
Supplementary Material

The supplementary material is organized as follows. In Section A we provide proof of Lemma 1, Lemma 2 and Theorem
1. For reader’s convenience the results are repeated in this supplementary material. Section B recalls the MSDA-WJDOT
algorithm and defines the projection to the simplex implemented in the algorithm. Finally, in Section C we present additional
numerical experiments.

A PROOFS

A.1 PROOF OF LEMMA 1

Lemma 1. For any hypothesis f ∈ H, denote as εpT
(f) and εpα

S
(f), the expected loss of f on the target and on the

weighted sum of the source domains, with respect to a loss function L bounded by B. We have

εpT
(f) ≤ εpα

S
(f) +B ·DTV (pαS , pT ) (1)

where pαS =
∑J

j=1 αjpS,j is a convex combination of the source distributions with weights α ∈ ∆J , and DTV is the total
variation distance.

Proof. We define the error of an hypothesis f with respect to a loss function L(·, ·) and a joint probability distribution
p(x, y) as

εp(f) =

∫
p(x, y)L(y, f(x))dxdy

then using simple arguments, we have

εpT
(f) = εpT

(f) + εpα
S
(f)− εpα

S
(f) (2)

≤ εpα
S
(f) + |εpT

(f)− εpα
S
(f)|

≤ εpα
S
(f) +

∫
|pαS (x, y)− pT (x, y)||L(y, f(x)|dxdy

≤ εpα
S
(f) +B

∫ ∣∣pαS (x, y)− pT (x, y)
∣∣dxdy

and using the definition of the total variation distance between distribution we conclude the proof.

A.2 PROOF OF THEOREM 1

The proof of this theorem follows the same steps as the one proposed by [4] and we reproduce it here for a sake of
completeness.

Definition 1 (Probabilistic Transfer Lipschitzness – PLT Property). Let pS and pT be respectively the source and target
distributions. Let ϕ : R→ [0, 1]. A labeling function f : G → R and a joint distribution π ∈ Π(pS , pT ) over pS and pT are
ϕ-Lipschitz transferable if for all λ > 0, we have

Prob(xS ,xT )∼π

[
|f(xS)− f(xT )|] > λD(xS , xT )

]
≤ ϕ(λ)

with D being a metric on G.

This property provides a bound on the probability of finding a couple of source-target examples that are differently labeled
in a (1/λ)-ball with respect to π and the metric D.

Definition 2. (Similarity measure) LetH be a space of M -Lipschitz labelling functions. Assume that, for every f ∈ H and
x, x′ ∈ G, |f(x)− f(x′)| ≤M . The similarity between pαS and pT can defined [1, Def. 5] as

Λ(pαS , pT ) = min
f∈H

εpα
S
(f) + εpT

(f), (3)

where the risk is measured w.r.t. to a symmetric and k-Lipschitz loss function that satisfies the triangle inequality.



Lemma 2. LetH be the space described in Definition 2 and assume that the function f∗ minimizing the Similarity measure
in Eq. 3 satisfies the PTL property. Then, for any f ∈ H, we have

εpT
(f) ≤WD

(
pαS , p

f
T

)
+ Λ(pαS , pT ) + kMϕ(λ), (4)

where ϕ(λ) is a constant depending on the PTL of f⋆.

Proof. We have that
εpT

(f) ≡ E(x,y)∼pT

[
L(y, f(x))

]
≤ E(x,y)∼pT

[
L(y, f⋆(x)) + L(f⋆(x), f(x))

]
= εpT

(f⋆) + E(x,y)∼pT

[
L(f⋆(x), f(x))]

= εpT
(f⋆) + E(x,y)∼pf

T

[
L(f⋆(x), f(x))]

= εpT
(f⋆) + εpf

T
(f⋆) + εpα

S
(f⋆)− εpα

S
(f⋆)

≤ |εpf
T
(f⋆)− εpα

S
(f⋆)|+ εpα

S
(f⋆) + εpT

(f⋆)

where the second equality comes from the symmetry of the loss function and the third one is due to the fact that
E(x,y)∼pT

L(f⋆(x), f(x)) = E(x,y)∼pf
T
L(f⋆(x), f(x)) = Ex∼µT

L(f⋆(x), f(x)) since the label y is not used in the
expectation.

Now, we analyze the first term in the r.h.s. of the last inequality. Note that samples drawn from pfT distribution can be
expressed as (xT , y

f
T ) ∼ pfT with yfT = f(xT ).

|εpf
T
(f⋆)−εpα

S
(f⋆)| =

∣∣∣∣∫
G×R

L(y, f⋆(x))(pfT (x, y)− pαS (x, y))dxdy

∣∣∣∣
=

∣∣∣∣∫
G×R

L(y, f⋆(x))d(pfT − pαS )

∣∣∣∣
≤

∫
(G×R)2

∣∣∣L(yfT , f⋆(xT ))− L(yα, f
⋆(xα))

∣∣∣dπ⋆((xα, yα), (xT , y
f
T )) (5)

≤
∫
(G×R)2

[∣∣∣L(yfT , f⋆(xT ))−L(yfT , f
⋆(xα))

∣∣∣
+
∣∣∣L(yfT , f⋆(xα))−L(yα, f⋆(xα))

∣∣∣]dπ⋆((xα, yα), (xT , y
f
T ))

≤
∫
(G×R)2

[
k
∣∣f⋆(xT )− f⋆(xα))

∣∣+ ∣∣∣L(yfT , f⋆(xα))−L(yα, f⋆(xα)
∣∣∣]dπ⋆((xα, yα), (xT , y

f
T ))

(6)

≤ kMϕ(λ) +

∫
(G×R)2

[
kλD(xT , xα)+

∣∣∣L(yfT , f⋆(xα))−L(yα, f⋆(xα))
∣∣∣]dπ⋆((xα, yα), (xT , y

f
T ))

(7)

≤ kMϕ(λ) +

∫
(G×R)2

[
βD(xT , xα) +

∣∣∣L(yfT , yα)∣∣∣
]
dπ⋆((xα, yα), (xT , y

f
T )) (8)

= kMϕ(λ) +WD(pαS , p
f
T ). (9)

Inequality in line (5) is due to the Kantorovitch-Rubinstein theorem stating that for any coupling π ∈ Π(pαS , pT ) the
following inequality holds∣∣∣∣∫

G×R
L(y, f⋆(x))d(pfT − pαS )

∣∣∣∣ ≤
∣∣∣∣∣
∫
(G×R)2

|L(yfT , f
⋆(xT ))− L(yα, f

⋆(xα)|dπ((xα, yα), (xT , y
f
T ))

∣∣∣∣∣ ,
followed by an application of the triangle inequality. Since, the above inequality applies for any coupling, it applies also for
π⋆. Inequality (6) is due to the assumption that the loss function is k-Lipschitz in its second argument. Inequality (7) derives



from the PTL property with probability 1− ϕ(λ) of f⋆ and π⋆. In addition, taking into account that the difference between
two samples with respect to f⋆ is bounded by M , we have the term kMϕ(λ) that covers the regions where PTL assumption
does not hold. Inequality (8) is obtained from the symmetry of D(·, ·), the triangle inequality on the loss and by posing
kλ = β.

First we need to prove the following Lemma.

Lemma 3. For any distributions p̂S,j , pS,j and α ∈ ∆J in the simplex we have

WD

 J∑
j=1

αj p̂S,j ,

J∑
j=1

αjpS,j

 ≤ J∑
j=1

αjWD (p̂S,j , pS,j) .

Proof. First we recall that the Wasserstein Distance between two distribution is

WD(p, p′) = min
π∈Π(p,p′)

∫
D(v,v′)π(v,v′)dvdv′, (10)

where Π(p, p′) = {π|
∫
π(v,v′)dv′ = p(v),

∫
π(v,v′)dv = p′(v′)}. Let π∗

S,j be the optimal OT matrix between p̂S,j

and pS,j . It is obvious to see that
∑J

j=1 αjπ
∗
S,j respects the marginal constraints for WD

(∑J
j=1 αj p̂S,j ,

∑J
j=1 αjpS,j

)
,

i.e.
∑J

j=1 αjπ
∗
S,j ∈ Π

(∑J
j=1 αj p̂S,j ,

∑J
j=1 αjpS,j

)
. Hence,

∑J
j=1 αjπ

∗
S,j is a feasible solution for the OT problem and,

consequently, the cost for this feasible solution is greater or equal than the optimal value WD

(∑J
j=1 αj p̂S,j ,

∑J
j=1 αjpS,j

)
.

Since
∫
D(v,v′)

∑J
j=1 αjπ

∗
S,j(v,v

′)dvdv′ =
∑J

j=1 αjWD (p̂S,j , pS,j) we recover the Lemma above.

We can now prove Theorem 1, which we also restate for the convenience of the reader.

Theorem 1. Under the assumptions of Lemma 2, let p̂S,j be j-th source empirical distributions of Nj samples and p̂T the
empirical target distribution with NT samples. Then for all λ > 0 , with β = λk in the ground metric D we have with
probability 1− η

εpT
(f) ≤WD

(
p̂αS , p̂

f
T

)
+

√
2

c′
log

2

η

 1

NT
+

J∑
j=1

αj

Nj

+ Λ(pαS , pT ) + kMϕ(λ). (11)

Proof. By the triangle inequality we have that

WD

 J∑
j=1

αjpS,j , p
f
T

 ≤WD

 J∑
j=1

αj p̂S,j , p̂
f
T

+WD(p̂fT , p
f
T ) +WD

 J∑
j=1

αj p̂S,j ,

J∑
j=1

αjpS,j


≤WD

 J∑
j=1

αj p̂j , p̂
f
T

+WD(p̂fT , p
f
T ) +

J∑
j=1

αjWD (p̂S,j , pS,j)

where the last inequality follows from Lemma 3. Using the well known convergence property of the Wasserstein distance
proven in [2] we find the following bound with probability 1− η

εpT (f) ≤ WD

(
J∑

j=1

αj p̂S,j , p̂
f
T

)
+

√
2

c′
log

(
2

η

)(
1

NT
+

J∑
j=1

αj

Nj

)
+ Λ(pαS , pT ) + 2kMϕ(λ) (12)

with c′ corresponding to all source and target distributions under similar conditions as in [4].



B THE ALGORITHM

We recall here the algorithm we proposed to solve the MSDA-WJDOT problem (Algorithm 1). P∆J is the projection to the
simplex ∆J = {ααα ∈ RJ |

∑J
j=1 αj = 1, αj ≥ 0} defined as

P∆J (www) = argmin
ααα∈∆J

∥www −ααα∥. (13)

We implemented it by using Algorithm 2, firstly proposed in [5].

Algorithm 1 Optimization for MSDA-WJDOT

Initialise ααα = 1
J 1J and θθθ parameters of fθθθ and steps µααα and µθθθ.

repeat
θθθ ← θθθ − µθθθ∇θθθWD

(
p̂fT ,

∑J
j=1 αj p̂S,j

)
ααα← P∆J

(
ααα− µααα∇αααWD(p̂fT ,

∑J
j=1 αj p̂S,j)

)
until Convergence

Algorithm 2 Projection to the simplex [5]

Sort www into uuu: u1 ≥ · · · ≥ uJ .
Set K := max1≤k≤J{k|(

∑k
j=1 uj − 1/k < uk}.

Set τ := (
∑K

j=1 uj − 1)/K.
For j = 1, . . . , J set αj := max{wj − τ, 0}.

C NUMERICAL EXPERIMENTS

C.1 SIMULATED DATA

Domain shift We generate a data set (X0, Y0) by drawing X0 from a 3-dimensional Gaussian distribution with 3 cluster
centers and standard deviation σ = 0.8. We keep the same number of examples for each cluster. To simulate the J sources,
we apply J rotations to the input data X0 around the x-axis. More precisely, we draw J equispaced angles θj from [0, 3

2π]
and we get Xj = {xij} as

xij
⊤
= xi

0

⊤ ·

1 0 0
0 cos(θj) −sin(θj)
0 sin(θj) cos(θj)

 . (14)

To generate the target domain XT , we follow the same procedure by randomly choosing an angle θT ∈ [0, 3
2π]. We keep

the label set fixed, i.e. Yj = YT = Y0. Note that in this case the embedding function g is the identity function and, hence,
X ≡ G. In the following we report all the experiment we carried out on the simulated data, in which we also investigate to
replace the exact Wasserstein distance by the the Bures-Wasserstein distance

BW (µS , µT )
2 = ∥mS −mT ∥2 + Trace

(
ΣS +ΣT − 2

(
Σ

1/2
S ΣTΣ

1/2
S

)1/2
)
, (15)

where the mS ,ΣS are respectively the first and second order moments of distribution µS (and similarly for mT ,ΣT ). The
BW distance has the advantage of having a complexity linear in the number of samples that can scale better to large dataset.
We label this method variant with (B), while we refer to the exact OT as (E).

In the following, we investigate the performance of MSDA-WJDOT at varying of the number of sources J , source samples
Nj , and target samples NT . We compare the proposed approch with other MSDA methods and with the Baseline,
Target, Bayes classification.

• Varying the number of sources: we keep the number of samples fixed in both sources and target datasets (s.t. Nj = NT

∀j) and we vary the number of sources J ∈ {3, 5, 10, 20, 25, 30}. In Fig. 1 we report the accuracy of the different
methods.
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Figure 1: Methods’ accuracy for varying the number of sources J .
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Figure 2: Methods’ accuracy for varying the number of source samples.
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Figure 3: Methods’ accuracy for varying the number of target samples
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Figure 4: Methods’ accuracy for varying the number of source and target samples
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Figure 5: Recovered ααα with small sample size (Nj = NT = 60).
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Figure 6: Recovered ααα for Nj = NT = 300.

• Varying the number of source samples: we fix the number of sources J equal to 20 and the number of target samples
NT to 300. Fig 2 and 6 show the methods accuracy for varying the number of source samples Nj in {60, 180, 300}



Figure 7: Examples of source error and target error when the function f is the function learned by our approach (instead of
the one minimizing Λ in (??)). The blue curve represents an histogram of the α-weighted source error for 10000 random α.
The x-axis represents the value of the error and the y-axis the count. The green line corresponds to the source error for the
learned α, red one gives the error for an uniform alpha and the black one represents the target error (the height of the lines
has been arbitrarily set for a sake of clarity). We can see that for both 5 (Left) and 30 sources (Right) the learned alpha
leads to lower source error even though α has been optimized for aligning joint distributions.

and the recovered ααα weight for Nj = 300, respectively.

• Varying the number of the target samples: we fix J = 20 and Nj = 300, with 1 ≤ j ≤ J . We let vary the number of
target samples NT in {60, 180, 300} (Fig. 3).

• Varying the number of samples of all domains: we fix the number of sources equal to 20. We let vary the number of
source and target samples in {60, 180, 300}, by keeping Nj = NT with 1 ≤ j ≤ J . We report the methods’ accuracy
in Fig. 2.

In all experiments MSDA-WJDOT significantly outperfoms CJDOT, MJDOT, IWERM and the Baseline. Both
MSDA-WJDOT(E) and MSDA-WJDOT(B) provide a better or at least comparable performance w.r.t. the Target method,
in which the labels of the target dataset are used. In Fig. 5 and 6 we show the recovered weights ααα for Nj = NT = 60
and Nj = NT = 300, respectively. In both cases, the x- axis reports different random target angles in the [0, 3

2π] interval
(ordered by increasing angles), whereas the y-axis represents the source angles ordered such that θj ≤ θj+1, 1 ≤ j ≤ J − 1.
As we can see, the weights are higher along the diagonal meaning that MSDA-WJDOT always rewards the sources with
angle closest to θT .

C.2 REAL DATA

In the section, we introduce a new strategy for the validation, in alternative to the one based on SSE proposed in Sec. 3.2.
We propose to employ the accuracy of the learned classifier f on the source datasets and weighted by ααα, i.e.

J∑
j=1

αjACCS,j(f), (16)

with ACCS,j(f) =
#{f(xi

j)=yi
j}

Nj
. To refer to this approach, we denote as MSDA-WJDOTacc, CJDOTacc, MJDOTacc the

MSDA-WJDOT and the two JDOT extensions respectively. Let us remark that MSDA-WJDOTacc is a way to reuse the
weightsααα that provide the closest source distributions which, hence, are supposed to give a better estimate of the performance
of the current classifier.

Object recognition In Table 3 we report the source weights provided by MSDA-WJDOT. In all cases, ααα is a one-hot
vector suggesting that only one source is meaningfully related to the target domain. This is in line with the results on
single-source DA found in [3] in which the source domain providing the highest accuracy corresponds to the one selected by
MSDA-WJDOT.



Target Amazon dslr webcam Caltech10
Amazon - 0 0 1

dslr 0 - 1 0
webcam 0 1 - 0

Caltech10 1 0 0 -

Table 3: ααα weights

Table 4 is a full version of Table 1 in the paper, in which we also show the accuracy obtained by employing the validation
strategy introduced in Eq. 16. We can observe that MSDA-WJDOTacc provides good performances, comparable with both
MSDA-WJDOT and the other MSDA methods, but MSDA-WJDOT still remains the state of the art.

Method Amazon dslr webcam Caltech10 AR
Baseline 93.13± 0.07 94.12± 0.00 89.33± 1.63 82.65± 1.84 6.75
IWERM [9] 93.30± 0.75 100.00± 0.00100.00± 0.00100.00± 0.00 89.33± 1.16 91.19± 2.5791.19± 2.5791.19± 2.57 3.25

CJDOTacc [4] 92.27± 0.83 97.06± 2.94 90.33± 2.33 86.19± 0.09 4.50
CJDOT [4] 93.74± 1.57 93.53± 4.59 90.33± 2.13 85.84± 1.73 4.50

MJDOTacc [4] 93.61± 0.04 98.82± 2.35 91.00± 1.53 85.22± 1.48 3.75
MJDOT [4] 94.12± 1.57 97.65± 2.88 90.27± 2.48 84.72± 1.73 4.50
JCPOT∗ [8] 79.23± 3.09 81.77± 2.81 93.93± 0.60 77.91± 0.45 7.25
WBT∗ [6] 59.86± 2.48 60.99± 2.15 64.13± 2.38 62.80± 1.61 9.50
WBT∗

reg [6] 92.74± 0.45 95.87± 1.43 96.57± 1.7696.57± 1.7696.57± 1.76 85.01± 0.84 5.00
MSDA-WJDOTacc 93.61± 0.09 100.00± 0.00100.00± 0.00100.00± 0.00 86.00± 2.91 85.49± 1.69 4.25
MSDA-WJDOT 94.23± 0.9094.23± 0.9094.23± 0.90 100.00± 0.00100.00± 0.00100.00± 0.00 89.33± 2.91 85.93± 2.07 2.75
Target 95.77± 0.31 88.35± 2.76 99.87± 0.65 89.75± 0.85 -

Baseline+Target 94.78± 0.48 99.88± 0.82 100.00± 0.00 91.89± 0.69 -

Table 4: Accuracy on Caltech Office Dataset. Results of methods marked by ∗ are from [6].

Figure 8: BLSTM architecture. A similar architecture is used for the multi-task learning approach: we use the same
embedding function g and J classification functions fj .

Music-speech discrimination The model we adopted is shown in Fig. 8, where g is a two-layers Bidirectional Long
Short-Term Memory (BLSTM) that feeds the one feed-forward layer f with the last hidden state. Weights were initialized
with Xavier initialization. Training is performed with Adam optimizer with 0.9 momentum and ϵ = e−8. Learning rate
exponentially decays every epoch. We grid-research the initial learning rate value and the decay rate.

In Table 5 we show the MSDA performances in the music-speech discrimination. In particular, for MSDA-WJDOT and
JDOT variants the validation strategy described in formula 16 has been employed. Results show that, although this is a valid
strategy, early stopping based on SSE described in Sec. 4 always outperforms. The Average Rank shows that MSDA-WJDOT
is state of the art in music-speech discrimination.



Method F16 Buccaneer2 Factory2 Destroyerengine AR
Baseline 69.67± 8.78 57.33± 7.57 83.33± 9.13 87.33± 6.72 11.25
IWERM [9] 72.22± 3.93 58.33± 5.89 85.00± 6.23 81.64± 3.33 10.75
IWERMmtl [9] 75.00± 0.00 66.67± 0.00 100.00± 0.00100.00± 0.00100.00± 0.00 98.33± 3.33 5.50
DCTN [10] 66.67± 3.61 68.75± 3.61 87.50± 12.5 94.44± 7.86 8.50
M333SDA [7] 70.00± 4.08 61.67± 4.08 85.00± 11.05 83.33± 0.00 10.25
CJDOT [4] 59.50± 13.95 50.00± 0.00 83.33± 0.00 91.67± 0.00 11.50
CJDOTmtl [4] 83.83± 5.11 74.83± 1.17 100.00± 0.00100.00± 0.00100.00± 0.00 95.74± 16.92 4.00
CJDOTacc

mtl [4] 79.83± 4.74 74.83± 1.17 99.67± 1.63 100.00± 0.00100.00± 0.00100.00± 0.00 3.50
MJDOT[4] 66.33± 9.57 50.00± 0.00 83.33± 0.00 91.67± 0.00 11.50
MJDOTmtl[4] 86.00± 4.55 72.83± 5.73 97.67± 3.74 97.74± 8.28 4.00
MJDOTacc

mtl[4] 77.67± 5.12 69.00± 4.72 99.67± 1.63 99.83± 1.17 4.75
JCPOT∗[8] 79.23± 3.09 81.77± 2.81 93.93± 0.60 77.91± 0.45 7.50
WBT∗[6] 59.86± 2.48 60.99± 2.15 64.13± 2.38 62.80± 1.61 13.00
WBT∗

reg[6] 92.74± 0.4592.74± 0.4592.74± 0.45 95.87± 1.4395.87± 1.4395.87± 1.43 96.57± 1.76 85.01± 0.84 4.25
MSDA-WJDOT 83.33± 0.00 58.33± 6.01 87.00± 6.05 89.00± 4.84 8.00
MSDA-WJDOTmtl 87.17± 4.15 74.83± 1.20 99.67± 1.63 99.67± 1.63 2.75
MSDA-WJDOTacc

mtl 83.00± 4.07 75.00± 0.00 100.00± 0.00100.00± 0.00100.00± 0.00 98.83± 3.34 3.50
MSDA-WJDOTacc 83.33± 0.00 58.33± 6.01 87.00± 6.05 89.00± 4.84 8.00
Target 73.67± 6.09 69.17± 7.50 77.33± 4.73 73.17± 9.90 -
Baseline+Target 71.06± 9.31 67.62± 11.92 85.33± 11.85 79.53± 10.05 -

Table 5: Accuracy on Music-Speech Dataset. Results of methods marked by ∗ are from [6].
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