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S1 MODEL COMPARISON.

Table S1: Model comparison table. HoMAMLs are MAMLs designed for task homogeneity, and HeMAMLs are for heterogeneity. NPs
describe methods in Neural Processes family. PMAMLs mean probabilistic extensions of MAML. Aug feature represents the augmented
features.

Category Tasks Knowledge Set Tailoring Sampling Inference on

HoMAMLs MAML Finn et al. (2017) Initialization
MetaSGD Li et al. (2017) Initialization+lr

HeMAMLs MMAML Vuorio et al. (2019) Initialization X
HSML Yao et al. (2019) Initialization X

NPs NP Garnelo et al. (2018b) Aug feature X Representation
CNP Garnelo et al. (2018a) Aug feature

PMAMLs
BMAML Yoon et al. (2018) Initialization X Parameters
PLATIPUS Finn et al. (2018) Initialization X Parameters

ST-MAML Initialization+Aug feature X X Representation

S2 APPROXIMATION FOR POSTERIOR DISTRIBUTION q(ZT ).
Given the training set Dtr

T of a task T , the stochastic task variable ZT is supposed to infer its posterior distribution
conditioned onDtr

T only, specifically, we have the true posterior:

p(ZT |T ) =
p(ZT |Dtr

T )p(Y
te
T |ZT ,Xte

T ,D
tr
T )

p(T )
(1)

the empirical distribution p(T ) is only known in the form of {(Dtr
T ,D

te
T )} pairs. Thus, the true posterior distribution is

intractable. Based on our design, we suppose the prior distribution p(ZT |Dtr
T ) is a multivariate Gaussian distribution, whose

mean and variance is the output of a set operator acting on (Xtr
T ,Y

tr
T ) pairs. To ensure the posterior stays close to the prior,

also the posterior is derived from (Dtr
T ,D

te
T ), we approximate it with the output of the same set operator acting on both

(Xtr
T ,Y

tr
T ) and (Xte

T ,Y
te
T ) pairs.

S3 DERIVATION OF ELBO APPROXIMATION AS VARIATIONAL INFORMATION
BOTTLENECK OBJECTIVE

For task T , our fine-tuned task-specific knowledge set Θ1
T contains two variables: model parameters θ1T and augmented

features h1
T . Given task inputs XT = [Xtr

T ,X
te
T ], we are seeking a task-specific knowledge set that is maximally informative
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of test target Y te
T , while being mostly compressive of training target Y tr

T . Correspondingly, we would like to maximize the
conditional mutual information I(Y te

T ;Θ1
T |XT ) and minimize I(Y tr

T ;Θ1
T |XT ). The information bottleneck objective is:

LIB(T ) = I(Y te
T ;Θ1

T |XT )− βI(Y tr
T ;Θ1

T |XT ). (2)

We show the following lemma:

Lemma 1 Given a task T , maximizing the information bottleneck loss LIB defined in (2) is equivalent to maximizing the
weighted ELBO :

LwELBO(T ) = EΘ1
T ∼q(Θ1

T |T ) log p(Y
te
T |Θ1

T ,X
te
T )− βKL(q(ZT |T )||p(ZT |Dtr

T ). (3)

Proof 1 To lower bound IB objective defined in Eq. (2), we derive the lower bound for first term I(Y te
T ;Θ1

T |XT ) and upper
bound for second term I(Y tr

T ;Θ1
T |XT ). Further, we assume a distribution q(Y te

T ,Θ
1
T |XT ) as a variational approximation

of the true distribution p(Y te
T ,Θ

1
T |XT ).

I(Y te
T ,Θ

1
T |XT ) =

∫
p(XT )

[∫
q(Y te
T ,Θ

1
T |XT ) log

q(Y te
T ,Θ

1
T |XT )

p(Y te
T )q(Θ1

T |X)
dY te
T dΘ

1
T

]
dXT

=

∫
p(XT )

[∫
q(Y te
T ,Θ

1
T |XT ) log

q(Y te
T |Θ1

T ,XT )

p(Y te
T )

dY te
T dΘ

1
T

]
dXT

(4)

q(Θ1
T |XT ) =

∫
q(Θ1

T |Y tr
T ,XT )p(Y

tr
T )dY tr

T

=

∫
q(Θ1

T |Y tr
T ,XT )p(Y

tr
T ,Y

te
T )dY tr

T dY
te
T

(5)

q(Y te
T ,Θ

1
T |XT ) =

∫
q(Θ1

T ,Y
tr
T ,Y

te
T |XT )dY tr

T

=

∫
q(Θ1

T , |Y tr
T ,Y

te
T ,XT )p(Y

tr
T ,Y

te
T |XT )dY tr

T

=

∫
q(Θ1

T , |Y tr
T ,XT )p(Y

tr
T ,Y

te
T |XT )dY tr

T

(6)

The last part follows from the fact that Θ1
T is independent of Y te

T given [XT ,Y
tr
T ]. Putting this together:

q(Y te
T |Θ1

T ,XT ) =

∫
p(Y te
T ,Y

tr
T )q(Θ1

T |Y tr
T ,XT )dY

tr
T∫

p(Y te
T ,Y

tr
T )q(Θ1

T |Y tr
T ,XT )dY

tr
T dY

te
T

(7)

However, the above conditional distribution q(Y te
T |Θ1

T ,XT ) is intractable due to the unknown data distribution
p(Y te
T ,Y

tr
T ). To derive the upper bound, we introduce a variational approximation pθ(Y te

T |Θ1
T ,XT ) for q(Y te

T |Θ1
T ,XT ).

Take it into the Eq. (4), we have:

I(Y te
T ,Θ

1
T |XT ) =

∫
p(XT )

[∫
q(Y te
T ,Θ

1
T |XT ) log

pθ(Y
te
T |Θ1

T ,XT )q(Y
te
T |Θ1

T ,XT )

pθ(Y te
T |Θ1

T ,XT )p(Y
te
T )

dY te
T dΘ

1
T

]
dXT

≥
∫
p(XT )

[∫
q(Y te
T ,Θ

1
T |XT ) log

pθ(Y
te
T |Θ1

T ,XT )

p(Y te
T )

dY te
T dΘ

1
T

]
dXT

=

∫
p(XT )

[∫
q(Y te
T ,Θ

1
T |XT ) log pθ(Y te

T |Θ1
T ,XT )dY

te
T dΘ

1
T

]
dXT + C

=

∫
q(Y te
T ,Θ

1
T ,XT ) log pθ(Y

te
T |Θ1

T ,XT )dY
te
T dΘ

1
T dXT + C

(8)

In the above equation, we use KL(q(Y te
T |Θ1

T ,XT )||pθ(Y te
T |Θ1

T ,XT )) ≥ 0 in the second step.
The second term is irrelevant to our objective so we can treat it as a constant. Note that:

q(Y te
T ,Θ

1
T ,XT ) =

∫
q(Θ1

T |Y tr
T ,XT )p(Y

tr
T ,Y

te
T |XT )p(XT )dY tr

T (9)



Thus, an unbiased estimation of the first term is:

I(Y te
T ,Θ

1
T |XT ) ≥

∫
q(Θ1

T |Y tr
T ,XT ) log pθ(Y

te
T |Θ1

T ,XT )dΘ
1
T . (10)

We derive the upper bound for second term:

I(Y tr
T ,Θ

1
T |XT ) =

∫
p(XT )

[∫
q(Y tr
T ,Θ

1
T |XT ) log

q(Y tr
T ,Θ

1
T |XT )

p(Y tr
T )q(Θ1

T |XT )
dY tr
T dΘ

1
T

]
dXT

=

∫
p(XT )

[∫
q(Y tr
T ,Θ

1
T |XT ) log

q(Θ1
T |Y tr

T ,XT )

q(Θ1
T |XT )

dY tr
T dΘ

1
T

]
dXT

(11)

The denominator q(Θ1
T |XT ) =

∫
q(Θ1

T |Y tr
T ,XT )p(Y

tr
T )dY tr

T is intractable for unknown p(Y tr
T ). We approximate it

with pθ(Θ1
T |XT ). With similar derivation, the second term is upper bounded by:

I(Y tr
T ,Θ

1
T |XT ) ≤

∫
q(Θ1

T |Y tr
T ,XT )p(Y

tr
T ,XT ) log

q(Θ1
T |Y tr

T ,XT )

pθ(Θ1
T |XT )

dY te
T dY

tr
T dΘ

1
T . (12)

Similarly, its unbiased estimation is given as:

I(Y tr
T ,Θ

1
T |XT ) ≤

∫
q(Θ1

T |Y tr
T ,XT ) log

q(Θ1
T |Y tr

T ,XT )

pθ(Θ1
T |XT )

dΘ1
T . (13)

Combining two terms, we get the total unbiased estimation of the IB loss:

LIB = Eq(Θ1
T |Y tr

T ,XT ) log pθ(Y
te
T |Θ1

T ,XT )− βKL(q(Θ1
T |Y tr

T ,XT )||pθ(Θ1
T |XT )). (14)

To incorporate target information, we inject the target variable Y te
T into posterior and Y tr

T into prior, and get the new
approximation:

LIB = Eq(Θ1
T |T ) log pθ(Y

te
T |Θ1

T ,XT )− βKL(q(Θ1
T |T )||pθ(Θ1

T |Y tr
T ,XT )). (15)

Since θ0T = gGatew (θ,ZT ),h
0
T = gGateβ (ZT ), where gGatew , gGateβ are both deterministic and invertible mappings of ZT .

We have p(θ0T |θ) = δ(θ0T = gGatew (ZT ,θ)), p(h
0
T |ZT ) = δ(h0

T = gGateβ (ZT )). Moreover, h0
T ,θ

0
T are conditionally

independent given ZT . Similarly, h1
T ,θ

1
T are deterministic function of h0

T and θ0T . Thus, the second term in Eq. (15) can
be replaced with the divergence between the posterior and prior distribution of ZT , i.e. KL(q(ZT |T )||p(ZT |Y tr

T ,X
tr
T )).

We now look into the log likelihood term in Eq. (14). Since the transitions ZT → θ0T → θ1T and ZT → h0
T → h1

T are
deterministic:

θ1T = θ0T −∇θL(fθ0
T
,h0
T ,D

tr
T )), θ0T = gGatew (θ, z), z ∼ q(ZT |T )

h1
T = h0

T −∇hL(fθ0
T
,h0
T ,D

tr
T )), h0

T = gGateβ (z).
(16)

According to the analysis, the approximation to be optimized is:

Lapp = EΘ1
T ∼q(ΘT |T ) log pθ(Y

te
T |θ1T , Xte)− βKL(q(ZT |T )||p(ZT |Dtr

T )). (17)

S4 HETEROGENEOUS FEW SHOT BINARY CLASSIFICATION RESULTS.
Task design. In classification, task ambiguity is common when annotated data are limited. Images can share many attributes,
and various combinations of them can be used for final decision-making. We evaluate our method on the ambiguous
classification benchmark proposed in Finn et al. (2018). The CelebA dataset contains cropped images of celebrity faces and
a list of attributes that describe their appearance. We split these attributes into training, validation, and test sets. During
meta-training, we randomly sample two training attributes and form the positive class of images that share them. The
negative class is formed by sampling the same number of images containing neither attribute. During meta-testing, training
set images share three attributes. We construct three test sets by choosing two of the three attributes to define the positive
class. The model learns to apply two attributes for decision making, but there are three combinations of two attributes for
classification. Thus the task is ambiguous. We sample models from our distribution of solutions and assign them to the three
test sets based on the loss values. If all test sets are covered with at least one model, the method can effectively discover all
potential decision rules. The cover number is calculated as the average number of test sets that are covered. The coverage
number for a deterministic method is 1. As Table S2 shows, our method can 1) achieve better accuracy, 2) reach lower NLL,
and 3) discover more decision rules compared to MAML.



Table S2: 5-Shot Ambiguous Binary Classification.
Model Accuracy Coverage number NLL
MAML 77.924 1.00 0.454
ST-MAML 79.698 1.13 0.439

S5 EXPERIMENT SETUP FOR SIMULATION.
2D Regression setup. Meta distribution T contains 6 function families. Input X = [x1, x2] ∼ U(0.0, 5.0). The value
for x2 is fixed as 1 if only x1 is used. For sinusoids families : y = asin(wx1 + b) + ε, where a ∼ U [0.1, 5.0], b ∼
U [0, 2π], w ∼ U [0.8, 1.2]; for line families: y = ax1 + b + ε, where a ∼ U [−3.0, 3.0], b ∼ U [−3.0, 3.0]; for quadratic
curves: y = ax21 + bx1 + c + ε, where a ∼ U [−0.2, 0.2], b ∼ U [−2.0, 2.0], c ∼ U [−3.0, 3.0]; for cubic curves: y =
ax31 + bx21 + cx1 + d+ ε, where a ∼ U [−0.1, 0.1], b ∼ U [−0.2, 0.2], c ∼ U [−2.0, 2.0], d ∼ U [−3.0, 3.0]; for quadratic
surface: y = ax21 + bx22 + ε, where a ∼ U [−1.0, 1.0], b ∼ U [−1.0, 1.0]; for ripple: y = sin(−a(x21 + x22)) + b+ ε, where
a ∼ U [−0.2, 0.2], b ∼ U [−3.0, 3.0].
Model architecture for 2D regression. We adopt the same base model as in Yao et al. (2020); Finn et al. (2017), it contains
2 linear layer with 40 neurons followed by ReLU function. For the task representative module, we use 2 linear layers with
80 neurons.
Visualization for 2D regression. See Figure S1.
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Figure S1: Qualitative Visualization of fitting curves. Black stars represent training set Dtr
T , 10 different samples of fitting curves are

shown as colored dotted lines. The blue solid line is the true mapping.

More results for 2D regression. During meta-training, we fixed the size of training set |Dtr
T | as 10, the standard deviation

for Gaussian noise σ to be 0.3. During meta-testing, we can decrease the size of training set or increase the noise level
such that tasks ambiguity can be more concerning. We visualize them in Figure 4. The model can effectively reason over
ambiguity as we vary the size of the training data or noise level. The sampled functions tend to span wider space as |Dtr

T |
decreases or the noise level increases. However, they stay faithful around those annotated training data.
NOAA GSOD Dataset Details. The data is available at https://data.noaa.gov/dataset/dataset/
global-surface-summary-of-the-day-gsod. The dataset is large, so we reduce the size while preserving
a wide range of years by using every 10th year from 1969− 2019. Each file in the unzipped dataset corresponds to one year
of data at a particular station. Files that do not contain at least 40 days of data are ignored. Task number i is created in the
following way:

1. We sample 40 days of data that have valid temperature entires.

2. We drop the columns ("STATION", "NAME", "TEMP_ATTRIBUTES", "DEWP", "DEWP_ATTRIBUTES",
"PRCP_ATTRIBUTES", "SLP_ATTRIBUTES", "STP_ATTRIBUTES", "VISIB_ATTRIBUTES",
"WDSP_ATTRIBUTES", "MAX", "MIN", "MAX_ATTRIBUTES", "MIN_ATTRIBUTES", "LATITUDE",
and "LONGITUDE")

3. We convert the date column from (MM/DD/YYYY) to a float [0, 1] representing the time since the first day of that year.

4. The “FRSHTT" is a 6 bit binary string where each digit indicates the presence of fog, rain, snow, hail, thunder, and
tornadoes respectively. We transform the “FRSHTT" column into 6 binary columns.

5. The GSOD dataset reports missing values with all 9s, e.g. 99.99, or 999.9. We find and replace these values with 0.0.
We also replace NaN entries with 0.0.

6. The units of some input variables are adjusted to bring their values down to a smaller range. Pressure variables (“SLP"
and “STP") are converted from millibars to bars. Elevation is changed from meters to kilometers.

7. The “TEMP" variable is split from the data to become our target value.
We use a 42k/5k/1k split to divide the files into train, val and test sets.
Model architecture for weather prediction. Similar to 2D regression, the feature learner has two linear layers with 100
neurons followed by ReLU activation funcion. The mapping to task representation ZT contains 3 layers with hidden
dimension 40. 80, 200. The augmented dimension is set to be 20.

https://data.noaa.gov/dataset/dataset/global-surface-summary-of-the-day-gsod
https://data.noaa.gov/dataset/dataset/global-surface-summary-of-the-day-gsod


Model runtime and compute. The model trains on one GTX 2080 card. Training times vary by experiment, ranging from a
few hours to a day.

Figure S2: A visualization of trained ST-MAML on the NOAA-GSOD temperature prediction task. The model is given 10 training points
(red) and predicts the remaining days of the year (orange). The true temperatures are shown in blue.
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