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Appendix

A MESSAGE UPDATE

Despite the dense connections in the factor graph, max-sum
belief propagation achieved admirable performance in the
case of approximate the MAP of Boolean matrix factoriza-
tion [Ravanbakhsh et al., 2016]. Here we also utilize this
strategy that not only derive the MAP of matrix decompo-
sition X and Y , but also infer the background row- and
column-wise bias µ,ν. Though the information of µ,ν
and X, Y communicates through likelihood factor g and
auxiliary variable W , their independence of each other re-
sulted in disconnected message update between µ,ν and
X, Y . Conveniently, {X, Y, W} and µ,ν, W} can be con-
sidered as two separate systems. In this paper we focus on
the message update of {µ,ν, W}, and adopt the algorithm
in Ravanbakhsh et al. [2016] for {X, Y, W}.

A.0.1 update X,Y,W

Variables to factor message.

Conveniently, all the variables in {X,Y,W} are binary
variables (Xil, Ylj , Wijl ∈ {0, 1}). Following the nota-
tion in Ravanbakhsh et al. [2016], we denote the message
between factors and variables as m (e.g., mXil→fijl(Xij) :
{0, 1} → R). Max-sum BP is utilized to calculate the out-
going message, while consideration all incoming messages
from neighbor factors, despite the receiving one, e.g.,

mXil→fijl(Xij)
t+1 =mhil→Xill

(Xil)
t+∑

j′ 6=j

mfij′l→Xil
(Xil)

t

Our objective is to achieve the maximum likelihood,
which align with the difference between the message of

mXil→fijl(Xij = 1) and mXil→fijl(Xij = 0), i.e.,

Φ̂ = mXil→fijl(1)−mXil→fijl(0)

In the case of individual variable Xil to the factor fijl

Φ̂t+1
ijl = (mhil→Xill

(1)t +
∑
j′ 6=j

mfij′l→Xil
(1)t)

− (mhil→Xill
(0)t +

∑
j′ 6=j

mfij′l→Xil
(0)t)

= log(
p(Xil = 1)

p(Xil = 0)
) +

∑
j′ 6=j

Φt
ij′l

Similarly, the message Ψ̂ can be derived as

Ψ̂ijl = log(
p(Ylj = 1)

p(Ylj = 1)
) +

∑
i′ 6=i

Ψt
i′jl

For W , since each variable Wijl has exact two factor neigh-
bors gij , fijl, the message from Wijk to either factors is the
message from the other factor, i.e.,

mWijl→gij (Wijl) = mfijl→Wijl
(Wijl)

mgij→Wijl
(Wijl) = mWijl→fijl(Wijl)

We will discuss in detail of the message involve factor g in
next section.

factor to variable message

For factor h, it only connect to the single variable Xil or
Ylj , which works as prior knowledge for the sparsity of X
and Y , where their information is passed through

hil(Xil = 1)− hil(Xil = 0) = log(
p(Xil = 1)

p(Xil = 0)
)

hlj(Ylj = 1)− hlj(Ylj = 0) = log(
p(Ylj = 1)

p(Ylj = 0)
)
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Factor f links X,Y with the auxiliary variable W , that
ensures Wijl = Xil ∧ Ylj , i.e.,

f(Xil, Ylj ,Wijl) = log(I(Wijl = Xil ∧ Ylj))

Notably, f(Xil, Ylj ,Wijl) → −∞ if Wijl 6= Xil ∧ Ylj .
Such that it restrict the message scenarios when passing the
information from f to X,Y . Here, we use mfijl→Xil(Xil)

as example, where mfijl→Ylj(Ylj) can be similarly derived.
For Xil to equal to 1, if Ylj = 1, restricted by f , Wijl = 1,
and if Ylj = 0, Wijl = 0, thus,

mfijl→Xil
(1)t+1 = max(mYlj→fill(1)t+

mWijl→fijl(1)t, mYlj→fill(0)t + mWijl→fijl(0)t)

While if Xil = 0, Wijl = 0 regardless the value of Ylj , i.e.,

mfijl→Xil
(0)t+1 = max(mYlj→fill(1)t+

mWijl→fijl(0)t, mYlj→fill(1)t + mWijl→fijl(0)t)

Since Ψ̂ijl = mYlj→fijl(1) − mYlj→fijl(0), and Γijl =
mWijl→fijl(1)−mWijl→fijl(0) the message from f to X
can be derived as

Φijl = mfijl→Xil
(1)−mfijl→Xil

(0)

= max(Γijl + Ψ̂ijl, 0)−max(Ψ̂ijl, 0)

Similarly, we have

Ψijl = mfijl→Yil
(1)−mfijl→Yil

(0)

= max(Γijl + Φ̂ijl, 0)−max(Φ̂ijl, 0)

Following the same strategy, while considering the message
from factor f to variable W , if Wijl = 1, Xil = Ylj = 1,
whereas if Wijl = 0, either Xil or Ylj should equal to zero,
i.e.,

mfijl→Wijl
(1)t+1 = mYlj→fill(1)t + mXil→fijl(1)t

mfijl→Wijl
(0)t+1 = max(mYlj→fill(1)t+

mXil→fijl(0)t,mYlj→fill(0)t + mXil→fijl(1)t,

mYlj→fill(0)t + mXil→fijl(0)t)

Such that

Γ̂ijk = mfijl→Wijl
(1)−mfijl→Wijl

(0)

= min(Φ̂ijl + Ψ̂ijl, Φ̂ijl, Ψ̂ijl)

A.1 UPDATE µ, ν,W

In the previous section, we have derived the messages pass-
ing between the X, Y and W . In this section, we derive
the message passing between µ, v and W , where they all

related to the likelihood factor g. Also, different with binary
variable W , µ and ν are Bernoulli variable, that the simpli-
fied singleton message does not applied for their message
update. We first reinstate the log likelihood function of each
element (Aij) that represent the factor g.

p(Aij = 1|Zij = 0) = 1− (1− pf )(1− µiνj)

p(Aij = 0|Zij = 0) = (1− pf )(1− µiνj)

p(Aij = 1|Zij = 1) = 1− pf (1− µiνj)

p(Aij = 0|Zij = 1) = pf (1− µiνj)

In the case of Bernoulli variables µi, the incoming message
from factor g to µi is certainly the likelihood information,

Ωi = log(

n∏
j=1

p(Aij))

while the message from µi to g would be the MAP of the
posterior distribution, i.e.,

Ω̂i = arg max
µi

log(

n∏
j=1

p(Aij)p(µi))

= arg max
µi

(

n∑
j=1

log(p(Aij)) + bi(µi))

Given no knowledge on the bias before hand, here we im-
pose a uniform prior on the Bernoulli variable, such that
bi(µi) = 0. In addition, the log posterior is related to 4
situations,

Ωi =

n∑
j=1,Aij=1,Zij=0

log(1− (1− pf )(1− µiνj))

+

n∑
j=1,Aij=1,Zij=1

log(1− pf (1− µiνj))

+

n∑
j=1,Aij=0,Zij=0

log((1− pf )(1− µiνj))

+

n∑
j=1,Aij=0,Zij=1

log(pf (1− µiνj)

Here we assume Pf → 0, such that pf (1 − µivi) → 0,
and both

∑n
j=1,Aij=1,Zij=1 log(1 − pf (1 − µiνj)) and∑n

j=1,Aij=0,Zij=1 log(pf (1 − µiνj) can be approximate

by a constant that does not contribute to the inference of Ω̂i.
Also (1−pf )(1−µiνj) can be approximated by (1−µiνj).
It also has practical meanings, that for the inference of back-
ground bias, we only consider the values that are not covered
by the latent pattern X,Y . While our objective is to infer µi

that better reflect the background information of Ai:. How-
ever, it is still non-trivial to derive Ω̂i as every observation
is related to a different vj . Instead of deriving exact MAP of



likelihood, we treat this as an optimization problem, where
we could utilize conventional loss function to achieve the
same objective that optimize the difference between µi with
Ai:. Here, we apply a modified mean square loss, i.e.,

Ω =

n∑
j=1,Zij=0

vj(Aij − µi)
2

The most important benefit of this modified loss is that
it ensures the probability of each µi would be from [0, 1]
and still consider the impact from vj for each observations.
Conveniently, Ω̂i is inferred from the derivative of Ω, i.e.,

Ω̂ = arg max
µi

Ω =

∑n
j=1,Zij=0Aijvj∑n

j=1,Zij=0 vj

Similarly, we have

Θj =

m∑
i=1,Zij=0

µi(Aij − vj)2

Θ̂j =

∑m
i=1,Zij=0Aijµi∑n

i=1,Zij=0 µi

Now we have derived all messages in the likelihood despite
Γijl : mgij→Wijl

that passed the information from the like-
lihood factor to each of auxiliary variable Wijl. Overall, the
message take the form of

mgij→Wijl
(Wijl)

t+1 = max
Wijl′ ,l

′ 6=l
(gij(Zij ,µi,vj)

+
∑
l′ 6=l

mWijl′→gij (Wijl′)
t)

When updating Wijl, we consider two scenarios: 1. Zij =
∨kl=1Wijl = 1 with likelihood factor p(Aij |Zij = 1) and 2.
∨kl=1Wijl = 0, p(Aij |Zij = 0).

Wijl = 1 falls into the situation of scenarios 1, that no
matter the value of Wijl′ , Zij = ∨Wijl = 1. The message
for Wijl = 1 can be derived as

mgij→Wijl
(1) = max

Wijl′ ,l
′ 6=l

(gij(Zij ,µi,vj)

+
∑
l′ 6=l

mWijl′→gij (Wijl′)
t)

= log(p(Aij |1))

+
∑
l′ 6=l

max(mWijl′→gij (1),mWijl′→gij (0))

Wijl = 0 could involve both cases. If Zij = 0, all Wijl′ =
0, i.e.,

mgij→Wijl
(0) = log(p(Aij |0)) +

∑
l′ 6=l

mWijl′→gij (0)

If Zij = 1, at least one of Wijl′ equal to zero. To achieve
the maximum likelihood, the Wijl′ with the maximum like-
lihood difference on 0 or 1 should be set as 1, we de-
note it as Wijl∗ , where l∗ = arg maxl′ 6=l(mWijl′→gij (1)−
mWijl′→gij (0)), such that we have

mgij→Wijl
(0) = log(p(Aij |1))

+
∑
l′ 6=l

max(mWijl′→gij (1),mWijl′→gij (0))

−mWijl∗→gij (0)

Taken together,

mgij→Wijl
(0) = max(log(p(Aij |0))

+
∑
l′ 6=l

mWijl′→gij (0), log(p(Aij |1))

+
∑
l′ 6=l

max(mWijl′→gij (1),mWijl′→gij (0))

−mWijl∗→gij (0))

Therefore

Γijl = mgij→Wijl
(1)−mgij→Wijl

(0)

= log(p(Aij |1))

+
∑
l′ 6=l

max(mWijl′→gij (1),mWijl′→gij (0))

−max(log(p(Aij |0))

+
∑
l′ 6=l

mWijl′→gij (0), log(p(Aij |1))

+
∑
l′ 6=l

max(mWijl′→gij (1),mWijl′→gij (0))

−mWijl∗→gij (0))

= min(log(
p(Aij |1)

p(Aij |0)
) +

∑
l′ 6=l

max(0, Γ̂t
ijl′),

max(0,−maxl′ 6=lΓ̂
t
ijl′))
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