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1 BACKGROUND

Notation. We recall the notation and some key definitions here for the reader’s convenience. For any stochastic process
{xt}t∈Z ∈ Rd, we use xn

t−ω = {xt−ω−n+1, · · · , xt−ω−1, xt−ω} to denote the set of xt−ω and the n − 1 variables

in the past of xt−ω. We distinguish this from ynt which denotes the vector
(
xt, xt−1, · · · , xt−n+1

)T ∈ Rnd. When it
is clear from context, to reduce cumbersome notation, we simply use yt. For any random variable x, E[x] denotes its
expectation. For any matrix A, we use Ai: and A:j to denote the ith row and jth column of A respectively. We use Aj

1k

to denote the (1, k)th element of Aj . For any vector xt at time t, we use xt,i to denote the ith element of xt. We use
λmax(A), λmin(A), κ(A) to denote the maximum and minimum eigenvalues and the condition number of A respectively,
where κ(A) = λmax(A)/λmin(A). Ip denotes the identity matrix of size p, N,Z denote the set of natural numbers and
integers respectively and [n] denotes the set {1, 2, · · ·n}.

Definition 1.1 (Vector Autoregressive Model). A vector autoregressive model (VAR(p)) of dimension d and order p is
defined as

xt = A1xt−1 +A2xt−2 + · · ·APxt−p + ϵt, (1)

where xt ∈ Rd is a vector-valued time-series, for all i ∈ [p], Ai ∈ Rd×d are the coefficients of the VAR model, and ϵt ∈ Rd

denotes the noise vector such that E[ϵt] = 0 and E[ϵtϵTt+h] = Σϵ if h = 0 and 0 otherwise. For some σ2
ϵ > 0, we simply set

Σϵ = σ2
ϵ I for enhanced readability. Our results can be easily generalized to arbitrary covariance matrices by means of the

spectral properties (λmin, λmax) of Σϵ.

Definition 1.2 (Weak Stationarity). A stochastic process {xt}t∈Z is weakly stationary if the mean and the covariance of
the process does not change over time, that is, for all t, τ ∈ Z

E[xt] = E[xt+τ ], Cx(t, t+ τ) = Cx(0, τ), (2)

where Cx(t, t+ τ) = E[(xt − E[xt])(xt+τ − E[xt+τ ])] denotes the autocovariance function.

The autocovariance matrix of {xt}t∈Z plays a central role in our results and analysis. For any n ∈ N, we use Σn to denote
the autocovariance matrix of size n defined as E[(ynt − E[ynt ])(ynt − E[ynt ])T ].

It is often quite convenient to rewrite a VAR model of order p in Equation (1) as a VAR(1) model, yt = Ayt−1 + et, where
yt ∈ Rdp, et ∈ Rdp are defined as yt =

(
xt, xt−i, · · · , xt−p+1

)T
, et =

(
ϵt, 0, · · · , 0

)T
, and A ∈ Rdp×dp is a (multi)
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companion matrix defined as:

A =


A1 A2 · · · Ap−1 Ap

I 0 · · · 0 0
0 I · · · 0 0
...

... · · ·
...

...
0 0 · · · I 0

 . (3)

The eigenvalues of the multi-companion matrix A fully characterize the stability and stationarity of the VAR process. For a
VAR(p) process to be weakly stationary, the eigenvalues of A, which satisfy

det|Idλp −A1λ
p−1 −A2λ

p−2 − · · · −Ap| = 0, (4)

are constrained to not lie on the unit circle. If the magnitude of the eigenvalues are |λi| < 1 for all i ∈ [dp], then the
underlying process is stable, that is, its values do not diverge (Lütkepohl 2013).
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Figure 1: Causal DAG of an AR(2) model
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do(xt−4 = x∗t−4)

Figure 2: Graphical representation of the effect of an intervention do(xt−4 = x∗t−4) on an AR(2) model. Incoming edges
into xt−4 are removed in the new DAG which are in red.

Definition 1.3 (Empirical Rademacher Complexity). Given a finite sample X = {x1, x2, · · · , xn} ∈ Rd, the empirical
Rademacher complexity of a hypothesis class F of functions f : Rd → R is defined as:

ˆR(F) =
2

n
Eσ

[
sup
f∈F

|
n∑

i=1

σif(xi)|

]
,

where σ = (σ1, σ2, · · · , σn) and for all i ∈ [n], σi are independent random variables drawn from the Rademacher
distribution, that is, a uniform distribution over {−1,+1} .

2 PROOFS OF MAIN RESULTS

Lemma 1 (Expressing powers of a companion matrix using symmetric polynomials). For a companion matrix A
with distinct eigenvalues and for any k ∈ [p], the (1, k)th element of Aω, can be expressed as a Schur polynomial of the
eigenvalues λ = {λ1, λ2, · · ·λp} of A. in particular, |Aω

1,k| = Sµω,k,λ where Sµω,k,λ refers to the Schur polynomial over λ
indexed by {ω, 1, · · · k − 1 times · · · , 1, 0, · · · , 0}.



Proof. For convenience, we use the notation λ and λ/λi to denote the sets {λ1, λ2, · · · , λp} and
{λ1, λ2, · · · , λi−1, λi+1, · · · , λp} respectively.

Assuming that the eigenvalues λ = {λi}pi=1 of a companion matrix A are distinct, it can be diagonalized as A = V ΛV −1,
where Λ = diag(λ1, · · · , λp) is the diagonal matrix of eigenvalues of A and V is a vandermonde matrix (Brand 1964) given
by

Vλ =


λp−1
1 λp−1

2 · · · λp−1
p

λp−2
1 λp−2

2 · · · λp−2
p

...
...

...
...

λ1 λ2 · · · λp

1 1 · · · 1

. (5)

For any i ∈ [p], let ek(λ/λi) denote the elementary symmetric polynomial of order k with variables in λ/λi and let

αi =
1∏

j ̸=i

(λi − λj)
. (6)

The inverse of the Vandermonde matrix V can then be explicitly computed (El-Mikkawy 2003) to obtain

V −1 =


α1 −α1e1(λ/λ1) · · · (−1)p−1α1ep−1(λ/λ1)
α2 −α2e1(λ/λ2) · · · (−1)p−1α2ep−1(λ/λ2)
...

...
...

...
αp −αpe1(λ/λp) · · · (−1)p−1αpep−1(λ/λp)

, (7)

Using the diagonalization of A, we can compute its power Aω as

Aω = V ΛωV −1 (8)

and the coefficients Aω
1k can be computed as

(−1)k−1

p∑
i=1

αiλ
p+ω−1
i ek−1(λ/λi)

Claim. |Aω
1k| is the Schur polynomial S{ω,1,1,··· k−1times··· 1, 0,0,··· ,0}

For any µ = {µ1, µ2, · · · , µp} such that µ1 ≥ µ2 ≥ · · · ≥ µp consider the generalized Vandermonde matrix Vµ,λ defined
as

Vµ,λ =


λp−1+µ1

1 λp−1+µ1

2 · · · λp−1+µ1
p

λp−2+µ2

1 λp−2+µ2

2 · · · λp−2+µ2
p

...
...

...
...

λ
1+µp−1

1 λ
1+µp−1

2 · · · λ
1+µp−1
p

λ
µp

1 λ
µp

2 · · · λ
µp
p

. (9)

The Bilaternant formulation defines Schur polynomial Sµ,λ as

Sµ,λ =
det(Vµ,λ)

det(Vλ)
. (10)

It can be shown that the determinant of the vandemonde matrix Vλ can be given as

det(Vλ) =
∏

1≤ i < j ≤n

(λi − λj). (11)



A proof of this statement can be found in most standard texts on Matrix analysis, for example, see Horn et al. (2012).

For any i, k ∈ [p], consider the generalized Vandermonde matrix Vµk,λ/λi
, where µk =

{1, 1, · · · k − 1times · · · 1, 0, 0, · · · , 0}. That is,

Vµk,λ/λi
=



λp−1
1 λp−1

2 · · · λp−1
i−1 λp−1

i+1 · · · λp−1
p

λp−2
1 λp−2

2 · · · λp−2
i−1 λp−2

i+1 · · · λp−2
p

...
... · · ·

...
... · · ·

...

λ
p−(k−1)
1 λ

p−(k−1)
2 · · · λ

p−(k−1)
i−1 λ

p−(k−1)
i+1 · · · λ

p−(k−1)
p

λ
p−(k+1)
1 λ

p−(k+1)
2 · · · λ

p−(k+1)
i−1 λ

p−(k+1)
i+1 · · · λ

p−(k+1)
p

...
... · · ·

...
... · · ·

...

1 1 · · · 1 1 · · · 1


. (12)

From (10), we know that

det(Vµk,λ/λi
) = det(Vλ/λi

)Sµk,λ/λi
,

where Sµk,λ/λi
is the Schur polynomial of variables λ/λi indexed by µk = {1, 1, · · · k − 1times · · · 1, 0, 0, · · · , 0}. Using

a combinatorial definition of a Schur polynomial as a summation over semi-standard representations over a Young’s Tableaux
(see Macdonald (1998) for an exposition), it is easy to verify that

Sµk,λ/λi
= ek−1(λ/λi). (13)

Therefore, combining (11) and (13) we can write

det(Vµk,λ/λi
) = det(Vλ/λi

)ek−1(λ/λi) = ek−1(λ/λi)
∏

1≤l<l′≤p
l,l′ ̸=i

(λl − λl′)

Now, observe that we can rewrite Aω
1k as

Aω
1k = (−1)k−1

p∑
i=1

αiλ
p+ω−1
i ek−1(λ/λi),

= (−1)k−1

p∑
i=1

(−1)i+1λp+ω−1
i ek−1(λ/λi)

∏
1≤l<l′≤p

l,l′ ̸=i

(λl − λl′)/det(Vλ),

= (−1)k−1

p∑
i=1

(−1)i+1λp+ω−1
i det(Vµk,λ/λi

)/det(Vλ).

Finally, letting µω,k = {ω, 1, 1, · · · k − 1times · · · 1, 0, 0, · · · , 0}, consider the generalized Vandermonde matrix Vµω,k,λ

given by



Vµω,k,λ =



λp−1+ω
1 λp−1+ω

2 · · · λp−1+ω
p

λp−1
1 λp−1

2 · · · λp−1
p

λp−2
1 λp−2

2 · · · λp−2
p

...
... · · ·

...

λ
p−(k−1)
1 λ

p−(k−1)
2 · · · λ

p−(k−1)
p

λ
p−(k+1)
1 λ

p−(k+1)
2 · · · λ

p−(k+1)
p

...
... · · ·

...

1 1 · · · 1



. (14)

Using the Laplace expansion to compute the determinant along the first row of Vµω,k,λ and observing that for any i ∈ [p],
the minor of Vµω,k,λ(1, i) is given by det(Vµk,λ/λi

), we have

p∑
i=1

(−1)i+1λp+ω−1
i ek−1(λi)

∏
1≤l<l′≤p

l,l′ ̸=i

(λl − λl′) = det(Vµω,k,λ)

and once again by invoking the bialternant formulation for Schur polynomials, we have

|Aω
1k| =

p∑
i=1

αiλ
p+ω−1
i ek−1(λi) =

det(Vµω,k,λ)

det(Vλ)
= Sµω,k,λ.

Lemma 2 (Form of Interventional Autocovariance matrix). Consider a vector-valued time series {xt}t∈Z ∈ Rd, follow-
ing a VAR(q) process with autocovariance matrix of size nd×nd denoted by Σn. Consider simultaneous atomic interventions
on components {l1, l2, · · · , lr} ⊂ [d] of xt−ω, that is, consider the intervention do(xt−ω,l1 = x∗t−ω,l1 , · · · , xt−ω,lr =
x∗t−ω,lr ). Then, the autocovariance matrix of size nd × nd (Γ′

n) of the corresponding joint interventional distribution,
denoted by Pdoω (x

n
t−ω) is given by

Γ′
n(i, j) =


0 if i ̸= j, i = lm, j = lm ∀m ∈ [r]

x∗2t−ω,lm
if i = j = lm ∀m ∈ [r]

Σn(i, j) otherwise
. (15)

Moreover, let
Γn = E{x∗t−ω,lm}

m∈[r]
∼

∏
m∈[r]

P(xt−ω,lm)Γ
′
n.

Then,

Γn(i, j) =

{
0 if i ̸= j, i = lm, j = lm ∀m ∈ [r]

Σn(i, j) otherwise
. (16)

The autocovariance matrix of the interventional distribution under simultaneous interventions on consecutive time-steps can
be analogously obtained.

Proof of Lemma 2.. Note that due to time ordering and since instantaneous effects are not modelled by a VAR model,
there is no directed path from any of the variables xt−ω,l1 , xt−ω,l2 , · · · , xt−ω,lr to xn

t−ω−1 as well as to variables in
{xt−ω,1, xt−ω,2, · · · , xt−ω,d} /xt−ω,l1 , xt−ω,l2 , · · · , xt−ω,lr . Peters et al. (2017, Proposition 6.14) provides graphical
criterion for determining the existence of a total causal effect from a variable x to a variable y under interventions on x.
Absence of a directed path from x to y implies there is no total causal effect from x to y and from Proposition 6.12 of



Peters et al. (2017), we know that x ⊥⊥ y under the corresponding interventional distribution. As a consequence of these
Propositions, we have our desired result.

Lemma 3 (Difference in Causal and Statistical error (VAR(p))). Consider a vector-valued time series {xt}t∈Z ∈ Rd,
following a VAR(q) process with model parameters {A1, A2, · · ·Aq}. Assuming n > max {p, q}, for any VAR(p) model f
with parameters {Â1, Â2, · · · Âp},

|Gdoω (f)− S(f)| =
d∑

i=1

(Aω
i: − Âω

i:)
T (Γ− Σ)(Aω

i: − Âω
i:), (17)

Proof of Lemma 3. Let A denote the multi-companion matrix corresponding to the true VAR(q) process with model
parameters {A1, A2, · · · , Aq} of the form described in (3) with the first d rows populated by {A′

1, A
′
2, · · ·A′

max{p,q}},

where A′
l is defined as Al for all l ≤ q and as 0d×d for all l > q. Define Â(max{p,q}) analogously as the multi-companion

matrix corresponding to parameters
{
Â1, Â2, · · · , Âp

}
of the estimated VAR(p) model f obtained independently from

some statistical estimation procedure E .

Using (1) recursively, we can write

y
(max{p,q})
t = Aωy

(max{p,q})
t−ω +Aωe

(max{p,q})
t−ω+1 +Aω−1e

(max{p,q})
t−ω+2 + · · ·+Ae

(max{p,q})
t−1 + e

(max{p,q})
t (18)

To reduce cumbersome notation, we let ζt = Aωet−ω+1 +Aω−1et−ω+2 + · · ·+Aet−1 + et ∈ Rdp and write

Yt = Aωyt−ω + ζt. (19)

Let x̂t denote the prediction of the target variable xt corresponding to the estimated model f . Then, Statistical error Oω

defined with respect to the squared norm can be computed as follows:

Oω = EP(xn
t−ω,xt)[∥xt − x̂t∥2]

=

d∑
i=1

E[xt,i − x̂t,i]
2 (Subscript omitted for convenience)

=

d∑
i=1

E[Aω
i,:yt−ω + ζt,ω,i − Âω

i,:yt−ω]
2

=

d∑
i=1

(Aω
i: − Âω

i:)
TE[yt−ωy

T
t−ω](A

ω
i: − Âω

i:) + E[ζ2t,ω,i] (E[xt−iϵ
T
t ] = 0, ∀i ∈ N )

=

d∑
i=1

(Aω
i: − Âω

i:)
TΣmax{p,q}(A

ω
i: − Âω

i:) + E[ζ2t,ω,i]



Similarly,

Gdoω = EPdoω (xn
t−ω,xt)(∥xt − x̂t∥2) (20)

=

d∑
i=1

EPdoω (xn
t−ω)Pdoω (xt|xn

t−ω)

[
xt,i − x̂t,i

]2
(21)

=

d∑
i=1

EPdoω (xn
t−ω)Pdoω (xt|xn

t−ω)

[
x2
t,i + x̂2

t,i − 2xt,ix̂t,i

]2
(22)

=

d∑
i=1

EPdoω (xn
t−ω)Pdoω (xt|xq

t−ω)

[
x2
t,i + x̂2

t,i − 2xt,ix̂t,i

]2
(23)

=

d∑
i=1

EPdoω (xn
t−ω)P(Xt|xq

t−ω)

[
x2
t,i + x̂2

t,i − 2xt,ix̂t,i

]2
(24)

=

d∑
i=1

EPdoω (xq
t−ω)

[
EP(xt|xq

t−ω)[x
2
t,i] + (Âω

i:)
T yt−ω)

2 − 2EP(xt|xq
t−ω)[xt,i](Â

ω
i:)

T yt−ω

]2
(25)

=

d∑
i=1

EPdoω (xn
t−ω)

[
((Aω

i:)
T yt−ω + ζt)

2 + (Âω
i:)

T yt−ω)
2 − 2((Aω

i:)
T yt−ω)((Â

ω
i:)

T yt−ω)
]2

(26)

=

d∑
i=1

(
(Aω

i: − Âω
i:)

TEdoω (yt−ωy
T
t−ω)(A

ω
i: − Âω

i:) + E(ζ2t,i)
)

(E(xt−iϵ
T
t ) = 0, ∀i ∈ N ) (27)

=

d∑
i=1

(Aω
i: − Âω

i:)
TΓ′

max{p,q}(A
ω
i: − Âω

i:) + E(ζ2t,i) (28)

To see why Equation (24) holds, note that the structural equations that specify the dependence of xt on xq
t−ω remain un-

changed under interventions on xt−ω and therefore the conditional distributions remain unchanged under these interventions.

Therefore,

Ex∗t−ω∼P(xt−ω)EPdoω (xn
t−ω,xt)(∥xt − x̂t∥2) =

d∑
i=1

(Aω
i: − Âω

i:)
TΓmax{p,q}(A

ω
i: − Âω

i:) + E(ζ2t,i),

where Γ can be obtained using Lemma 2.

Corollary 1 (Difference in Causal and Statistical errors (AR)). Let {xt} follow an AR(q) process. Then, for any AR(p)
model f with parameters {â1, â2, · · · , âp},

|Gdoω (f)− Sω(f)| = 2

∣∣∣∣(Aω
1,1 − Âω

1,1)

max{p,q}∑
k=2

(Aω
1,k − Âω

1,k)γk−1

∣∣∣∣, (29)

where, for any k ∈ N, γk denotes the autocovariance of {xt} with lag k. A and Â are the corresponding companion
matrices of the model and estimated parameters as defined in Lemma 3.

Proof of Corollary 1. Corollary 1 directly follows from Lemmas 2 and 3.

Proposition 1 (Stability Controls Causal Generalization (VAR)). Consider a VAR(q) process. Assuming n > max {p, q},
for any VAR(p) model f ,

|Gω,i(f)− Sω(f)| ≤ 2κ(Σmax{p,q})(Sω(f)− σ2
ϵ ), (30)

where κ(Σmax{p,q}) denotes the condition number of the autocovariance matrix Σmax{p,q}.



Proof. From Lemma 3, it remains to prove that

|
d∑

j=1

(Aω
j: − Âω

j:)
T (Γ− Σ)(Aω

j: − Âω
j:)| ≤ (2κ(Σ)− 1)(Sω(f)− σ2

ϵ ).

First, we show that

|(Aω
j: − Âω

j:)
T (Γ− Σ)(Aω

j: − Âω
j:)| ≤ (2λmax(Σ))

∥∥∥Aω
j: − Âω

j:

∥∥∥2 . (31)

Case 1. (Aω
j: − Âω

j:)
T (Γ− Σ)(Aω

j: − Âω
j:) ≥ 0.

|(Aω
j: − Âω

j:)
T (Γ− Σ)(Aω

j: − Âω
j:)| = (Aω

j: − Âω
j:)

T (Γ− Σ)(Aω
j: − Âω

j:), (32)

≤ (λmax(Γ)− λmin(Σ))
∥∥∥Aω

j: − Âω
j:

∥∥∥2 . (33)

where (33) holds by an application of Rayleigh’s principle. We still need to show that λmax(Γ) ≤ 2λmax(Σ).

Without loss of generality, assume that i = 1, that is the component of xt−ω that is intervened upon is indexed by 1. Note
that, this merely simplifies notation and the following steps also hold simultaneous interventions on multiple components
and consecutive time instances without any additional steps.

Representing Σ and Γ in block matrix form, we have

Σ =

(
Σ11 Σ12

Σ21 Σ22

)
, Γ =

(
Γ11 Γ12

Γ21 Γ22

)
. (34)

From Lemma 2, we have

Γ11 ∈ R1×1 = σ2 = E(X2
t ), Γ

T
12 = Γ21 ∈ R1×dmax{p,q}−1 = 0, and Γ22 = Σ22.

We can write Γ as follows:

Γ = Γ′
1 + Γ′

2, (35)

where

Γ′
1 =

(
σ2 01×dmax{p,q}−1

0dmax{p,q}−1×1 0dmax{p,q}−1×dmax{p,q}−1

)
, (36)

and

Γ′
2 =

(
01×1 01×dmax{p,q}−1

0dmax{p,q}−1×1 Σ22

)
. (37)

Since Γ′
1 and Γ′

2 are Hermitian matrices, λmax(Γ) ≤ λmax(Γ
′
1) + λmax(Γ

′
2).

Observe that Γ2 is a principal sub-matrix of Γ obtained by deleting the first row and column, by Cauchy’s interlacing
theorem (Fisk 2005), we have

λmax(Γ
′
2) ≤ λmax(Σ). (38)

Note that, when we intervene simultaneously on multiple components and time instances, instead of setting the first row to
0, the covariance matrix of the corresponding interventional distribution Γ can be obtained by deleting the off-diagonal
elements of the corresponding rows and columns. It remains to show that σ2 ≤ λmax(Σ). Note that

λmax(Γ
′
2) = σ2 = Σ11 = eT1 Σe1 ≤ λmax(Σ), (39)

where ei denotes the ith standard basis vector. Combining (38) and (39) we have

λmax(Γ) ≤ 2λmax(Σ) (40)



and

|(Aω
j: − Âω

j:)
T (Γ− Σ)(Aω

j: − Âω
j:)| ≤ (2λmax(Σ)− λmin(Σ))

∥∥∥Aω
j: − Âω

j:

∥∥∥2 . (41)

Case 2. (Aω
j: − Âω

j:)
T (Γ− Σ)(Aω

j: − Âω
j:) ≤ 0.

|(Aω
j: − Âω

j:)
T (Γ− Σ)(Aω

j: − Âω
j:)| = (Aω

j: − Âω
j:)

T (Σ− Γ)(Aω
j: − Âω

j:), (42)

≤ (λmax(Σ)− λmin(Γ))
∥∥∥Aω

j: − Âω
j:

∥∥∥2 . (43)

Using the same arguments used in deriving upper bounds for λmax(Γ), we can show that λmin(Γ) ≥ λmin(Σ). Therefore,
we have

|Gdoω,i
(f)− Sω(f)| ≤

∑
j∈[d]

(2λmax(Σ)− λmin(Σ))
∥∥∥Aω

j: − Âω
j:

∥∥∥2 (44)

≤ (2λmax(Σ)− λmin(Σ))
∑
j∈[d]

∥∥∥Aω
j: − Âω

j:

∥∥∥2 (45)

≤ (2κ(Σ)− 1)(Sω(f)− σ2
ϵ ). (46)

To see why (46) holds, observe that

Sω(f)− σ2
ϵ =

d∑
j=1

(Aω
j: − Âω

j:)
TΣ(Aω

j: − Âω
j:) (47)

≥
d∑

j=1

(Aω
j: − Âω

j:)
TΣ(Aω

j: − Âω
j:) (48)

≥
d∑

j=1

λmin(Σ)
∥∥∥Aω

j: − Âω
j:

∥∥∥2 . (49)

We now show that we can construct AR(2) processes such that the bound in Proposition 1 is tight upto a small constant
factor. Consider an AR(2) process with true model parameters a1 and a2. The autocorrelation matrix Σ2 of this process is

given by Σp =

(
1, γ
γ, 1

)
where γ = a1

1−a2
. The eigenvalues of Σ2 are given by λ1 = 1 + γ and λ2 = 1− γ corresponding

to eigenvectors u1 and u2 respectively. Without loss of generality assume γ > 0 which yields λ1 ≥ λ2. Denote vectors
a = (a1, a2) and â = (â1, â2). Consider an AR(2) process with parameters â1, â2 such that (a− â) = u2. Then assuming
ω = 1, we have that

Gdo1 − S1

S1 − σ2
ϵ

=
∥a− â∥2 − (a− â)TΣ(a− â)

(a− â)TΣ(a− â)
=

γ

1− γ
= (κ(Σ)− 1)/2.

As a approaches the boundary of the stability domain, the process gets more strongly correlated and λmin approaches 0 and
the relative difference in causal and statistical errors diverges.

Lemma 4 (Bounds on ak). For any AR(p) model such that the non-zero eigenvalues of the companion matrix are distinct
and satisfy |λ| ≤ δ < 1,

|ak| ≤
(
p

k

)
δk. (50)



Proof of Lemma 4. From Lemma 1, we know that

|ak| = |S{1,1,···k times 1,0,··· ,0}({λ1, λ2, · · · , λp})|

= |
∑

{i1<i2<···<ik}∈[p]

λi1λi2 · · ·λik |

≤
∑

{i1<i2<···<ik}∈[p]

|λi1λi2 · · ·λik | (|x+ y| ≤ |x|+ |y|)

≤
∑

{i1<i2<···<ik}∈[p]

δk (|λi| ≤ δ)

=

(
p

k

)
δk.

Lemma 5 (Bounds on γk). For any stochastic process {xt}t∈Z following an AR(p) model the non-zero eigenvalues of the
companion matrix are distinct and satisfy |λ| ≤ δ < 1

|γk| ≤
Cσ2

ϵ δ
k

1− δ2

Proof of Lemma 5. Using the infinite-moving average representation of Xt (See Brockwell et al. (1991)), we have

xt =

∞∑
i=0

Ai
11ϵt−i (51)

|E[xl, xr]| = |E[(
∞∑

i1=0

Ai1
11ϵl−i1)(

∞∑
i2=0

Ai2
11ϵr−i2)]| (52)

= |
∞∑
i=0

Ai
11A

i+|l−r|
11 E[ϵtϵTt ]| (53)

= |σ2
ϵ

∞∑
i=0

Ai
11A

i+|l−r|
11 | (54)

≤ Kpδ
|l−r|σ2

ϵ

∞∑
i=0

δ2i (55)

≤ Kpσ
2
ϵ

δ|l−r|

1− δ2
(56)

To see why (55) holds observe that, from Lemma 1,

Ai
11 = S{i,0,··· ,0} ≤

∑
{i1≤i2≤···≤ik}∈[p]

|λi1λi2 · · ·λik | ≤ ppδi

Lemma 6 (Lower Bounds on λmin(Σ)). For any stochastic process {xt}t∈Z following an AR(p) model the non-zero
eigenvalues of the companion matrix are distinct and satisfy |λ| ≤ δ < 1

λmin(Σ) ≥
σ2
ϵ

(1 + δ)2p

Proof. First, note that

(1 +

p∑
k=1

|ak|) ≤
p∑

k=0

(
p

k

)
δk = (1 + δ)p(Binomial Theorem).



Combining this with the results from Lemma 9 and Proposition 2, we have

λmin(Σ) ≥ 2π inf
ω

f(ω) ≥ σ2
ϵ

νmax(A)
≥ σ2

ϵ

(1 +
p∑

k=1

|ak|)2

λmin(Σ) ≥
σ2
ϵ

(1 +
p∑

k=1

|ak|)2
≥ σ2

ϵ

(1 + δ)2p
.

Lemma 7 (Upper Bounds on λmax(Σ)). For any stochastic process {xt}t∈Z following an AR(p) model the non-zero
eigenvalues of the companion matrix are distinct and satisfy |λ| ≤ δ < 1

λmax(Σ) ≤ 2Kpσ
2
ϵn

1

1− δ2

Proof. By Gershgorin’s theorem (Varga 2010), we can derive an upper bound on the maximum eigenvalue of Σn as follows:

λmax(Σn) ≤ max
i∈[n]

(Σii +
∑
j ̸=i

|Σij |).

Note that the autocovariance matrix of an AR process which is defined as Σi,j = γ|i−j| (the autocovariance of lag |i− j|)
has a Toeplitz structure. Due to this Toeplitz structure of the autocovariance matrix, we can see that

λmax(Σn) < 2

n∑
i=1

|γi−1| < 2Kpσ
2
ϵ

n∑
i=1

δi−1

1− δ2
≤ 2Kpnσ

2
ϵ

1

1− δ2

Corollary 2 (Stability Controls Causal Generalization (AR(p))). Consider an AR(q) process, such that eigenvalues of its
companion matrix satisfy |λ| < δ < 1. For any AR(q) model f ,

|Gω,i(f)− Sω(f)| ≤ KpSω(f)
max {p, q} (1 + δ)2max{p,q}

(1− δ2)
, (57)

where Kp is some finite constant that depends on the order p of the underlying process.

Proof of Corollary 2. From Proposition 1, we already know that

|Gω,i(f)− Sω(f)| ≤ 2κ(Σmax{p,q})(Sω(f)− σ2
ϵ ), (58)

From Lemma 6 and Lemma 7, we have that

λmin(Σmax{p,q}) ≥
σ2
ϵ

(1 + δ)2p

and
λmax(Σmax{p,q}) ≤ 2Kp max {p, q}σ2

ϵ

1

1− δ2
.

Combining these results, we have the desired result.

Theorem 1 (Finite sample bounds for VAR(p) models). Let F denote the family of all VAR models of dimension d and
order p. For any n > max {p, q} ∈ N, let µ,m > 0 be integers such that 2µm = n and δ > 2(µ−1)ρm for a fixed constant
0 < ρ < 1 determined by the underlying process. Let {x1, x2, · · ·xn} ∈ Rd be a finite sample drawn from a VAR(q) process.
Then, simultaneously for every f ∈ F , under the square loss truncated at M , with probability at least 1− δ,

Gω,i ≤ ζŜω + ζR̂µ(F) + 3ζM

√
log 4

δ′

2µ
(59)

where ζ = 2κ(Σν), δ′ = δ − 2(µ− 1)ρm, and R̂µ(F) denotes the empirical Rademacher complexity of F .



Proof of Theorem 1. From Proposition , we already have that

|Gω,i(f)− Sω(f)| ≤ (2κ(Σmax{p,q})− 1)(Sω(f)− σ2
ϵ ). (60)

Additionally, processes that follow VAR models are known to be β mixing and in particular, they are geometrically
completely regular, that is, there exists some 0 < ρ < 1 such that β(k) = Cρk for some constant C, where β(k) denotes
the β mixing coefficient of the process (Mokkadem 1988). Theorem 1 then follows by applying Rademacher bounds (Mohri
et al. 2009, Theorem 1) for generalization in time-series under mixing conditions.

3 RELATIVE INTERVENTIONS

xtxt−1

xt−2

xt−3

xt−4

xt−5

xt−6

Figure 3: Causal DAG of an AR(2) model

xtxt−1

xt−2

xt−3

xt−4

xt−5

xt−6

do(xt−4 = xt−4 + α)

Figure 4: Graphical representation of the effect of an intervention do(xt−4 = xt−4 + α) on an AR(2) model. Dependencies
are retained.

Assume for simplicity p = q and d = 1. Let A and Â denote the companion matrices corresponding to the true and estimated
parameters respectively. Then, rewriting the VAR(p) model as a VAR(1) model, we have

xt = Aω
11xt−ω +Aω

12xt−ω−1 + · · ·+Aω
1pxt−ω−p+1 +Aω−1

11 ϵt−ω+1 + · · ·+A11ϵt−1 + ϵt. (61)

Let ζt = Aω−1
11 ϵt−ω+1 + · · ·+A11ϵt−1 + ϵt. Then, Statistical error Sω can be computed as

E[xt − x̂t]
2 = E[

p∑
i=1

(Aω
1i − Âω

1i)xt−ω−i+1 + ζ2t ] (62)

=

p∑
ij=1

(Aω
1i − Âω

1i)(A
ω
1j − Âω

1j)Σij + E[ζ2t ] (63)

The causal error Gdoω due to the effect of an intervention do(xt−ω = xt−ω + α) can be computed as

Edoω [xt − x̂t]
2 = E[

p∑
i=1

(Aω
1i − Âω

1i)xt−ω−i+1 + (Aω
11 − Âω

11)α+ ζ2t ] (64)

=

p∑
ij=1

(Aω
1i − Âω

1i)(A
ω
1j − Âω

1j)Σij + (Aω
11 − Âω

11)
2α2 + E[ζ2t ] (65)

To see why (65) holds, recall that E[xt] = 0,E[ϵt] = 0,E[xt−iϵt] = 0 ∀i ∈ N.



Lemma 8 (Difference in Causal and Statistical errors (AR) under Relative Interventions). Let {Xt} follow an AR(q)
process. Then, for any AR(p) model f with parameters {â1, â2, · · · , âp},

Gdoω (f)− Sω(f) = (Aω
1,1 − Âω

1,1)
2α2, (66)

where, A and Â are the corresponding companion matrices of the model and estimated parameters.

4 OTHER RESULTS

Proposition 2. (Basu et al. 2015, Proposition 2.2) Consider a (matrix-valued) polynomial A(z) = Id −
p∑

k=1

Akz
k, x ∈

C, p ∈ N, satisfying det(A(z)) ̸= 0 for all |z| < 1, µmax(A) ≤ (1 + (νrow + νcol)/2)
2, where

νrow =

p∑
k=1

max
1≤i≤d

d∑
j=1

|Ak(i, j)|, νcol =

p∑
k=1

max
1≤i≤d

d∑
i=1

|Ak(i, j)|.

Lemma 9 (Bounds on spectrum of Σ). Let {Xt} be a second-order stationary time series with spectral density f(ω) and
let Σn denote the autocorrelation matrix of size n× n given by Σn(i, j) = γ|i−j| = E(xt+i, xt+j) for any i, j ∈ Z. Then
the extremal eigenvalues of Σ are bounded as follows.

λmin(Σn) ≥ 2π inf
ω

f(ω) and λmax(Σn) ≤ 2π sup
ω

f(ω) ∀n ∈ N

Furthermore, the bound holds uniformly for all n ∈ N. See Brockwell et al. (1991, Proposition 4.5.3) for a proof of the
Lemma.

5 ADDITIONAL EXPERIMENTAL RESULTS

In section 5 we described experiments with simulated autoregressive processes. Here, we provide additional plots from these
experiments.

5.1 STATISTICAL AND CAUSAL ERRORS

In the main paper we have seen that even in very simple AR models the causal error of an OLS regression estimator can
be several times larger than its statistical error. In Figures 5, 6 and 7 we can see that this is also the case for OLS, Lasso
and ElasticNet regression and different process orders. All methods can be seen as the solution to an optimization problem,
minimizing the empirical statistical error plus some penalty term Ω(â), that is,

∑
yi,ŷi

(yi − ŷi)
2 + λΩ(â), where ŷi denotes

the model prediction with estimated parameters â and λ > 0 the strength of the regularization. For OLS, the penalty term is
zero. For Ridge and Lasso the penalty is the l2 and l1 norm respectively, i.e. Ω(â) = ∥â∥2 for Ridge and Ω(â) = ∥â∥1 for
Lasso. For ElasticNet we have Ω(â) = µ · ∥â∥1 + (1− µ) · ∥â∥2, where µ is a parameter balancing the l1 and l2 penalty.

We used standard grid-search and 5-fold cross-validation to find the optimal regularization strength. For ElasticNet, we
additional optimized µ with the grid search. Except for Figures 8, we use 100 training and 1000 test samples. For all
experiments, we simulate our processes with noise variance σ2 = 1.

Increasing sample size. As one would expect, in Figure 8, we can see that the absolute difference of the errors decreases for
larger training samples. We show this result for the ridge regression estimator. Results for other estimators are similar. The
respective means are 13.28, 0.48 and 0.18 from left to right and the standard deviations are 264.54, 4.35 and 0.27, which is
hard to read from the plot due to the scale of the outliers.

Violations of causal sufficiency. In Figure 10 we violated the causal sufficiency assumption by introducing a hidden
confounder. To this end we draw a two-dimensional AR(1) process by drawing each entry of the parameter matrix A
independently and uniformly from [−2, 2] and reject matrices that yield non-stationary processes. We then only use one of
the two dimensions as training and test sample. The other one acts as hidden confounder. We also use only the sample of the
observed dimension to estimate the autocorrelation of the process, which is the x-axis of the plots in Figure 10.
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Figure 5: The causal error G plotted against the statistical error S for process orders p = 3, 5, 7 (from left to right) and
estimators OLS, Lasso and ElasticNet (from top to bottom).

Figure 6: Histogram of the difference |G − S| for orders p = 3, 5, 7.



Figure 7: The maximal difference of statistical and causal error |G − S| plotted against the condition number of the
autocorrelation matrix κ for process orders p = 3, 5, 7 (from left to right) and estimators OLS, Lasso and ElasticNet (from
top to bottom).



Figure 8: The absolute difference |G − S| of causal and statistical error plotted against the sample size for process orders
p = 5, sample sizes 10, 100, 1000 using Ridge regression. The blue bars mark the 0, 0.5 and 1 quantile and the black block
goes from the 0.25 to the 0.75 quantile.

Figure 9: The maximal difference of errors |G − S| as well as the generalization bound from Theorem 1 plotted against
condition number of the autocorrelation matrix for process order p = 5, steps predicted ahead ω = 1, 5, 7 (from left to right).
The top row show interventions only on the most recent timestep xt−1 where the bottom row shows interventions on all
previous timesteps before the prediction.

Figure 10: The maximal difference of errors |G − S| as well as the generalization bound from Theorem 1 plotted against
condition number of the autocorrelation matrix for process order p = 5, steps predicted ahead ω = 1, 5, 7 (from left to
right).
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