derives

from the PTL property with probability $1 - \phi(\lambda)$ of f^* and π^* . In addition, taking into account that the difference between two samples with respect to f^* is bounded by M, we have the term $kM\phi(\lambda)$ that covers the regions where PTL assumption does not hold. Inequality [\(8\)](#page-1-3) is obtained from the symmetry of $D(\cdot, \cdot)$, the triangle inequality on the loss and by posing $k\lambda = \beta$. \Box

First we need to prove the following Lemma.

Lemma 3. *For any distributions* $\hat{p}_{S,j}, p_{S,j}$ *and* $\boldsymbol{\alpha} \in \Delta^{J}$ *in the simplex we have*

$$
W_D\left(\sum_{j=1}^J \alpha_j \hat{p}_{S,j}, \sum_{j=1}^J \alpha_j p_{S,j}\right) \leq \sum_{j=1}^J \alpha_j W_D\left(\hat{p}_{S,j}, p_{S,j}\right).
$$

Proof. First we recall that the Wasserstein Distance between two distribution is

$$
W_D(p, p') = \min_{\pi \in \Pi(p, p')} \int D(\mathbf{v}, \mathbf{v}') \pi(\mathbf{v}, \mathbf{v}') d\mathbf{v} d\mathbf{v}',\tag{10}
$$

where $\Pi(p, p') = {\pi | \int \pi(\mathbf{v}, \mathbf{v}') d\mathbf{v}' = p(\mathbf{v}), \int \pi(\mathbf{v}, \mathbf{v}') d\mathbf{v} = p'(\mathbf{v}')}.$ Let $\pi_{S,j}^*$ be the optimal OT matrix between $\hat{p}_{S,j}$ and $p_{S,j}$. It is obvious to see that $\sum_{j=1}^{J} \alpha_j \pi_{S,j}^*$ respects the marginal constraints for $W_D \left(\sum_{j=1}^{J} \alpha_j \hat{p}_{S,j}, \sum_{j=1}^{J} \alpha_j p_{S,j} \right)$, i.e. $\sum_{j=1}^{J} \alpha_j \pi_{S,j}^* \in \Pi \left(\sum_{j=1}^{J} \alpha_j \hat{p}_{S,j}, \sum_{j=1}^{J} \alpha_j p_{S,j} \right)$. Hence, $\sum_{j=1}^{J} \alpha_j \pi_{S,j}^*$ is a feasible solution for the OT problem and, consequently, the cost for this feasible solution is greater or equal than the optimal value $W_D\left(\sum_{j=1}^J \alpha_j \hat{p}_{S,j}, \sum_{j=1}^J \alpha_j p_{S,j}\right)$. Since $\int D(\mathbf{v}, \mathbf{v}') \sum_{j=1}^J \alpha_j \pi_{S,j}^*(\mathbf{v}, \mathbf{v}') d\mathbf{v} d\mathbf{v}' = \sum_{j=1}^J \alpha_j W_D(\hat{p}_{S,j}, p_{S,j})$ we recover the Lemma above. \Box

We can now prove **Theorem 1**, which we also restate for the convenience of the reader.

Theorem 1. *Under the assumptions of Lemma 2, let* $\hat{p}_{S,j}$ *be j*-th source empirical distributions of N_j samples and \hat{p}_T the *empirical target distribution with* N_T *samples. Then for all* $\lambda > 0$, with $\beta = \lambda k$ *in the ground metric* D we have with *probability* $1 - \eta$

$$
\varepsilon_{p_T}(f) \le W_D\left(\hat{p}_S^{\alpha}, \hat{p}_T^f\right) + \sqrt{\frac{2}{c'}\log\frac{2}{\eta}} \left(\frac{1}{N_T} + \sum_{j=1}^J \frac{\alpha_j}{N_j}\right) + \Lambda(p_S^{\alpha}, p_T) + kM\phi(\lambda). \tag{11}
$$

Proof. By the triangle inequality we have that

$$
W_D\left(\sum_{j=1}^J \alpha_j p_{S,j}, p_T^f\right) \le W_D\left(\sum_{j=1}^J \alpha_j \hat{p}_{S,j}, \hat{p}_T^f\right) + W_D(\hat{p}_T^f, p_T^f) + W_D\left(\sum_{j=1}^J \alpha_j \hat{p}_{S,j}, \sum_{j=1}^J \alpha_j p_{S,j}\right)
$$

$$
\le W_D\left(\sum_{j=1}^J \alpha_j \hat{p}_j, \hat{p}_T^f\right) + W_D(\hat{p}_T^f, p_T^f) + \sum_{j=1}^J \alpha_j W_D(\hat{p}_{S,j}, p_{S,j})
$$

where the last inequality follows from Lemma [3.](#page-2-0) Using the well known convergence property of the Wasserstein distance proven in [\[2\]](#page-0-2) we find the following bound with probability $1 - \eta$

$$
\varepsilon_{p_T}(f) \le W_D \left(\sum_{j=1}^J \alpha_j \hat{p}_{S,j}, \hat{p}_T^f \right) + \sqrt{\frac{2}{c'} \log \left(\frac{2}{\eta} \right)} \left(\frac{1}{N_T} + \sum_{j=1}^J \frac{\alpha_j}{N_j} \right) + \Lambda(p_S^{\alpha}, p_T) + 2k M \phi(\lambda)
$$
(12)

with c' corresponding to all *source* and *target* distributions under similar conditions as in [\[4\]](#page-0-2).

 \Box

B THE ALGORITHM

We recall here the algorithm we proposed to solve the MSDA-WJDOT problem (Algorithm [1\)](#page-3-2). P_{Δ} is the projection to the simplex $\Delta^J = {\alpha \in \mathbb{R}^J | \sum_{j=1}^J \alpha_j = 1, \alpha_j \ge 0}$ defined as

$$
P_{\Delta^{J}}(\boldsymbol{w}) = \underset{\boldsymbol{\alpha} \in \Delta^{J}}{\operatorname{argmin}} \|\boldsymbol{w} - \boldsymbol{\alpha}\|.
$$
 (13)

We implemented it by using Algorithm [2,](#page-3-3) firstly proposed in [\[5\]](#page-0-2).

Algorithm 1 Optimization for MSDA-WJDOT

Initialise $\alpha = \frac{1}{J} \mathbf{1}_J$ and θ parameters of f_{θ} and steps μ_{α} and μ_{θ} . repeat $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \mu_{\boldsymbol{\theta}} \nabla_{\boldsymbol{\theta}} W_D \left(\hat{p}_T^f, \sum_{j=1}^J \alpha_j \hat{p}_{S,j} \right)$ $\boldsymbol{\alpha} \leftarrow P_{\Delta^J}\Big(\boldsymbol{\alpha}-\mu_{\boldsymbol{\alpha}} \nabla_{\boldsymbol{\alpha}} W_D(\hat{p}_T^f, \sum_{j=1}^J \alpha_j \hat{p}_{S,j})\Big)$ until Convergence

Algorithm 2 Projection to the simplex [\[5\]](#page-0-2)

Sort w into $u: u_1 \geq \cdots \geq u_J$. Set $K := \max_{1 \leq k \leq J} \{ k | (\sum_{j=1}^{k} u_j - 1/k < u_k \}.$ Set $\tau := (\sum_{j=1}^K u_j - 1)/K$. For $j = 1, ..., J$ set $\alpha_j := \max\{w_j - \tau, 0\}.$

C NUMERICAL EXPERIMENTS

C.1 SIMULATED DATA

Domain shift We generate a data set (X_0, Y_0) by drawing X_0 from a 3-dimensional Gaussian distribution with 3 cluster centers and standard deviation $\sigma = 0.8$. We keep the same number of examples for each cluster. To simulate the *J* sources, we apply J rotations to the input data X_0 around the x-axis. More precisely, we draw J equispaced angles θ_j from $[0, \frac{3}{2}\pi]$ and we get $X_j = {\mathbf{x}_j^i}$ as

$$
\mathbf{x}_{j}^{i} = \mathbf{x}_{0}^{i} \quad \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos(\theta_{j}) & -\sin(\theta_{j}) \\ 0 & \sin(\theta_{j}) & \cos(\theta_{j}) \end{bmatrix} . \tag{14}
$$

To generate the *target* domain X_T , we follow the same procedure by randomly choosing an angle $\theta_T \in [0, \frac{3}{2}\pi]$. We keep the label set fixed, i.e. $Y_j = Y_T = Y_0$. Note that in this case the embedding function g is the identity function and, hence, $\mathcal{X} \equiv \mathcal{G}$. In the following we report all the experiment we carried out on the simulated data, in which we also investigate to replace the exact Wasserstein distance by the the Bures-Wasserstein distance

$$
BW(\mu_S, \mu_T)^2 = ||\mathbf{m}_S - \mathbf{m}_T||^2 + \text{Trace}\left(\Sigma_S + \Sigma_T - 2\left(\Sigma_S^{1/2} \Sigma_T \Sigma_S^{1/2}\right)^{1/2}\right),\tag{15}
$$

where the \mathbf{m}_{S} , Σ_{S} are respectively the first and second order moments of distribution μ_{S} (and similarly for \mathbf{m}_{T} , Σ_{T}). The BW distance has the advantage of having a complexity linear in the number of samples that can scale better to large dataset. We label this method variant with (B) , while we refer to the exact OT as (E) .

In the following, we investigate the performance of MSDA-WJDOT at varying of the number of *sources* J, *source* samples N_j , and *target* samples N_T . We compare the proposed approch with other MSDA methods and with the Baseline, Target, Bayes classification.

• *Varying the number of sources:* we keep the number of samples fixed in both *sources* and *target* datasets (s.t. $N_j = N_T$ $\forall j$) and we vary the number of *sources* $J \in \{3, 5, 10, 20, 25, 30\}$ $J \in \{3, 5, 10, 20, 25, 30\}$ $J \in \{3, 5, 10, 20, 25, 30\}$. In Fig. 1 we report the accuracy of the different methods.

Figure 1: Methods' accuracy for varying the number of *sources* J.

Figure 2: Methods' accuracy for varying the number of *source* samples.

Figure 3: Methods' accuracy for varying the number of *target* samples

Figure 4: Methods' accuracy for varying the number of *source* and *target* samples

Figure 5: Recovered α with small sample size ($N_j = N_T = 60$).

Figure 6: Recovered α for $N_j = N_T = 300$.

• *Varying the number of source samples:* we fix the number of *sources* J equal to 20 and the number of *target* samples N_T to 300. Fig [2](#page-4-0) and [6](#page-5-0) show the methods accuracy for varying the number of *source* samples N_j in $\{60, 180, 300\}$

Figure 7: Examples of source error and target error when the function f is the function learned by our approach (instead of the one minimizing Λ in (??)). The blue curve represents an histogram of the α -weighted source error for 10000 random α . The x-axis represents the value of the error and the y-axis the count. The green line corresponds to the source error for the learned α , red one gives the error for an uniform alpha and the black one represents the target error (the height of the lines has been arbitrarily set for a sake of clarity). We can see that for both 5 (Left) and 30 sources (Right) the learned alpha leads to lower source error even though α has been optimized for aligning joint distributions.

and the recovered α weight for $N_j = 300$, respectively.

- *Varying the number of the target samples:* we fix $J = 20$ and $N_j = 300$, with $1 \le j \le J$. We let vary the number of *target* samples N_T in {60, 180, 300} (Fig. [3\)](#page-5-1).
- *Varying the number of samples of all domains*: we fix the number of *sources* equal to 20. We let vary the number of *source* and *target* samples in {60, 180, 300}, by keeping $N_j = N_T$ with $1 \le j \le J$. We report the methods' accuracy in Fig. [2.](#page-4-0)

In all experiments MSDA-WJDOT significantly outperfoms CJDOT, MJDOT, IWERM and the Baseline. Both MSDA-WJDOT(E) and MSDA-WJDOT(B) provide a better or at least comparable performance w.r.t. the Target method, in which the labels of the *target* dataset are used. In Fig. [5](#page-5-0) and [6](#page-5-0) we show the recovered weights α for $N_j = N_T = 60$ and $N_j = N_T = 300$, respectively. In both cases, the x- axis reports different random *target* angles in the $[0, \frac{3}{2}\pi]$ interval (ordered by increasing angles), whereas the y-axis represents the *source* angles ordered such that $\theta_j \le \theta_{j+1}$, $1 \le j \le J-1$. As we can see, the weights are higher along the diagonal meaning that MSDA-WJDOT always rewards the *sources* with angle closest to θ_T .

C.2 REAL DATA

In the section, we introduce a new strategy for the validation, in alternative to the one based on SSE proposed in Sec. 3.2. We propose to employ the accuracy of the learned classifier f on the *source* datasets and weighted by α , i.e.

$$
\sum_{j=1}^{J} \alpha_j ACC_{S,j}(f),\tag{16}
$$

with $ACC_{S,j}(f) = \frac{\# \{f(x_j^i) = y_j^i\}}{N_i}$ $\frac{x_j y_j = y_j}{N_j}$. To refer to this approach, we denote as MSDA-WJDOT^{acc}, CJDOT^{acc}, MJDOT^{acc} the MSDA-WJDOT and the two JDOT extensions respectively. Let us remark that $MSDA-WJDOT^{acc}$ is a way to reuse the weights α that provide the closest *source* distributions which, hence, are supposed to give a better estimate of the performance of the current classifier.

Object recognition In Table [3](#page-7-0) we report the *source* weights provided by MSDA-WJDOT. In all cases, α is a one-hot vector suggesting that only one *source* is meaningfully related to the *target* domain. This is in line with the results on single-source DA found in [\[3\]](#page-0-2) in which the *source* domain providing the highest accuracy corresponds to the one selected by MSDA-WJDOT.

Table 3: α weights

Table [4](#page-7-1) is a full version of Table 1 in the paper, in which we also show the accuracy obtained by employing the validation strategy introduced in Eq. [16.](#page-6-0) We can observe that $MSDA-WJDOT^{acc}$ provides good performances, comparable with both MSDA-WJDOT and the other MSDA methods, but MSDA-WJDOT still remains the state of the art.

Amazon	dslr	webcam	Caltech ₁₀	AR
93.13 ± 0.07	94.12 ± 0.00	89.33 ± 1.63	82.65 ± 1.84	6.75
93.30 ± 0.75	100.00 ± 0.00	89.33 ± 1.16	91.19 ± 2.57	3.25
92.27 ± 0.83	$97.06 + 2.94$	$90.33 + 2.33$	$86.19 + 0.09$	4.50
93.74 ± 1.57	93.53 ± 4.59	90.33 ± 2.13	85.84 ± 1.73	4.50
93.61 ± 0.04	$98.82 + 2.35$	$91.00 + 1.53$	$85.22 + 1.48$	3.75
94.12 ± 1.57	$97.65 + 2.88$	$90.27 + 2.48$	84.72 ± 1.73	4.50
$79.23 + 3.09$	$81.77 + 2.81$	$93.93 + 0.60$	77.91 ± 0.45	7.25
$59.86 + 2.48$	$60.99 + 2.15$	$64.13 + 2.38$	$62.80 + 1.61$	9.50
92.74 ± 0.45	95.87 ± 1.43	96.57 ± 1.76	85.01 ± 0.84	5.00
93.61 ± 0.09	100.00 ± 0.00	$86.00 + 2.91$	85.49 ± 1.69	4.25
94.23 ± 0.90	100.00 ± 0.00	89.33 ± 2.91	85.93 ± 2.07	2.75
95.77 ± 0.31	88.35 ± 2.76	99.87 ± 0.65	89.75 ± 0.85	
94.78 ± 0.48	99.88 ± 0.82	100.00 ± 0.00	91.89 ± 0.69	

Table 4: Accuracy on Caltech Office Dataset. Results of methods marked by * are from [\[6\]](#page-0-2).

Figure 8: BLSTM architecture. A similar architecture is used for the multi-task learning approach: we use the same embedding function g and J classification functions f_j .

Music-speech discrimination The model we adopted is shown in Fig. [8,](#page-7-2) where g is a two-layers Bidirectional Long Short-Term Memory (BLSTM) that feeds the one feed-forward layer f with the last hidden state. Weights were initialized with Xavier initialization. Training is performed with Adam optimizer with 0.9 momentum and $\epsilon = e^{-8}$. Learning rate exponentially decays every epoch. We grid-research the initial learning rate value and the decay rate.

In Table [5](#page-8-0) we show the MSDA performances in the music-speech discrimination. In particular, for MSDA-WJDOT and JDOT variants the validation strategy described in formula [16](#page-6-0) has been employed. Results show that, although this is a valid strategy, early stopping based on SSE described in Sec. 4 always outperforms. The Average Rank shows that MSDA-WJDOT is state of the art in music-speech discrimination.

Method	F16	Buccaneer ₂	Factory ₂	Destroyerengine	AR
Baseline	69.67 ± 8.78	57.33 ± 7.57	83.33 ± 9.13	87.33 ± 6.72	11.25
IWERM ^[9]	72.22 ± 3.93	58.33 ± 5.89	85.00 ± 6.23	81.64 ± 3.33	10.75
IWERM _{mtl} [9]	75.00 ± 0.00	66.67 ± 0.00	100.00 ± 0.00	98.33 ± 3.33	5.50
$DCTN$ $[10]$	66.67 ± 3.61	68.75 ± 3.61	87.50 ± 12.5	94.44 ± 7.86	8.50
M^3 SDA $[7]$	70.00 ± 4.08	61.67 ± 4.08	85.00 ± 11.05	83.33 ± 0.00	10.25
CJDOT ^[4]	59.50 ± 13.95	50.00 ± 0.00	83.33 ± 0.00	91.67 ± 0.00	11.50
CJDOT $_{mtl}$ [4]	83.83 ± 5.11	74.83 ± 1.17	100.00 ± 0.00	95.74 ± 16.92	4.00
CJDOT $_{mtl}^{acc}$ [4]	79.83 ± 4.74	74.83 ± 1.17	99.67 ± 1.63	100.00 ± 0.00	3.50
MJDOT ^[4]	66.33 ± 9.57	50.00 ± 0.00	83.33 ± 0.00	91.67 ± 0.00	11.50
$MJDOT_{mtl}[4]$	86.00 ± 4.55	72.83 ± 5.73	97.67 ± 3.74	97.74 ± 8.28	4.00
$MJDOT_{mtl}^{acc}[4]$	77.67 ± 5.12	69.00 ± 4.72	99.67 ± 1.63	99.83 ± 1.17	4.75
$JCPOT*[8]$	79.23 ± 3.09	81.77 ± 2.81	93.93 ± 0.60	77.91 ± 0.45	7.50
$WBT^*[6]$	59.86 ± 2.48	60.99 ± 2.15	64.13 ± 2.38	62.80 ± 1.61	13.00
$WBT_{req}^*[6]$	92.74 ± 0.45	95.87 ± 1.43	96.57 ± 1.76	85.01 ± 0.84	4.25
MSDA-WJDOT	83.33 ± 0.00	58.33 ± 6.01	87.00 ± 6.05	89.00 ± 4.84	8.00
$MSDA-WJDOTmtl$	87.17 ± 4.15	74.83 ± 1.20	99.67 ± 1.63	99.67 ± 1.63	2.75
$MSDA-WJDOTmtlacc$	83.00 ± 4.07	75.00 ± 0.00	100.00 ± 0.00	98.83 ± 3.34	3.50
MSDA-WJDOT ^{acc}	83.33 ± 0.00	58.33 ± 6.01	87.00 ± 6.05	89.00 ± 4.84	8.00
Target	73.67 ± 6.09	69.17 ± 7.50	77.33 ± 4.73	73.17 ± 9.90	
Baseline+Target	71.06 ± 9.31	67.62 ± 11.92	85.33 ± 11.85	79.53 ± 10.05	

Table 5: Accuracy on Music-Speech Dataset. Results of methods marked by * are from [\[6\]](#page-0-2).