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1 EXPERIMENTS

1.1 BASELINES

To show the effectiveness of the proposed methods, we
construct various baseline methods and compare them in
the following.

Finetuning We first randomly initialize the parameters for
the network, then use few-shot labeled data to finetune this
randomly initialized network. This method performs the
worst because it does not incorporate the information from
the pre-trained models.

Vanilla averaging (VA). We average all the models in a lay-
erwise manner. We average the parameter values element-
wise across all the pre-trained models as the fused parame-
ters for each averaged layer. This method assumes that all
the pre-trained models are solving the same task, and there
is correspondence for the same position parameters across
all the pre-trained models. However, this property does not
hold in our data-free meta-learning setting since each pre-
trained model is to solve a different task. Thus, there is no
correspondence among different pre-trained models.

MAML [Finn et al., 2017], which meta trains all the tasks
with available training and testing data together. This setting
is entirely different from ours. We use these datasets to train
a MAML as in standard meta-learning. This baseline gives
us a sense of how MAML performs with available training
and testing data compared to the data-free setting. MAML
with available training data does not perform well in this
setting because the number of tasks (100), the same number
as the pre-trained models, is relatively much smaller than
that of standard data-based meta-learning. Thus, it learns
weak domain knowledge.

Optimal transport averaging (OTA) [Singh and Jaggi,
2020], Step 1: following [Singh and Jaggi, 2020], assume
we are at layer l and that neurons in the previous layers have
already been aligned.

Step 2: we use uniform distributions to initialize the his-
togram for this layer probability measures.

Step 3: we use layer l of one randomly sampled pre-trained
model as the estimate of the fused model for layer l. We then
calculate the aligned model with respect to this estimate for
each pre-trained model.

Step 4: we calculate the average of all the aligned models
as the fused model for layer l.

This method also assumes that the different pre-trained mod-
els solve the same task. Thus, different model parameters
can be aligned. However, in the data-free meta-learning sce-
nario, different models solve different tasks. Second, they
did not consider and optimize the generalization to the un-
seen tasks.

Model fusion with Gaussian process (MFGP) [Lam et al.,
2021]

There are three modules for MFGP.

[1] Base Module network. This module is to compute
the mean vector and diagonal covariance matrix of the
outer multivariate Gaussian that distributes w⊘ is a 100-
dimension vector generated from a 100-dimensional noise
vector.

[2] Task-Specific Module Gaussian process parameteriza-
tion. This module consists of 10 independent sparse Gaus-
sian processes (GPs), which represent the 10 independent
priors over 10 random functions mapping from the task
embedding to a scalar.

[3] Crossing Module P (θ|w⊘,w) Parameterization.

This module is to compute the mean vector and diagonal
covariance matrix of the outer multivariate Gaussian that
models the distributions of θ. The above parameterization
describes the generative process of θ from w and w⊘ for a
single task Ti . The fusion model is trained with a variational
lower bound.

During meta testing, we adapt MFGP to fuse pre-trained
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models in the following way with our proposed method:

einit =
1
N

∑i=N
i=1 ei

θinit = fϕmeta
(einit)

Where einit is the average embedding of all the pre-trained
models, and ϕmeta is the optimal solution to the Eq 8 (main
text).

This method uses the Gaussian process, which can only
handle simple networks, such as MLP, to fuse standard pre-
trained models, and can be hard to scale to more complex
problems, e.g., our setting. Furthermore, they did not con-
sider and optimize the generalization to unseen tasks.

1.2 MORE RESULTS

In this section, we give several ablation studies to verify the
effective and stability of our proposed framework on the
offline DFL2L task.

Ablation Study We evaluate the effectiveness of DRO for
model fusion by ablating the component of DRO. The results
are shown in Table 1. We can observe that with DRO, the
performance can be improved by 1.2% and 1.5% for 10-shot
and 20-shot on CIFAR-FS, respectively.

Table 1: Ablation study on offline DFL2L CIFAR-FS 5-way
classification

10-shot 20-shot

Ours (w/o DRO) 49.23 ± 1.7 53.35 ± 1.4
Ours (w/ DRO) 50.42 ± 1.5 54.86 ± 1.2

Hyperparameter Sensitivity We evaluate the model per-
formance sensitivity with different values γ in Table 2. For
the considered γ value, the proposed model performance is
not very sensitive to γ value variations, although there are
some variations among different γ values.

Table 2: Hyperparameter sensitivity on offline DFL2L Mini-
imageNet 5-way classification

γ 10-shot 20-shot

γ = 10.0 37.09 ± 1.8 43.37 ± 1.5
γ = 2.0 37.36 ± 1.7 43.67 ± 1.6
γ = 0.5 37.57 ± 1.5 43.31 ± 1.4

1.3 HYPERPARAMETER SELECTION

As mentioned in the main text, we convert the Wasserstein
ball constraint into the objective functions; after using La-
grangian duality, the optimization becomes:

maxϕ infν∈P Eν [F(ϕ) + γ(W (µ, ν)− δ)].

Since δ is not an optimization variable (constant) and does
not affect optimization, the constraint is implicitly regu-
larized by the Lagrange multiplier γ. That is to say, with
or without δ does not affect the optimization. Therefore,
the above optimization can be equivalently formulated as
follows:

maxϕ infν∈P Eν [F(ϕ) + γW (µ, ν)].

In this case, the γ controls the regularization. The prob-
lem of choosing δ becomes choosing γ. For selecting γ,
as mentioned in the main text, we have a validation set of
pre-trained models that can be used for determining γ.

First, we calculate the meta initialization for the validation
set of pre-trained models as follows:

einit =
1
N

∑i=N
i=1 ei

θinit = fϕmeta
(einit)

Where einit is the average embedding of all the pre-trained
models, and ϕmeta is the optimal solution to Eq (8) (main
text).

Then, we calculate the likelihood of the validation-set pre-
trained models based on the following equations. The likeli-
hood function of the validation pre-trained model θi follows
the following Gaussian likelihood function:

P (θi|θinit) = exp(− ||θinit−θi||2
σ2 )

Then, we can use grid search to select γ with the highest
likelihood on the validation-set of pre-trained models as the
best γ. Suppose we want to work with δ directly instead
of the γ regularization. We can use projected gradient de-
scent to project the gradient update into the Wasserstein ball
constraint; the best δ can be selected similarly to the above
procedures for selecting γ.

1.4 MORE DISCUSSION

Model Fusion vs Transfer Learning The number of pre-
trained models determines which method should be adopted,
classical transfer learning or meta-learning. If the number
of pre-trained models is small, then meta-learning is un-
necessary. If we only have one pre-trained model, trans-
fer learning would be enough and well-studied in existing
works. If we only have very few pre-trained models, how
to use them depends on the downstream tasks, practical de-
ployment requirements, etc. For example, if we have both
GPT and BERT, then using which one depends on down-
stream tasks. If the downstream task is text generation, we
can choose GPT. If the task is language understanding, we
can use BERT. However, our focus is on the meta-learning
scenario, i.e., there are many available pre-trained models,
but we have to design a general method for learning how to
use them. Thus, the research focus is entirely different.

For how to use big models, such as BERT and GPT, fusing



them would be more challenging. However, most existing
works still focus on much smaller and simpler networks,
such as MLP and CNN. One solution for fusing such big
models is that, we can first divide large layers into smaller
blocks, then apply our method to fuse models in a block-
wise manner. This would simplify the fusion process.
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