
A PROOFS OF THEORETICAL DISCUSSIONS

A.1 LEMMA A.1 AND PROOF

Lemma A.1. With sample (x, y) and two labeling functions f1(x) = f2(x) = y, for an estimated ✓ 2 ⇥, if ✓(x) = y, then
with A3 , we have

d(✓, f1,x) = 1 =) r(✓,A(f2,x)) = 1. (20)

Proof. If ✓(x) = y and d(✓, f1,x) = 1, according to A3, we have d(✓, f2,x) = 0.

We prove this by contradiction.

If the conclusion does not hold, r(✓,A(f2,x)) = 0, which means

max
xA(f2,x)2XA(f2,x)

|✓(x)� y| = 0 (21)

Together with d(✓, f2,x) = 0, which means

max
z2X :zA(f2,x)=xA(f2,x)

|✓(z)� y| = 0, (22)

we will have

max
x2X

|✓(x)� y| = 0, (23)

which is ✓(x) = y for any x 2 P.

This contradicts with the premises in A3 (✓ is not a constant function).

A.2 THEOREM 3.1 AND PROOF

Theorem. With Assumptions A1-A3, with probability at least 1� �, we have

✏Pt(✓)  b✏Ps(✓) + c(✓) + �(|⇥|, n, �) (24)

where c(✓) =
1

n

P
(x,y)2(X,Y)Ps

I[✓(x) = y]r(✓,A(fm,x)).

Proof.

b✏Ps(✓) =
1

n

X

(x,y)2(X,Y)Ps

|✓(x)� f(x)| (25)

=1� 1

n

X

(x,y)2(X,Y)Ps

�
I[✓(x) = f(x)]

�
(26)

=1� 1

n

X

(x,y)2(X,Y)Ps

�
I[✓(x) = f(x)]I[d(✓, fh,x) = 0] + I[✓(x) = f(x)]I[d(✓, fh,x) = 1]

�
(27)

=1� 1

n

X

(x,y)2(X,Y)Ps

�
I[✓(x) = f(x)]I[d(✓, fh,x) = 0]

�
� 1

n

X

(x,y)2(X,Y)Ps

I[✓(x) = f(x)]I[d(✓, fh,x) = 1]

(28)

�b✏h(✓)�
1

n

X

(x,y)2(X,Y)Ps

I[✓(x) = f(x)]r(✓,A(fm,x)), (29)



where the last line used Lemma A.1.

Thus, we have

b✏h(✓)  b✏(✓) + 1

n

X

(x,y)2(X,Y)Ps

I[✓(x) = f(x)]r(✓,A(fm,x)) (30)

where

b✏h(✓) = 1� 1

n

X

(x,y)2(X,Y)Ps

�
I[✓(x) = f(x)]I[d(✓, fh,x) = 0]

�
, (31)

which describes the correctly predicted terms that ✓ functions the same as fh and all the wrongly predicted terms. Therefore,
conventional generalization analysis through uniform convergence applies, and we have

✏Pt(✓)  b✏h(✓) + �(|⇥|, n, �) (32)

Thus, we have:

✏Pt(✓)  b✏Ps(✓) +
1

n

X

(x,y)2(X,Y)Ps

I[✓(x) = y]r(✓,A(fm,x)) + �(|⇥|, n, �) (33)

A.3 THEOREM 3.2 AND PROOF

Theorem. With Assumptions A2-A4, and if 1� fh 2 ⇥, we have

c(✓)  D⇥(Ps,Pt) +
1

n

X

(x,y)2(X,Y)Pt

I[✓(x) = y]r(✓,A(fm,x)) (34)

where c(✓) =
1

n

P
(x,y)2(X,Y)Ps

I[✓(x) = y]r(✓,A(fm,x)) and D⇥(Ps,Pt) is defined as in (8).

Proof. By definition, g(x) 2 ⇥�⇥ () g(x) = ✓(x)� ✓0(x) for some ✓, ✓0 2 ⇥, together with Lemma 2 and Lemma 3
of [Ben-David et al., 2010], we have

D⇥(Ps,Pt) =
1

n
max
✓,✓02⇥

��
X

(x,y)2(X,Y)Ps

|✓(x)� ✓0(x)|�
X

(x,y)2(X,Y)Pt

|✓(x)� ✓0(x)|
�� (35)

� 1

n

��
X

(x,y)2(X,Y)Ps

|✓(x)� fz(x)|�
X

(x,y)2(X,Y)Pt

|✓(x)� fz(x)|
�� (36)

=
1

n

��
X

(x,y)2(X,Y)Ps

I[✓(x) = y]�
X

(x,y)2(X,Y)Pt

I[✓(x) = y]
�� (37)

=
1

n

��
X

(x,y)2(X,Y)Ps

I[✓(x) = y]I[r(✓,A(fm,x)) = 1]�
X

(x,y)2(X,Y)Pt

I[✓(x) = y]I[r(✓,A(fm,x)) = 1]

(38)

+
X

(x,y)2(X,Y)Ps

I[✓(x) = y]I[r(✓,A(fm,x)) = 0]�
X

(x,y)2(X,Y)Pt

I[✓(x) = y]I[r(✓,A(fm,x)) = 0]
��

(39)

=
1

n

��
X

(x,y)2(X,Y)Ps

I[✓(x) = y]r(✓,A(fm,x))�
X

(x,y)2(X,Y)Pt

I[✓(x) = y]r(✓,A(fm,x))
�� (40)

�c(✓)�
X

(x,y)2(X,Y)Pt

I[✓(x) = y]r(✓,A(fm,x)) (41)



First line: see Lemma 2 and Lemma 3 of [Ben-David et al., 2010].

Second line: if 1� fh 2 ⇥, and we use fz to denote 1� fh.

Fifth line is a result of using that fact that
X

(x,y)2(X,Y)Ps

I[✓(x) = y]I[r(✓,A(fm,x)) = 0] =
X

(x,y)2(X,Y)Pt

I[✓(x) = y]I[r(✓,A(fm,x)) = 0] (42)

as a result of our assumptions. Now we present the details of this argument:

According to A3, if ✓(x) = y, d(✓, fh,x)d(✓, fm,x) = 0. Since r(✓,A(fm,x)) = 0, d(✓, fm,x) cannot be 0 unless ✓ is a
constant mapping that maps every sample to 0 (which will contradicts A3). Thus, we have d(✓, fh,x) = 0.

Therefore, we can rewrite the left-hand term following
X

(x,y)2(X,Y)Ps

I[✓(x) = y]I[r(✓,A(fm,x)) = 0] =
X

(x,y)2(X,Y)Ps

I[✓(x) = y]I[d(✓, fh,x) = 0] (43)

and similarly
X

(x,y)2(X,Y)Pt

I[✓(x) = y]I[r(✓,A(fm,x)) = 0] =
X

(x,y)2(X,Y)Pt

I[✓(x) = y]I[d(✓, fh,x) = 0] (44)

We recap the definition of d(·, ·,x), thus d(✓, fh,x) = 0 means

d(✓, fh,x) = max
z2X :zA(f,x)=xA(fh,x)

|✓(z)� fh(z)| = 0 (45)

Therefore d(✓, fh,x) = 0 implies I(✓(x) = y), and

|✓(z)� fh(z)| = 0 8 zA(fh,x) = xA(fh,x) (46)

Therefore, we can continue to rewrite the left-hand term following
X

(x,y)2(X,Y)Ps

I[✓(x) = y]I[d(✓, fh,x) = 0] =
X

(x,y)2(X,Y)Ps

I[✓(z)� fh(z)] =
X

(x,y)2(X,Y)Ps

I[✓(x)� fh(x)] (47)

and similarly
X

(x,y)2(X,Y)Pt

I[✓(x) = y]I[d(✓, fh,x) = 0] =
X

(x,y)2(X,Y)Pt

I[✓(z)� fh(z)] (48)

where z denotes any z 2 X and zA(fh,x) = xA(fh,x).

Further, because of A4, we have
X

(x,y)2(X,Y)Pt

I[✓(z)� fh(z)] =
X

(x,y)2(X,Y)Ps

I[✓(x)� fh(x)]. (49)

Thus, we show the (42) holds and conclude our proof.



B ADDITIONAL DISCUSSION TO CONNECT TO ROBUST MACHINE LEARNING
METHODS

B.1 WORST-CASE DATA AUGMENTATION IN PRACTICE

In practice, when we use data augmentation to learn human-aligned models, we need either of the two following assumptions
to hold:

A4-1: Labeling Functions Separability of Features For any x 2 X , A(fh,x) \A(fm,x) = ;

A4-2: Labeling Functions Separability of Input Space We redefine fm : dom(fm) ! Y and dom(fm) ( X . For any
x 2 X , maxz2dom(fm)\dom(fh) |fh(z)� fh(z)| = 0

While both of these assumptions appear strong, we believe a general discussion of human-aligned models may not be able to
built without these assumptions. In particular, A4-1 describes the situations that f 0

h do not use the same set of features as f 0
m.

One example of this situation could be that the background of an image in dog vs. cat classification is considered features
for f 0

m, and the foreground of an image is considered as features for f 0
h. A4-2 describes the situations that while f 0

m can
uses the features that are considered by f 0

h, the perturbation of the features within the domain of f 0
m will not change the

output of f 0
h. One example of this situation could be that the texture of dog or cat in the dog vs. cat classification, while the

texture can be perturbed, the perturbation cannot be allowed to an arbitrary scale of pixels (otherwise the perturbation is not
a perturbation of texture). If neither of these assumptions holds, then the perturbation will be allowed to replace a dog’s
body with the one of a dolphin, and even human may not be able to confidently decide the resulting image is a dog, thus
human-aligned learning will not be worth discussion.

B.2 DERIVATION OF WEIGHTED RISK MINIMIZATION.

B.2.1 Connections to Distributionally Robust Optimization (DRO)

Recall that we generalize the above analysis of worst-case data augmentation to a DRO problem [Ben-Tal et al., 2013,
Duchi et al., 2021]. Given n data points, consider a perturbation set Q := {xA(fm,xi) 2 dom(f)A(fm,xi)}ni=1 encoding
the features of x indexed by A(f,x) over input space dom(fm). Denote q(x, y) and p(x, y) are densities from the Q and
training distribution X ⇥ Y , respectively. Then (12) can be rewritten as a DRO problem over a new distribution Q.

c(✓)  min
✓2⇥

max
z2Q(x)

1

n

X

(x,y)2(X,Y)

`(✓(z), y) (50)

To transform DRO into WRM, we introduce the following assumptions about perturbation set Q:

A2-1: q ⌧ p. p(x, y) = 0 =) q(x, y) = 0

A2-2: f -Divergence. Given a function ⇠ is convex and ⇠(1) = 0 and � > 0 as a radius to control the degree of the distribution
shift, D⇠ (q (x,y) kp (x,y))  � holds.

Q encodes the priors about feature perturbation that model should be robust to. Therefore, choosing f -divergence as
the distance metric where ⇠ is convex with ⇠(1) = 0, � > 0 as a radius to control the degree of the distribution shift,
adversarial robustness in Section 4.1 can be viewed as an example of DRO on an infinite family of distributions with implicit
assumptions that samples in Q are visually indistinguishable from original ones. For p and q that p(x, y) = 0 implies
q(x, y) = 0, we arrive at a generic weighted risk minimization (WRM) formulation [Namkoong and Duchi, 2016, Duchi
et al., 2021] when weights (by default as density ratios) � = q(x, y)/p(x, y) in (51) derived from misaligned functions for

c(✓)  min
✓2⇥

max
z2Q⇠(x)

1

n

X

(x,y)2(X,Y)

� (z) · ` (✓ (z) , y) (51)



where the uncertainty set Q⇠ is reformulated as

Q⇠ := {�(zi)|D⇠(q||p)  �, (52)
nX

i=1

�(zi) = 1, (53)

8�(zi) � 0} (54)

When �(·) = q(x,y)/p(x,y) is the density ratio, we use change of measure technique to show the equivalence of DRO
and WRM by transoforming the optimization problem on q to an optimization problem �(·). And the inner optimization
problem are equivalent to

Eq[`(✓,x)] =

Z
`(✓,x)q(z)dz =

Z
`(✓,x)

q(z)

p(z)
p(z)dz = Ep[�(x)`(✓,x)] (55)

Moreover, choosing f = x log(x), f -divergence becomes KL-divergence and then the constraint can be converted to

D⇠(pkq) =
Z

q>0

p(x)

q(x)
log

✓
p(x)

q(x)

◆
q(x)dx = Eq[�(x) log �(x)]  � (56)

Next we prove the equivalence of DRO and WRM for general � under additional assumptions below.

A2-3: Finite perturbation set. Q is a finite set.
A2-4: Convexity. Loss function ` is convex in ✓ and concave in �. Q and ⇥ are convex sets.
A2-5: Continuity. Loss function ` and its weighted sum

P
(x,y)2(X,Y)

�(z)` (✓ (z) ,y) are continuous.

A2-6: Compactness. Q and ⇥ are compact.

Given n data points, we introduce slack variable ⇠ and consider a constrained optimization formulation of (50) as

min
✓2⇥,⇠

⇠ s.t.
nX

i=1

�(zi)`(✓(zi), yi)� ⇠  0 8z 2 Q (57)

By the strong convex duality, we have the Lagrangian L(✓,↵,�(z1), . . . ,�(zn)) = ↵+
nP

i=1
�(zi)(`(✓(zi), yi)� ↵) and the

dual problem as

max
8�i�0

min
✓,↵

L(✓,↵,�(z1), . . . ,�(zn)) s.t.
nX

i=1

�(zi) = 1, i = 1, . . . , n (58)

Which can be expressed as

max
8�⌫0

min
✓2⇥

L(�, ✓) = max
8�i⌫0

min
✓2⇥

nX

i=1

�i`(✓(zi), yi) s.t.
nX

i=1

�(zi) = 1, i = 1, . . . , n (59)

By the minimax equality, we have
max
8�⌫0

min
✓2⇥

L(�, ✓) = min
✓2⇥

max
8�⌫0

L(�, ✓) (60)

Denote the optimality of max
8�⌫0

min
✓2⇥

L(�, ✓) and min
✓2⇥

max
8�⌫0

L(�, ✓) as �⇤ and ✓⇤ 2 ⇥, respectively. Then we have (�⇤, ✓⇤)

form a saddle point that
max
�⌫0

L(✓⇤,�) = L(✓⇤,�⇤) = min
✓2⇥

L(✓,�⇤) (61)

which means that �⇤ exists in the WRM such that ✓⇤ 2 argmin✓ L(�, ✓) is optimal for DRO.

Intuitively, learner ✓ and adversary � are playing a minimax game where � finds worst-case weights and computationally-
identifiable regions of errors to improve the robustness of the learner ✓. In this scenario, we unify a line of WRM approaches
where weights � are mainly determined by misaligned features A(fm,x), either parameterized by a biased model or derived
from some heuristic statistics.



B.3 DETAILS TO CONNECT METHODS TO REGULARIZE THE HYPOTHESIS SPACE

First, we need to formally introduce the properties regarding f 0
m, as a correspondence to those of fm.

Notations and Background with Encoder/Decoder Structure With the same binary classification problem from feature
space X to label space Y . We consider the encoder ✓e : X ! E and decoder ✓d : E ! Y , f 0 : E ! Y is the function that
maps the embedding to the label.

Similarly, we introduce the assumptions on the E space.

A2’: Existence of Superficial Features: For any x 2 X and an oracle encoder ✓e that e = ✓e(x), y := f 0
h(e). We also have

a f 0
m that is different from f 0

h, and for x ⇠ Ps and e = ✓e(x), f 0
h(e) = f 0

m(e).

A3’: Realized Hypothesis: Given a large enough hypothesis space ⇥d for decoders, for any sample (x, y) and an encoder
✓e that e = ✓e(x), for any ✓d 2 ⇥d, which is not a constant mapping, if ✓d(e) = y, then d(✓d, f 0

h, e)d(✓d, f
0
m, e) = 0

With the above assumptions, following the same logic, we can derive the theorem corresponding to Theorem 3.1, with the
only difference that how c(✓) is now derived.

Lemma B.1. With Assumptions A1, A2’, A3’, l(·, ·) is a zero-one loss, with probability as least 1� �, we have

✏Pt(✓)  b✏Ps(✓) + c(✓) + �(|⇥|, n, �) (62)

where c(✓) =
1

n

P
(x,y)2(X,Y)Ps

I[✓(x) = y]r(✓d,A(f 0
m, ✓e(x))).

Now, we continue to show that how training for small c(✓) amounts to solving (17). To proceed, we need either of the two
following assumptions to hold:

A4-1’: Labeling Functions Separability of Features For any x 2 X and an encoder ✓e that e = ✓e(x), A(f 0
h, e)\A(f 0

m, e) =
;

A4-2’: Labeling Functions Separability of Input Space We redefine f 0
m : dom(f 0

m) ! Y and dom(f 0
m) ( E . For any

x 2 X and an encoder ✓e that e = ✓e(x), maxz2dom(f 0
m)\dom(f 0

h)
|f 0

h(z)� f 0
h(z)| = 0

Also, notice that, assumptions A4-1’ and A4-2’ also regulates the encoder to be reasonably good. In other words, these
assumptions will not hold for arbitrary encoders.

Now, we continue to derive (17) from Lemma B.1 as the following:

c(✓) =
1

n

X

(x,y)2(X,Y)

I[✓d(✓e(x)) = y]r(✓d,A(f 0
m,x))

=
1

n

X

(x,y)2(X,Y)

I[✓d(✓e(x)) = y] max
✓e(x)A(f0

m,x)2dom(✓d)A(f0
m,x)

|✓d(✓e(x))� y|

=
1

n

X

(x,y)2(X,Y)

max
✓e(x)A(f0

m,x)2dom(✓d)A(f0
m,x)

|f 0
m(✓e(x))� y|

 1

n

X

(x,y)2(X,Y)

max
✓e(x)2dom(✓d)

|f 0
m(✓e(x))� y|

The third line is because of the definition of I[✓d(✓e(x)) = y]r(✓d,A(f 0
m,x)) and assumptions of A3’ and either A4-1’ or

A4-2’. Therefore, optimizing the empirical loss and c(✓) leads to

min
✓d,✓e

1

n

X

(x,y)2(X,Y)

l(✓d(✓e(x)), y)� l(f 0
m(✓e(x)), y)



C THEORY-SUPPORTING EXPERIMENTS

Synthetic Data with Spurious Correlation We extend the setup in Figure 1 to generate the synthetic dataset to test our
methods. We study a binary classification problem over the data with n samples and p features, denoted as X 2 Rn⇥p. For
every training and validation sample i, we generate feature j as following:

X(i)
j ⇠

8
>>><

>>>:

N(0, 1) if 1  j  3p/4

N(1, 1) if 3p/4 < j  p, and y(i) = 1, w.p. ⇢
N(�1, 1) if 3p/4 < j  p, and y(i) = 0, w.p. ⇢
N(0, 1) if 3p/4 < j  p, w.p. 1� ⇢

,

In contrast, testing data are simply sampled with x(i)
j ⇠ N(0, 1).

To generate the label for training, validation, and test data, we sample two effect size vectors �1 2 Rp/4 and �2 2 Rp/4

whose each coefficient is sampled from a Normal distribution. We then generate two intermediate variables:

c(i)1 = X(i)
1,2,...,p/4�1 and c(i)2 = X(i)

1,2,...,p/4�2

Then we transform these continuous intermediate variables into binary intermediate variables via Bernoulli sampling with
the outcome of the inverse logit function (g�1(·)) over current responses, i.e.,

r(i)1 = Ber(g�1(c(i)1 )) and r(i)2 = Ber(g�1(c(i)2 ))

Finally, the label for sample i is determined as y(i) = I(r(i)1 = r(i)2 ), where I is the function that returns 1 if the condition
holds and 0 otherwise.

Intuitively, we create a dataset of p features, half of the features are generalizable across train, validation and test datasets
through a non-linear decision boundary, one-forth of the features are independent of the label, and the remaining features are
spuriously correlated features: these features are correlated with the labels in train and validation set, but independent with
the label in test dataset. There are about ⇢n train and validation samples have the correlated features.

Figure 2: Results of Synthetic Data with Spurious Correlation. Each panel represents one setting. Five methods are reported
in each panel. For each method, four bars are plotted: from left to right, b✏Ps(✓), b✏Pt(✓), b✏Ps(✓) + c(✓), and b✏Ps(✓) +D⇥.

We train a vanilla ERM method, and in comparison, we also train an oracle method which that uses data augmentation
to randomized the previously known spurious features. We report training error (i.e., b✏Ps(✓)), test error (i.e., b✏Pt(✓)),
b✏Ps(✓)+ c(✓), and b✏Ps(✓)+D⇥ so that we can directly compare the bars to evaluate whether c(✓) can quantify the expected
test error. Our results suggest that c(✓) is often a tighter estimation of the test error than D⇥(Ps,Pt), which aligns well
with our analysis in Section 3.

Binary Digit Classification over Transferable Adversarial Examples For the second one, we consider a binary digit
classification task, where the train and validation sets are digits 0 and 1 from MNIST train and validation sets. To create
the test set, we first estimate a model, and perform adversarial attacks over this model to generate the test samples with



Figure 3: Binary MNIST classification error and estimated bounds. Each panel represents one out-of-domain data generated
through an attack method. Four methods are reported in each panel. For each method, four bars are plotted: from left to
right, b✏Ps(✓), b✏Pt(✓), b✏Ps(✓) + c(✓), and b✏Ps(✓) +D⇥. Some bars are not visible because the values are small.

five adversarial attack methods (C&W, DeepFool, FGSM, Salt&Pepper, and SinglePixel). These adversarially generated
examples are considered as the test set from another distribution.

An advantage of this setup is that we can have fm well defined as 1� fadv , where the fadv is the function each adversarial
attack relies on. Thus, according to our discussion on the estimation of c(✓) in Section 3, we can directly use the corresponding
adversarial attack methods to estimate c(✓) in our case. Therefore, we can assess our analysis on image classification.

We train the models with the vanilla method, and worst-case data augmentation (WDA, i.e., adversarial training). In addition
to the training error (i.e., b✏Ps(✓)) and test error (i.e., b✏Pt(✓)), we also report b✏Ps(✓) + c(✓) and b✏Ps(✓) +D⇥ so that we can
directly compare the bars to evaluate whether c(✓) can quantify the expected test error. By comparing the four different
bars within every panel for every method, we notice that c(✓) is often a tighter estimation of the test error than D⇥(Ps,Pt),
which aligns well with our analysis in Section 3.
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