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Figure 1: The secure preprocessing procedures to iden-
tify duplicated individuals among multiple sources. PKai
(i = 1,..., 5), PKbi (i = 1,..., 7), PKci (i = 1,..., 4) are
the primary keys of each individual in each source. ai
(i = 1,..., 5), bi (i = 1,..., 7), ci (i = 1,..., 4) are the hashed
sequences of these individuals.

A THE PREPROCESSING PROCEDURE

The assumptions were described briefly in Section 3.2 of
the main text. Here we present the preprocessing procedures
to remove duplicated individuals.

The preprocessing procedure are summarized as follows.
Firstly, each source would use a one-way hash function
(such as MD4, MD5, SHA or SHA256) to encrypt each in-
dividuals’ primary key and then send the hashed sequences
to a server. By doing this, the individuals’ data are secured.
Note that the one-way hash function is agreed among the
sources so that they would use the same function. Then,
the server collects all hashed sequences from all sources
and perform a matching algorithm to see if there exists
repeated individuals among different sources. For each re-
peated individual, the server randomly choose to keep it on
a small number (predefined) of sources and inform the other
sources to exclude this individual from the training process.
The whole procedure is to ensure that an individual does not
exists in a huge number of sources, thus prevent learning a
biased model. We summarize the procedure in Figure 1.

Assumption 4 and the preprocessing procedure are required
for data that are highly repeated in different sources only.
For data that are not likely to have a high number of repeti-
tions such as patients from different hospitals of different
countries, the above assumption and the preprocessing pro-
cedure are not required. Note that the existing methods also
need Assumption 4 since they need to combine data and
remove repeated individuals.

In this work, we assume that all of the assumptions described
in this section are satisfied, and the preprocessing procedure
was performed if it is necessary.

B THE FEDERATED EVIDENCE LOWER
BOUND

Naively applying variational inference would lead to a non-
decomposable ELBO. The proposed ELBO can be decom-
posed into multiple components, thus enabling federated
optimization. We give a full derivation as follows:

log p(yobs |X,w)

= log

∫
p(yobs,g,Ψ,Σ |X,w)dgdΨdΣ

= log

∫
p(yobs |g,Ψ,Σ,X,w)p(g,Ψ,Σ|X,w)dgdΨdΣ.

From Figure 2, we see that g,Ψ,Σ ⊥⊥ Xs,ws (for all
s = 1, 2, . . . ,m), i.e, g,Ψ,Σ are independent with Xs,ws

when ys
obs,y

s
mis are not given. Thus, p(g,Ψ,Σ|X,w) =

p(g,Ψ,Σ).

In addition, from Figure 2, we also have

p(yobs |g,Ψ,Σ,X,w) =

m∏
s=1

p(ys
obs |g,Ψ,Σ,Xs,ws).

Thus,

log p(yobs |X,w)
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Figure 2: Graphical model that summarizes the proposed
framework with treatment ws, covariate Xs, and the two
potential outcomes ys

mis and ys
obs. The quantity f s is idiosyn-

cratic to the sources and g contains shared characteristics
across all the sources. Σ and Ψ are shared parameters. Note
that this is not a causal graph.

= log

∫
q(g,Ψ,Σ)

m∏
s=1

p(ys
obs |g,Ψ,Σ,Xs,ws)

× p(g,Ψ,Σ)

q(g,Ψ,Σ)
dgdΨdΣ

≥
∫
q(g,Ψ,Σ) log

(
m∏
s=1

p(ys
obs |g,Ψ,Σ,Xs,ws)

× p(g,Ψ,Σ)

q(g,Ψ,Σ)

)
dgdΨdΣ

=

m∑
s=1

Eq[log p(ys
obs |g,Ψ,Σ,Xs,ws)]

− DKL[q(g,Ψ,Σ)‖p(g,Ψ,Σ)]

=

m∑
s=1

(
Eq[log p(ys

obs |g,Ψ,Σ,Xs,ws)]

− 1

m
DKL[q(g,Ψ,Σ)‖p(g,Ψ,Σ)]

)
=

m∑
s=1

Ls,

where

Ls := Eq[log p(ys
obs |g,Ψ,Σ,Xs,ws)]

− 1

m
DKL[q(g,Ψ,Σ)‖p(g,Ψ,Σ)].

Hence, we can divide the ELBO into multiple components,
which leads to federated training of the model. Without the
proposed model, the ELBO cannot be decomposed into mul-
tiple components and hence cannot be trained in a federated
setting.

C PROOF OF LEMMA 1

Proof. We denote ξs0 ∼ N(0, Ins) and ξs1 ∼ N(0, Ins).
Then, from the model definition (Eq. (5) in the main text),

we have[
ys1(0) . . . ysns

(0)
ys1(1) . . . ysns

(1)

]
= Ψ

1
2

[
f s1(0) + gs(0) . . . f sns

(0) + gs(0)
f s1(1) + gs(1) . . . f sns

(1) + gs(1)

]
+ Σ

1
2

[
εs1(0) . . . εsns

(0)
εs1(1) . . . εsns

(1)

]
.

The above equation is equivalent to the following

Ys =
[
µ0 µ1

]
(Ψ

1
2 )> +

[
εs0 εs1

]
(Σ

1
2 )>,

where

µ0 = µ0(Xs)+gs
0+(Ks)

1
2 ξs0,

µ1 = µ1(Xs)+gs
1+(Ks)

1
2 ξs1.

Further expanding the right hand side, we have

Ys =
[
µ0(Xs)+gs

0 µ1(Xs) + gs
1

]
(Ψ

1
2 )>

+ (Ks)
1
2
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ξs0 ξs1

]
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1
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εs0 εs1

]
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1
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vec(Ys) =
(
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1
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0

µ1(Xs) + gs
1

]
+
(

Ψ
1
2 ⊗ (Ks)

1
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]
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1
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[
εs0
εs1

]
,

where vec(·) denotes the vectorization of a matrix, which
converts a matrix into a column vector.

For the second term on the right hand side of the above
equation, note that ξs0 ∼ N(0, Ins) and ξs1 ∼ N(0, Ins), so
we have the following[

ξs0
ξs1

]
∼ N(0, I2ns)(
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1
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1
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]
∼ N (0,Ψ⊗Ks) .

For the last term, note that εs0 ∼ N(0, Ins), ε
s
1 ∼ N(0, Ins),

thus[
εs0
εs1

]
∼ N(0, I2ns)(
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Consequently,

vec(Ys)
∣∣Ψ,Σ,Xs,ws,gs
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Ψ

1
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µ0(Xs)+gs

0
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1

]
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)
,

which implies that[
ys(0)
ys(1)

] ∣∣∣Ψ,Σ,Xs,ws,gs

∼ N

((
Ψ

1
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)[µ0(Xs)+gs
0

µ1(Xs)+gs
1

]
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)
.

This completes the proof.

D PROOF OF LEMMA 2

Proof. Following the proof of Lemma 2, we note
that if the observed treatment ws

i = 0, then the
mean of p(ysi,obs|Xs,ws,Ψ,Σ,gs) equals to the
mean of p(ysi(0)|Ψ,Σ,Xs,ws,gs) and the mean
of p(ysi,mis|Xs,ws,Ψ,Σ,gs) equals to the mean of
p(ysi(1)|Ψ,Σ,Xs,ws,gs). If the observed treatment
ws
i = 1, then the mean of p(ysi,obs|Xs,ws,Ψ,Σ,gs)

equals to the mean of p(ysi(1)|Ψ,Σ,Xs,ws,gs) and the
mean of p(ysi,mis|Xs,ws,Ψ,Σ,gs) equals to the mean of
p(ysi(0)|Ψ,Σ,Xs,ws,gs). Hence, we have

µobs(X
s) = (1−ws)�m0 + ws �m1,

µmis(X
s) = ws �m0 + (1−ws)�m1,

Similarly, for the covariance matrix, each element in Kobs,
Kmis, and Kom also depends on whether ws

i = 0 or ws
i =

1. So each element in these matrices is computed by the
following kernel function

kobs(xi,xj)=
[
(1−wi)(1−wj)ψ11+wiwjψ22

+ (1−wi)wjψ12+wi(1−wj)ψ21

]
k(xi,xj)

+
[
(1−wi)σ11+wiσ22

]
1i=j ,

kmis(xi,xj)=
[
wiwjψ11+(1−wi)(1−wj)ψ22

+ (1−wi)wjψ21+wi(1−wj)ψ12

]
k(xi,xj)

+
[
wiσ11+(1−wi)σ22

]
1i=j ,

kom(xi,xj) =
[
(1−wi)(1− wj)ψ21+wiwjψ12

+ (1−wi)wjψ22+wi(1−wj)ψ11

]
k(xi,xj)

+
[
(1−wi)σ21+wiσ12

]
1i=j ,

where ψab and σab are the (a, b)–th elements of Ψ and Σ,
respectively.

This completes the proof.

E EVALUATION METRICS

The two evaluation metrics reported in our experiments are
defined as follows: (i) precision in estimation of heteroge-
neous effects (PEHE):

εPEHE :=

m∑
s=1

ns∑
i=1

(τ si − τ̂ si )2/(mns)
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Figure 3: The estimated ATE distribution on source #1 of
IHDP dataset. The dotted black lines represent the true ATE.

for evaluating ITE, and (ii) absolute error:

εATE := |τ − τ̂ |

for evaluating ATE, where τ si and τ are the true ITE and
true ATE, respectively, and τ̂ si , τ̂ are their estimates.

F ADDITIONAL EXPERIMENTAL
RESULTS

In this section, we present some additional results which
was skipped in the main text due to limited space.

F.1 SYNTHETIC DATA: DATA-2

In this section, we present additional experimental results
on DATA-2. Again, those results were skipped in the main
text due to limited space. In Table 1, we present additional
results of the baselines trained locally (loc) and the baselines
trained with bootstrap aggregating (agg). Similar to the
experiments on DATA-1 presented in the main text, the
results on DATA-2 also show that FedCI achieves much
lower errors, especially the error in predicting ITE.

F.2 IHDP DATASET

In this section, we present additional experimental results
on the IHDP dataset. The results here were not presented in
the main text due to limited space. In Table 2, we present ad-
ditional results of the baselines trained locally (loc) and the
baselines trained with bootstrap aggregating (agg). Similar
to the experiments on synthetic data, the results presented
here show that FedCI achieves much smaller errors. The
reason is because FedCI has access to all the data sources
in a federated fashion while the ‘baselines trained locally’
(loc) and the ‘baselines trained with bootstrap aggregating’
(agg) only have access to a local data source.

Similar to the experiment on synthetic data, the estimated
distribution of ATE in the first source (s = 1) is presented



Table 1: Out-of-sample errors on DATA-2 where top-3 per-
formances are highlighted in bold (lower is better). The
dashes (—) in ‘loc’ and ‘agg’ indicate that the numbers are
the same as those of ‘com’.

Method The error of ITE (
√
εPEHE) The error of ATE ( εATE)

1 source 3 sources 5 sources 1 source 3 sources 5 sources

BARTloc — 18.4±0.3 18.3±0.2 — 3.37±0.7 2.90±0.6
X-Learnerloc — 22.7±0.5 22.8±0.5 — 3.55±1.3 3.09±0.8
R-Learnerloc — 26.3±0.2 26.1±0.2 — 19.7±0.3 19.5±0.3
OthoRFloc — 38.3±1.4 40.0±0.9 — 4.09±0.9 4.40±1.2
TARNetloc — 37.6±0.6 37.1±0.4 — 7.31±0.4 7.25±0.3
CFR Wassloc — 37.2±0.7 37.0±0.5 — 7.24±0.3 7.12±0.2
CFR MMDloc — 37.2±0.6 36.8±0.4 — 7.21±0.4 7.11±0.3
CEVAEloc — 21.4±0.7 19.8±0.6 — 2.11±0.4 1.97±0.2

BARTagg — 17.9±0.2 17.7±0.2 — 3.91±0.8 3.15±0.7
X-Learneragg — 18.2±0.4 17.1±0.2 — 3.43±1.3 3.07±0.8
R-Learneragg — 26.2±0.3 26.1±0.2 — 19.7±0.4 19.6±0.3
OthoRFagg — 25.0±1.3 17.3±0.6 — 4.56±1.1 1.30±0.4
TARNetagg — 36.5±0.3 36.1±0.3 — 7.26±0.3 7.18±0.3
CFR Wassagg — 35.2±0.5 35.0±0.3 — 7.13±0.3 6.97±0.2
CFR MMDagg — 35.2±0.5 35.1±0.4 — 7.10±0.4 7.05±0.2
CEVAEagg — 19.2±0.8 18.3±0.7 — 2.02±0.3 1.91±0.4

BARTcom 18.0±0.4 17.7±0.2 17.4±0.1 3.54±1.3 2.94±0.8 1.84±0.5
X-Learnercom 21.1±0.9 17.9±0.4 16.2±0.2 4.55±1.4 3.29±1.0 2.37±0.8
R-Learnercom 25.9±0.6 23.5±0.5 21.3±0.4 19.0±0.8 15.6±0.7 12.3±0.6
OthoRFcom 37.8±2.7 10.7±0.5 9.83±0.5 7.88±2.2 1.99±0.4 2.36±0.6
TARNetcom 36.1±0.4 35.5±0.2 35.0±0.2 7.11±0.4 7.10±0.3 7.08±0.2
CFR Wasscom 35.1±0.4 34.5±0.2 34.1±0.2 7.10±0.4 7.01±0.3 6.90±0.2
CFR MMDcom 35.1±0.4 35.0±0.2 34.9±0.2 7.12±0.4 7.02±0.3 7.01±0.2
CEVAEcom 20.1±0.5 18.4±0.6 16.6±0.6 1.50±0.3 1.38±0.4 1.89±0.2

FedCI 9.28±0.4 6.34±0.2 5.53±0.1 2.37±0.5 1.47±0.4 0.74±.2

Table 2: Out-of-sample errors on IHDP dataset where top-3
performances are highlighted in bold (lower is better). The
dashes (—) in ‘loc’ and ‘agg’ indicate that the numbers are
the same as those of ‘com’.

Method The error of ITE (
√
εPEHE) The error of ATE ( εATE)

1 source 2 sources 3 sources 1 source 2 sources 3 sources

BARTloc — 5.83±2.6 6.56±3.3 — 2.09±0.9 1.38±0.5
X-Learnerloc — 4.14±1.5 4.54±1.9 — 1.51±0.7 0.77±0.5
R-Learnerloc — 6.35±1.9 6.16±2.0 — 2.13±0.7 1.44±0.3
OthoRFloc — 4.33±1.6 4.59±1.9 — 1.10±0.6 0.75±0.3
TARNetloc — 3.71±1.0 3.83±1.1 — 1.31±0.5 0.98±0.4
CFR Wassloc — 3.35±0.8 3.12±0.7 — 0.87±0.5 0.82±0.4
CFR MMDloc — 3.40±0.9 3.15±1.2 — 1.17±0.5 0.63±0.3
CEVAEloc — 3.78±0.7 3.93±0.8 — 1.91±0.3 2.37±0.2

BARTagg — 4.05±1.9 3.69±1.8 — 2.09±1.0 1.30±0.5
X-Learneragg — 3.98±1.5 4.28±1.9 — 1.51±0.7 0.83±0.5
R-Learneragg — 4.76±1.3 4.46±1.6 — 1.92±0.5 1.41±0.2
OthoRFagg — 3.40±1.1 4.26±1.9 — 0.87±0.3 1.20±0.6
TARNetagg — 3.52±0.9 3.81±1.2 — 1.23±0.4 0.95±0.4
CFR Wassagg — 3.21±0.7 2.93±0.9 — 0.80±0.3 0.71±0.2
CFR MMDagg — 3.17±0.8 2.91±1.3 — 1.12±0.5 0.57±0.3
CEVAEagg — 3.63±0.7 3.73±0.5 — 0.92±0.2 0.84±0.5

BARTcom 5.98±2.7 4.32±2.1 4.04±2.0 1.80±1.1 2.09±1.1 1.21±0.6
X-Learnercom 4.22±1.6 4.15±1.5 4.06±1.8 1.64±0.7 1.93±0.8 0.84±0.4
R-Learnercom 6.97±2.1 4.43±1.4 4.47±1.7 3.15±0.5 1.34±0.5 1.10±0.3
OthoRFcom 4.49±1.9 3.81±1.3 3.75±1.5 1.86±0.8 1.61±0.6 1.56±0.8
TARNetcom 4.50±1.4 3.15±0.8 3.79±1.1 1.52±0.5 1.18±0.4 0.91±0.3
CFR Wasscom 4.37±1.2 2.93±0.6 2.85±0.9 1.18±0.7 0.72±0.2 0.67±0.1
CFR MMDcom 4.43±1.3 2.85±0.6 2.83±1.1 2.32±0.8 0.63±0.2 0.54±0.2
CEVAEcom 3.16±0.6 2.34±0.6 2.31±0.7 2.02±0.4 0.53±0.1 0.48±0.2

FedCI 2.88±0.8 2.36±0.5 2.35±0.6 1.43±0.7 1.03±0.4 0.51±0.2

in Figure 3. Again, the figures show that the true ATE is
inside the estimated interval and the estimated mean ATE
shifts towards its true value (dotted lines) when more data
sources are used.
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