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A GENERALIZED BAYESIAN QUADRATURE DERIVATIONS

A.1 PRELIMINARIES

We start by deriving the general solution to indefinite integrals of the form:

⟨f⟩ =
∫

1

R

R∑
r=1

cos(ωT
r (x−X)) dx

†
=

1

R

R∑
r=1

∫
cos(ωT

r (x−X)) dx

(1)

where ω ∈ RR×d, and † makes use of the fact that
∫
x+ x dx =

∫
x dx+

∫
x dx. Equation 1 represents the integral of an

RFF estimated kernel. Using u-substitution to integrate out a single xj variable from the vector-valued x results in:

⟨f⟩xj =
1

R

R∑
r=1

∫
xi∈Rd−1

sin(ωT
r (x−X))

ωj
r

dxi. (2)

where

xi :=



x1

...
xj−1

xj+1

...
xd


(3)

If we integrate (2) again over a new variable xt in xi, we start to see a general pattern emerge:

⟨f⟩xjxt =
1

R

R∑
r=1

∫
xi′∈Rd−2

− cos(ωT
r (x−X))

ωj
rωt

r

dxi′ . (4)

The repeated integral of the cos follows a repeating pattern through h = [sin,− cos,− sin, cos, sin, . . . ], while the integral
of u-substituted ωT (x−X) simply results in the multiplication of the integrand denominator by wj

r for each variable xj in
x we integrate over. Thus, integrating over the entirety all d dimensions of x will result in an indefinite integral of the form :

⟨f⟩ = 1

R

R∑
r=1

hd(ωT
r (x−X))∏d
j=1 ω

j
r

(5)

where h is defined as the repeating series above and hd represents the d-th index of h. For an RFF kernel parametrized by ω,
equation (5) represents the indefinite uniform expectation; in other words, the uniform kernel mean.

Accepted for the 38th Conference on Uncertainty in Artificial Intelligence (UAI 2022).



A.2 RFF KERNEL MEANS OVER GAUSSIAN MEASURES

Equipped with the knowledge of the anti-derivative pattern that arises in (5), we now turn our attention to indefinite integrals
of the form:

⟨f⟩ =
∫

1

R

R∑
r=1

cos(ωT
r (x−X))p(x) dx

=
1

R

R∑
r=1

∫
cos(ωT

r (x−X))p(x) dx ,

(6)

where p(x) is a Gaussian. Equation 6 represents the RFF kernel approximation expectation over a Gaussian distribution, or
the Gaussian kernel mean µx(X).

As in the main paper, we parametrize p(x) as an RFF approximation q(x) to the multivariate Gaussian, and can rewrite (6)
and substitute into the BQ integral mean formulation ⟨f̄⟩ = µx(X)TK−1y resulting in:

⟨f̄⟩ = yTK−1

∫
1

R

R∑
r=1

cos(ωT
r (x−X))× 1

Z|(2π)dΣ|1/2
Z∑

z=1

cos(ρT
z (x− µ))dx

=
yTK−1

RZ|(2π)dΣ|1/2
R∑

r=1

Z∑
z=1

∫
cos(ωT

r (x−X)) cos(ρT
z (x− µ))dx .

(7)

Looking at the integrand term in (7), we can apply the trigonometric identity cos(α) cos(β) = cos(α+β)/2+cos(α−β)/2
and rewrite the integrand as:

cos(ωT
r (x−X)) cos(ρT

z (x− µ))dx =
cos(ωT

r (x−X) + ρT
z (x− µ))

2

+
cos(ωT

r (x−X)− ρT
z (x− µ))

2
,

(8)

which we can reorganize, while also moving the division by two outside the integral in (7), as:

cos(xT (ωr + ρz)− (ωT
r X + ρT

z µ)) + cos(xT (ωr − ρz)− (ωT
r X − ρT

z µ)). (9)

Using the same method of u-substitution and properties of the anti-derivatives of cos and sin as in (2) and (5), applying the
anti-derivative over the integrand term in (9) yields the indefinite form:

hd(xT (ωr + ρz)− (ωT
r X + ρT

z µ))∏d
j=1(ω

j
r + ρjz)

+
hd(xT (ωr − ρz)− (ωT

r X − ρT
z µ))∏d

j=1(ω
j
r − ρjz)

+ c , (10)

where c is a constant of integration. Substituting the above into the full GBQ formulation in (7) and applying over definite
bounds a ≤ x ≤ b results in:

yTK−1

Qb
a ×RZ|(2π)dΣ|1/2

[
R∑

r=1

Z∑
z=1

hd(xT (ωr + ρz)− (ωT
r X + ρT

z µ))∏d
j=1(ω

j
r + ρjz)

+
hd(xT (ωr − ρz)− (ωT

r X − ρT
z µ))∏d

j=1(ω
j
r − ρjz)

]b
a

, (11)

which we can recognize as the same equation as definition 1 in the main paper: the GBQ mean ⟨f̄⟩ of the approximation to
the ingtegral of f over a Gaussian measure.

We note that in (11) we have also added [Qb
a]

−1 to the formulation. This is due to the fact that integrating over RFF
approximated Gaussian measure q(x) on bounds [a, b] will necessarily truncate q(x) such that it is no longer a proper
probability density function. To account for this, we can modify q(x) to the truncated normal form q(x)

Q(b)−Q(a) in equation 7
where Q is the CDF of q. We can calculate Q analytically as described in section A.6.



A.2.1 Algorithm for Efficient Implementation over Definite Bounds

Before progressing further, we will briefly describe a method by which (11) can be applied over bounds |ba. If done naively,
the application of the fundamental law of calculus to calculate the definite integral of (11) over multidimensional bounds
will add a multiplicative factor of 2d to the GBQ complexity, as all possible vector permutations of limits {a, b} in each
dimension would need to be evaluated. However, we will briefly describe here a method that allows for the application of
GBQ to bounded integrals which shares the same complexity (O(dNRZ)) of calculating the indefinite integral (11) at a
single point.

First, we note that hd in this case can be any of [cos, sin,− cos,− sin]. Our notation moving forward from hereon will
assume hd = cos but the transformation of of other cases to cosine form is trivial using the identity sin(x) = cos(x− π

2 ),
the effect of which will not change the methodology.

Next, we will use the identity cos(α− β) = cos(α) cos(β) + sin(α) sin(β) to further simplify the terms within the double
summation in (11) to isolate those not involving x (including the −π

2 if the hd transformation was necessary), resulting in:[ d∏
j=1

(ωj
r + ρjz)

]−1[
cos(ωT

r X + ρT
z µ) cos(x

T (ωr + ρz)) + sin(ωT
r X + ρT

z µ) sin(x
T (ωr + ρz))

]

+
[ d∏
j=1

(ωj
r − ρjz)

]−1[
cos(ωT

r X − ρT
z µ) cos(x

T (ωr − ρz)) + sin(ωT
r X − ρT

z µ) sin(x
T (ωr − ρz))

]
,

(12)

Next, we will apply the harmonic addition theorem to further reduce terms.

Theorem 4 (Harmonic addition theorem). A linear combination of sinusoids which share a frequency x but have differing
amplitudes {a, b} can be reformulated as:

a cos(x) + b sin(x) = sign(a)
√

a2 + b2 cos(x+ arctan(
−b

a
)) . (13)

Using the identities that cos2(x) + sin2(x) = 1 and sin(x)
cos(x) = tan(x), we can modify (12) to

[ d∏
j=1

(ωj
r + ρjz)

]−1[
sign

(
cos
(
ωT

r X + ρT
z µ
))

cos
(
xT (ωr + ρz) + arctan

(
− tan

(
ωT

r X + ρT
z µ
))) ]

+
[ d∏
j=1

(ωj
r − ρjz)

]−1[
sign

(
cos
(
ωT

r X − ρT
z µ
))

cos
(
xT (ωr − ρz) + arctan

(
− tan

(
ωT

r X − ρT
z µ
))) ]

,

(14)

which we will then re-parametrize with [αrz, βrz, γrz, δrz] for terms that do not involve x and substitute back into (11) for

yTK−1

Qb
a ×RZ|(2π)dΣ|1/2

[
R∑

r=1

Z∑
z=1

αrz × cos
(
xT (ωr + ρz) + βrz

)
+ γrz × cos

(
xT (ωr − ρz) + δrz

) ]b
a

. (15)

Given that we can evaluate each dimension of the interval of integration independently ie.

f(x)
∣∣b
a
= f(x1, ·)

∣∣b1
a1 · · · f(xd, ·)

∣∣bd
ad , (16)

we can apply the integration bounds iteratively to (15). By leveraging trigonometric identities, we can reduce the resulting
terms at each step to provide computational advantages.

Consider the case of evaluating (15) over the bounds of a single dimension d = 1. Leveraging the identity cos(α+ β) =
cos(α) cos(β)− sin(α) sin(β), we can the separate the terms within the double summation in (15) that involve xd=1 from
those that do not, resulting in

αrz

[
cos([x1]T (ω1

r + ρ1z) + βrz) cos([x
d̸=1]T (ωd̸=1

r + ρd ̸=1
z ))

− sin([x1]T (ω1
r + ρ1z) + βrz) sin([x

d̸=1]T (ωd̸=1
r + ρd ̸=1

z ))
]

+ γrz

[
cos([x1]T (ω1

r − ρ1z) + δrz) cos([x
d̸=1]T (ωd̸=1

r − ρd ̸=1
z ))

− sin([x1]T (ω1
r − ρ1z) + δrz) sin([xd̸=1]

T (ωd̸=1
r − ρd ̸=1

z ))
]
.

(17)



If we now substitute a1 and b1 for x1 as we apply over a single bound (ie. f(x)|ba = f(b)− f(a)), the result (within the
double summation of (15)) is:

αrz

[
cos([b1]T (ω1

r + ρ1z) + βrz)− cos([a1]T (ω1
r + ρ1z) + βrz)

]
cos([xd̸=1]T (ωd̸=1

r + ρd̸=1
z ))

−αrz

[
sin([b1]T (ω1

r + ρ1z) + βrz)− sin([a1]T (ω1
r + ρ1z) + βrz)

]
sin([xd̸=1]T (ωd̸=1

r + ρd̸=1
z ))

+γrz

[
cos([b1]T (ω1

r − ρ1z) + δrz)− cos([a1]T (ω1
r − ρ1z) + δrz)

]
cos([xd̸=1]T (ωd̸=1

r − ρd ̸=1
z ))

−γrz

[
sin([b1]T (ω1

r − ρ1z) + δrz)− sin([a1]T (ω1
r − ρ1z) + δrz)

]
sin([xd ̸=1]T (ωd ̸=1

r − ρd̸=1
z )) .

(18)

We again have a form that can leverage the harmonic addition theorem 4 to collect the constant terms that do not involve
xd ̸=1. Applying the theorem and reparametrizing results in

yTK−1

Qb
a ×RZ|(2π)dΣ|1/2

×

[
R∑

r=1

Z∑
z=1

α∗
rz × cos

(
[xd̸=1]T (ωd̸=1

r + ρd ̸=1
z ) + β∗

rz

)
+ γ∗

rz × cos
(
[xd̸=1]T (ωd̸=1

r − ρd̸=1
z ) + δ∗rz

) ]bd̸=1

ad ̸=1

, (19)

where

α∗
rz = αrz × sign

(
cos([b1]T (ω1

r + ρ1z) + βrz)− cos([a1]T (ω1
r + ρ1z) + βrz)

)
×
√

2− 2 cos((b1 − a1)(ω1
r + ρ1z))

(20)

β∗
rz = arctan

(
− cot

(
(b1 + a1)(ω1

r + ρ1z) + 2βrz

2

))
(21)

γ∗
rz = γrz × sign

(
cos([b1]T (ω1

r − ρ1z) + δrz)− cos([a1]T (ω1
r − ρ1z) + δrz)

)
×
√

2− 2 cos((b1 − a1)(ω1
r − ρ1z)) (22)

δ∗ = arctan

(
− cot

(
(b1 + a1)(ω1

r − ρ1z) + 2δrz
2

))
. (23)

We can see that (19) is of the same form as (15), but with updated parameters [α∗
rz, β

∗
rz, γ

∗
rz, δ

∗
rz] that rely only on the

constant values [a1, b1, ω1
r , ρ

1
z, αrz, βrz, γrz, δrz]. Starting at (19) and repeating the steps in 15 through 19 for all d − 1

remaining dimensions will result in the full evaluation of the GBQ integral estimate over bounds [a, b]. Complexity is
further discussed in B.

A.3 GBQ VARIANCE OVER GAUSSIAN MEASURES

We begin with by stating the BQ formulation of the variance of the mean integration approximation ⟨f̄⟩:

V(⟨f̄⟩) =
∫ ∫

k(x, X) p(x)p(X) dxdX . (24)

To find the variance of ⟨f̄⟩ over a Gaussian measure, we substitute the expectation of the Gaussian kernel mean, which we
calculate in A.2, into (24) for

∫
k(x, X) p(x) dx. To do so, we first rewrite the Gaussian kernel mean approximation as

µx(X) = [2RZ[(2π)d|Σ|]1/2]−1
R∑

r=1

Z∑
z=1

[
hd(xT (ωr + ρz)− (ωT

r X + ρT
z µ))∏d

j=1(ω
j
r + ρjz)

+
hd(xT (ωr − ρz)− (ωT

r X − ρT
z µ))∏d

j=1(ω
j
r − ρjz)

]

=
1

2RZ[(2π)d|Σ|]1/2
R∑

r=1

Z∑
z=1

[
hd(τ − ωT

r X)∏d
j=1(ω

j
r + ρjz)

+
hd(ν − ωT

r X)∏d
j=1(ω

j
r − ρjz)

] (25)

Where we have combined the terms inside the hds not involving X with τ and ν.



We next substitute (25) into (24), while also introducing the RFF estimate q(X) to p(X), to obtain the integral variance:

V(⟨f̄⟩) =
∫

cos(ρT
u (X − µ))

RZU [(2π)d|Σ|]

R∑
r=1

Z∑
z=1

U∑
u=1

[
hd(τ − ωT

r X)

2
∏d

j=1(ω
j
r + ρjz)

+
hd(ν − ωT

r X)

2
∏d

j=1(ω
j
r − ρjz)

]
dX

= L′
R∑

r=1

Z∑
z=1

U∑
u=1

∫
cos(ρT

u (X − µ))

[
hd(τ − ωT

r X)

2
∏d

j=1(ω
j
r + ρjz)

+
hd(ν − ωT

r X)

2
∏d

j=1(ω
j
r − ρjz)

]
dX ,

(26)

where have introduced another index of ρ in u = 1, . . . , U , and substituted L′ for [RZU(2π)d|Σ|]−1

We note here that hd could be any of [cos, sin,− cos,− sin], so we cannot necessarily leverage the same identity we used
previously on the products of cosines. However, the simple identity sin(x) = cos(x − π

2 ) can rectify this case. We will
continue with the variance proof under the assumption that hd = cos, but it is straightforward to derive the variance
alternative cases.

Using the identity cos(α) cos(β) = cos(α+ β)/2 + cos(α− β)/2, we simplify the integrand in (26) to:

cos(ρT
u (X − µ) + τ − ωT

r X)

4
∏d

j=1(ω
j
r + ρjz)

+
cos(ρT

u (X − µ)− τ + ωT
r X)

4
∏d

j=1(ω
j
r + ρjz)

+
cos(ρT

u (X − µ) + ν − ωT
r X)

4
∏d

j=1(ω
j
r − ρjz)

+
cos(ρT

u (X − µ)− ν + ωT
r X)

4
∏d

j=1(ω
j
r − ρjz)

(27)

and simplify further to

cos(XT (ρu − ωr)− ρT
uµ+ τ)

4
∏d

j=1(ω
j
r + ρjz)

+
cos(XT (ρu + ωr)− ρT

uµ− τ)

4
∏d

j=1(ω
j
r + ρjz)

+
cos(XT (ρu − ωr)− ρT

uµ+ ν)

4
∏d

j=1(ω
j
r − ρjz)

+
cos(XT (ρu + ωr)− ρT

uµ− ν))

4
∏d

j=1(ω
j
r − ρjz)

.

(28)

Lastly, we use the anti-derivative methods described in A.1 to calculate the anti-derivative of this integrand, which represents
the indefinite GBQ variance over a Gaussian measure:

V(⟨f̄⟩) = L′
R∑

r=1

Z∑
z=1

U∑
u=1

[
h2d(XT (ρu − ωr)− ρT

uµ+ τ)

4
∏d

j=1(ω
j
r + ρjz)(ρ

j
u − ωj

r)
+

h2d(XT (ρu + ωr)− ρT
uµ− τ)

4
∏d

j=1(ω
j
r + ρjz)(ρ

j
u + ωj

r)

+
h2d(XT (ρu − ωr)− ρT

uµ+ ν)

4
∏d

j=1(ω
j
r − ρjz)(ρ

j
u − ωj

r)
+

h2d(XT (ρu + ωr)− ρT
uµ− ν))

4
∏d

j=1(ω
j
r − ρjz)(ρ

j
u + ωj

r)

] (29)

where h2d is defined as the 2d-th index of function vector h as previously defined in A.1. As we again have an indefinite
anti-derivative form that is a linear combination of trigonometric functions evaluated over the dot products x and X with
their measure RFF frequencies ρ, we can use a variant of the method outlined in A.2.1 to evaluate over definite bounds
[a, b] for both x and X . We note that in this case it is again necessary to modify L′ in (29) with the necessary truncation
term (Qb

a)
2, as in (15) (where Qb

a is squared in this case due to integration over truncated forms of both q(x) and q(X)).

A.4 GBQ INTEGRAL MEAN OVER UNIFORM MEASURES

We showed in A.1 that (5) represents the RFF kernel mean over a uniform measure. Given this, it is straightforward to
derive GBQ over a uniform measure. We simply need to evaluate the definite form of (5) and then substitute it for µx(X) in
⟨f̄⟩ = µx(X)TK−1y.

The GBQ integral mean posterior in full is

⟨f̄⟩ = yTK−1

R

R∑
r=1

hd(ωT
r (x−X))∏d
j=1 ω

j
r

∣∣∣∣∣
b

a

. (30)

We note that GBQ over the uniform measure is equivalent to direct analytical integration of the RFF-parametrized GP
integrand f̄ .



A.5 GBQ INTEGRAL VARIANCE OVER UNIFORM MEASURES

To calculate the variance, substitute (30) for
∫
k(x, X) p(x) dx in (24),

V(⟨f̄⟩) =
∫

1

R

R∑
r=1

hd(ωT
r (x−X))∏d
j=1 ω

j
r

p(X)dX

=
1

R

R∑
r=1

∫
hd(ωT

r (x−X))∏d
j=1 ω

j
r

dX

. (31)

Using the same techniques as those in A.1 and A.4, we can easily arrive at the anti-derivative form of this variance estimate:

V(⟨f̄⟩) = 1

R

R∑
r=1

−1dh2d(ωT
r (x−X))∏d

j=1 ω
j
rω

j
r

(32)

where h2d is the 2d-th index of h as defined in A.1, and the term −1d is introduced due to the fact that X is negative in the
integrand.

For both the GBQ uniform mean and variance calculations, a simplified version of the algorithm described in section A.2.1
can be used for efficient implementation.

A.6 MULTIVARIATE CDF OF THE RFF FORMULATED GAUSSIAN

Using the established methods from A.1 and A.4 on the integrals of RFF-parametrized kernels and distributions, it is trivial
to show through u-substitution and trigonometric anti-derivatives that the indefinite integral an RFF-parametrized Gaussian
q(x) is:

Q(x) =

∫
x∈Rd

1

R[(2π)d|Σ|]1/2
R∑

r=1

cos(ρT (x− µ)) dx

=
1

R[(2π)d|Σ|]1/2

R∑
r=1

∫
x∈Rd

cos(ρT (x− µ)) dx

=
hd(ρT (x− µ))

R[(2π)d|Σ|]1/2
∏d

j=1 ρ
j
r

(33)

where hd is defined as in A.1. A simplified form of the algorithm presented in A.2.1 can be used for the application of
this indefinite integral over definite bounds [a, b], which can then be used to estimate the CDF of a multivariate Gaussian
approximation over a domain .

B COMPUTATIONAL COMPLEXITY

In this section we focus on deriving the complexity of the GBQ mean integral estimate ⟨f̄⟩ and compare this complexity to
that of traditional BQ.

B.1 GBQ OVER GAUSSIAN MEASURES

We can examine the equation of the GBQ integral estimate mean over a Gaussian measure, reproduced here, to derive the
computational complexity of the mean estimation

yTK−1

Qb
a ×RZ|(2π)dΣ|1/2

[
R∑

r=1

Z∑
z=1

hd(xT (ωr + ρz)− (ωT
r X + ρT

z µ))∏d
j=1(ω

j
r + ρjz)

+
hd(xT (ωr − ρz)− (ωT

r X − ρT
z µ))∏d

j=1(ω
j
r − ρjz)

]b
a

. (11)

There are two potential terms which may dominate the complexity of GBQ: (1) the inversion of K−1, which is an operation
shared by vanilla BQ and has a complexity of O(N3); or (2) The kernel mean calculation inside the double summation and
evaluation over bounds [a, b].



We will focus on deriving the complexity of the bracketed double summation, which represents the RFF kernel mean µx(X).
We will first note that µx(X) = [µx(x1) . . . µx(xn)], which implies a baseline complexity of O(N) when we evaluate
µx(xi)∀xi ∈ X .

Next, the double summation over R and Z implies additional multiplicative complexity of of RZ, for an aggregate
complexity of O(NRZ). Finally, the operations within the double sum have at most complexity d, which results in a total
complexity of O(dNRZ) in the indefinite form.

For application of the indefinite form over definite bounds as in (19), we can derive the complexity through the individual
complexities of the single-dimension parameter update equations 20 through 23. A single iteration of the update equations
are evaluated in O(1) time, but we must apply them d times for all dimensions of x. In addition, the double summation over
R and Z, and subsequent evaluation across all xi ∈ X results in a total complexity of O(dNRZ), which is the same as the
evaluation of the indefinite form at a single point. Considering that a naive implementation of the indefinite integral over
multidimensional bounds results in a multiplicative increase to the indefinite complexity of 2d, the algorithm presented in
A.2.1 represents a significant performance incentive.

B.2 GBQ OVER UNIFORM MEASURES

The complexity of GBQ over the uniform measure follows a very similar derivation to that of GBQ over the Gaussian
measure. The complexity can be alternatively dominated by the inversion of the kernel matrix K or calculation of the kernel
mean µx(X).

We derive here the complexity of the kernel mean over a uniform measure. By the same reasoning through which we derive
the indefinite Gaussian GBQ complexity as O(dNRZ), and the fact that (30) only contains a single summation over one set
of Fourier features {ωr}Rr=1 rather than two, we can easily derive that the indefinite form of uniform GBQ has complexity
O(dNR).

Similarly, we can use the implementation in A.2.1 when applying (30) over multidimensional bounds. As we have previously
derived that the method in A.2.1 results in the same complexity as evaluation of the indefinite anti-derivative at a single
point, we can similarly reason that GBQ over a uniform measure and multidimensional bounds has complexity O(dNR).

B.3 COMPARISON OF BQ AND GBQ COMPLEXITY

Traditional BQ scales in O(N3) due to the necessary operation K−1, and from the previous sections we see that GBQ
scales in O(N3) or O(dNR) (uniform) / O(dNRZ) (Gaussian).

Eliminating common terms in O(N3), O(dNR), and O(dNRZ) allows us to see that when dR < N2, uniform GBQ
shares the same complexity as traditional BQ in O(N3). The same statement applies for Gaussian GBQ when dRZ < N2.

As the number of RFF parameters R and Z are traditionally kept well below N in practice, and BQ is generally used in
d ≤ 10, these are very reasonable conditions under which, at medium-size N , BQ and GBQ share the same computational
complexity for evaluation of the mean of the approximated integral, ⟨f̄⟩.

C PROOFS FOR THE THEORETICAL RESULTS

C.1 BACKGROUND

We consider a standard GP posterior mean and variance, respectively, as:

µn(x) := kn(x)
T(Kn + λI)−1yn (34)

σ2
n(x) := k(x,x′)− kn(x)

T(Kn + λI)−1kn(x) (35)

where we use notation shortcuts for the vector k(x) := [k(x,xi)]
n
i=1 ∈ Rn and the kernel matrix K := [k(xi,xj)]

n
i,j=1 ∈

Rn×n. Correspondingly, the our method employs Fourier features to approximate a GP posterior mean as:

µ̂n(x) := k̃(x)T (Kn + λI)
−1

y , (36)

where k̃ : X × X → R is formally defined according to the next statement.



Definition 2. Let k : X × X → R denote a translation-invariant positive-definite kernel on X ⊂ Rd, d ∈ N. The random
Fourier feature approximation is defined as:

k̃(x,x′) := ϕ(x)Tϕ(x′), x,x′ ∈ X , (37)

where:

ϕ(x) :=

√
1

R


sin(ωT

1x)
cos(ωT

1x)
...

sin(ωT
Rx)

cos(ωT
Rx)

 , ωi
i.i.d.∼ Pk , x ∈ X , (38)

with Pk denoting the probability distribution that corresponds to the Fourier transform of the kernel k. Equivalently, we can
also write:

k̃(x,x′) =
1

R

R∑
i=1

cos(ωT
i (x− x′) , x,x′ ∈ X . (39)

C.2 AUXILIARY RESULTS

We will make use of guarantees for RFFs to bound the kernel approximation error. In particular, we consider the following
result from Sutherland and Schneider (2015).

Lemma 3 (Sutherland and Schneider (2015, Proposition 1), full version). Let k : X ×X → R be a continuous shift-invariant
positive-definite kernel with k(x,x) = 1 and such that ∇2k(x,x) exists, for all x ∈ X ⊂ Rd. Suppose X is compact with
diameter ℓX < ∞. Denote k’s Fourier transform as Pk, which is a probability measure, and let σ2

k := E[∥ω∥22] for ω ∼ Pk.
Let k̃ : X × X → R denote k’s RFF approximation with R frequencies according to Definition 2. For any ξ > 0, let:

αξ := min

(
1, sup

x,x′∈X

1

2
+

1

2
k(2x, 2x′)− k(x,x′)2 +

1

3
ξ

)
, (40)

βd :=

((
d

2

)− d
d+2

+

(
d

2

) 2
d+2

)
2

6d+2
d+2 . (41)

Then the following holds for any ξ > 0:

P
[

sup
x,x′∈X

|k̃(x,x′)− k(x,x′)| ≥ ξ

]
≤ βd

(
σkℓX
ξ

) 2

1+ 2
d
exp

(
− Rξ2

4(d+ 2)αξ

)
≤ 66

(
σkℓX
ξ

)2

exp

(
− Rξ2

4(d+ 2)

)
,

(42)

where for the second statement we assume ξ ≤ σkℓX . Therefore, for any δ ∈ (0, 1), we can achieve pointwise approximation
error less than ξ with probability at least 1− δ if:

R ≥ 4(d+ 2)αξ

ξ2

(
2

1 + 2
d

log
σkℓX
ξ

+ log
βd

δ

)
. (43)

Compared to the original statement of the result in Sutherland and Schneider (2015), note that we use the number of Fourier
frequencies R, instead of the dimensionality of the feature vector, i.e., D := 2R, so that some constants are changed.
Considering the result above, as maxd∈N βd = 66 (see Sutherland and Schneider, 2015) and αξ ≤ 1, we can also set the
minimum number of features for a given error bound ξ > 0 and δ ∈ (0, 1) as:

R(ξ, δ, σk) :=
4(d+ 2)

ξ2

(
2

1 + 2
d

log
σkℓX
ξ

+ log
66

δ

)
, (44)

though a tighter bound is available via Equation 43. Therefore, the restatement of the result in the main paper as Lemma 2 is
still valid.

The norm of the observations vector y in a Gaussian process can be bounded in terms of the integrand f ’s extremes and the
number of data points, as in the following result.



Lemma 4. Given δ ∈ (0, 1), assuming i.i.d. Gaussian observation noise ϵ ∼ N (0, σ2
ϵ ), we have that:

P
[
∥y∥2 ≤

√
n

(
∥f∥∞ + σϵ

√
2 log

(n
δ

))]
≥ 1− δ . (45)

Proof. Starting from the definition of the 2-norm, we have:

∥y∥22 =

n∑
i=1

y2i =

n∑
i=1

(f(xi) + ϵi)
2 ≤ n max

i∈{1,...,n}
(f(xi) + ϵi)

2 . (46)

Assuming i.i.d. Gaussian observation noise ϵ ∼ N (0, σ2
ϵ ), the following holds:

∀β > 0, P [|ϵ| ≥ βσϵ] ≤ exp
(
−β2/2

)
, (47)

By applying a union bound, we have:

P [∃i ∈ {1, . . . , n} : yi ≥ f(xi) + βσϵ] ≤
n∑

i=1

P [ϵi ≥ βσϵ]

≤ nP [|ϵ| ≥ βσϵ]

≤ n exp
(
−β2/2

) (48)

Solving for n exp
(
−β2/2

)
= δ and taking the complement, we then obtain:

P
[
∀i ∈ {1, . . . , n}, yi ≤ ∥f∥∞ + σϵ

√
2 log

(n
δ

)]
≥ 1− δ . (49)

The result then follows by applying the latter to Equation 46.

C.3 THE PROBABILITY DISTRIBUTION APPROXIMATION VIA RFF

For the approximation of p by p̃, we use the following fact.

Theorem 5 (Bochner’s theorem (Rudin, 1990)). A function u : X → R, X ⊂ Rd is positive-definite if and only if it is the
Fourier transform of a non-negative measure.

By Bochner’s theorem (Theorem 5), as previously applied to positive-definite kernels (Theorem 1, main paper), we can also
trivially conclude that any positive-definite probability density function is by itself the Fourier transform of a probability
measure, so that it admits a Fourier-feature representation of the form in Definition 2. A probability density function
p : Rd → [0,∞) is positive-definite if, for all n ∈ N, {αi}ni=1 ⊂ R and all {xi}ni=1 ⊂ Rd the following holds:

n∑
i=1

n∑
j=1

αiαjp(xi − xj) ≥ 0 . (50)

Not every probability density function is positive-definite, but examples include Gaussian and Student-T distributions
(Rossberg, 1995). In particular, we can make a kernel kp from a probability density function p on X by:

kp : X × X −→ R

x,x′ 7−→

{
p(x− x′) , x− x′ ∈ X ,

0 , x− x′ /∈ X .

(51)

It is easy to verify that a kernel defined as above is positive-definite if p is positive-definite. The kernel is also translation-
invariant, since kp(v + x,v + x′) = kp(x,x

′), for any x,x′ ∈ X and any v ∈ Rd. Similarly, we have the equivalence
p(x) = kp(x,0) and a corresponding p̃(x) = k̃p(x,0), for x ∈ X , by applying Definition 2 to kp. As a result, we can use
Lemma 3 to kp to bound the approximation error in |p(x)− p̃(x)|.



Theorem 6 (Restatement of Theorem 2). Let p : X → R be a positive-definite probability density function defined on X ⊂
Rd which is such that ∇2p(0) exists. Assume X is compact, and let bp > 0 be any constant such that bp ≥ maxx∈X p(x).
Let k̃p denote an RFF approximation with Rp ∈ N frequencies to kp as defined in Equation 51, and let p̃ : x 7→ k̃p(x,0),
x ∈ X . Then, for any ξ > 0, the following holds:

P
[
sup
x∈X

|p̃(x)− p(x)| ≥ bpξ

]
≤ βd

(
σkp

ℓX

ξ

) 2

1+ 2
d
exp

(
− Rpξ

2

4(d+ 2)αξ

)
≤ 66

(
σkpℓX

ξ

)2

exp

(
− Rpξ

2

4(d+ 2)

) (52)

where for the second statement we assume ξ ≤ σkp
ℓX , and σkp

, ℓX , αξ and βξ are the same as defined in Lemma 3 for
k := 1

bp
kp.

Proof. The result follows by applying Lemma 3 to a normalised version k̄p := 1
bp
kp of kp (Equation 51), which is such that

k̄p(x,x
′) = 1. Noticing that:

sup
x,x′∈X

|k̃p(x,x′)− kp(x,x
′)| = sup

x,x′∈X
|k̃p(x− x′,0)− kp(x− x′,0)|

= sup
x,x′∈X :x−x′∈X

|p̃(x− x′)− p(x− x′)|

≤ sup
x∈X

|p̃(x)− p(x)| ,

(53)

so that supx,x′∈X |k̃p(x,x′)− kp(x,x
′)| ≥ bpξ implies supx∈X |p̃(x)− p(x)| ≥ bpξ, concludes the proof.

Given ξp > 0 such that supx∈X |p(x)− p̃(x)|dx ≤ ξp, the integration error is bounded by:∫
X
|p(x)− p̃(x)|dx ≤ bpξp

∫
X

dx ≤ bpξpvX , (54)

where vX :=
∫
X dx denotes the volume of the domain X . The latter can be bounded by the volume of a hyper-sphere of

diameter ℓX in Rd, i.e.:

vX ≤ πdℓdX
2dΓ

(
d
2 + 1

) , (55)

where Γ denotes Euler’s gamma function.

C.4 QUADRATURE APPROXIMATION ERROR

We now combine our results to bound the quadrature approximation error.

Theorem 7 (Restatement of Theorem 3). Let f ∈ Hk, where k : X × X → R is a positive-definite, translation-invariant
kernel on X ⊂ Rd. Assume that:

1. X is compact with diameter ℓX < ∞ and volume vX :=
∫
X dx < ∞;

2. k(0,0) = 1 and ∇2k(0,0) exists;

3. and p : X → [0,∞) is a positive-definite probability density function.

Then, given any δ ∈ (0, 1), the following holds with probability at least 1− δ:∣∣∣∣∫
X
f(x)p(x) dx−

∫
X
µ̂n(x)p̃(x) dx

∣∣∣∣
≤
(
n

λ
βϵ

(
δ

4

)
ξk + βk

(
δ

4

)
max
x∈X

σn(x)

)
(1 + bpξpvX ) + ∥f∥∞bpξpvX ,

(56)



for an RFF approximation to k with Rk ≥ R
(
ξk,

δ
4 , σk

)
frequencies and an RFF approximation to p with Rp ≥

R
(
ξp,

δ
4 , σkp

)
frequencies, given 0 < ξk ≤ σkℓX and 0 < ξp ≤ σkp

ℓX , where:

βϵ(δ) := ∥f∥∞ + σϵ

√
2 log

(n
δ

)
(57)

βk(δ) := ∥f∥k + σϵ

√
2

λ
log

(
det(I+ λ−1Kn)1/2

δ

)
(58)

R(ξ, δ, σk) :=
4(d+ 2)

ξ2

(
2

1 + 2
d

log
σkℓX
ξ

+ log
66

δ

)
. (59)

Proof. In the spectral Bayesian quadrature formulation, we have the following approximation:∫
X
f(x)p(x) dx ≈ yT(Kn + λI)−1

∫
X
k̃n(x)p̃(x) dx =

∫
X
µ̂(x)p̃(x) dx , (60)

where µ̂n(x) := k̃n(x)
T(Kn+λI)−1y We will bound the approximation error by starting with the following decomposition:

∣∣∣∣∫
X
f(x)p(x) dx−

∫
X
µ̂n(x)p̃(x) dx

∣∣∣∣
≤
∣∣∣∣∫

X
f(x)p(x) dx−

∫
X
µ̂n(x)p(x) dx

∣∣∣∣+ ∣∣∣∣∫
X
µ̂n(x)p(x) dx−

∫
X
µ̂n(x)p̃(x) dx

∣∣∣∣
≤ ∥f − µ̂n∥∞ + ∥µ̂n∥∞

∫
X
|p(x)− p̃(x)|dx .

(61)

We first observe that:
∀x ∈ X , |f(x)− µ̂n(x)| ≤ |f(x)− µ(x)|+ |µ(x)− µ̂(x)| . (62)

Assuming f ∈ Hk, given δµ ∈ (0, 1), we can apply Lemma 1 (main paper) to bound the first term on the right-hand side as:

P
[
sup
x∈X

|f(x)− µn(x)| ≤ sup
x∈X

βk(δµ)σn(x)

]
≥ 1− δµ . (63)

For the second-term on the right-hand side of Equation 62, we have that:

|µn(x)− µ̂n(x)| ≤ ∥kn(x)− k̃n(x)∥2∥(Kn + λI)−1y∥2
≤ ∥kn(x)− k̃n(x)∥2∥(Kn + λI)−1∥2∥y∥2

≤ ∥y∥2
λ

∥kn(x)− k̃n(x)∥2 .

, (64)

since ∥(Kn + λI)−1∥2 ≤ λ−1. Applying Lemma 4, given δϵ ∈ (0, 1), yields:

P
[
∥y∥2 ≤

√
nβϵ(δϵ)

]
≥ 1− δϵ . (65)

where βϵ(δ) := ∥f∥∞ + σϵ

√
2 log

(
n
δ

)
. In addition, considering the kernel approximation guarantee in Lemma 3, for a

given number of Fourier frequencies Rk ≥ R(δk, ξk), leads us to:

P
[
sup
x∈X

∥kn(x)− k̃n(x)∥2 ≤
√
nξk

]
≥ 1− δk . (66)

Therefore, we have:

P
[
∥f − µ̂n∥∞ ≤ βk(δµ)max

x∈X
σn(x) +

1

λ
nξkβϵ(δϵ)

]
≥ 1− δµ − δϵ − δk , (67)



which follows by applying a union bound on the complementary events in the equations above. Lastly, note that, under the
assumption that the event in Equation 67 holds, the following is also true:

∥µ̂n∥∞ ≤ ∥f∥∞ +
1

λ
nξkβϵ(δϵ) + max

x∈X
βk(δk)σn(x) . (68)

Regarding the probability density approximation, let vX :=
∫
X dx represent the volume of X . Assume Rp ≥ R(δp, ξp)

Fourier frequencies for p̃, for δp ∈ (0, 1). Then Theorem 6 tells us that:

P
[∫

X
|p(x)− p̃(x)|dx ≤ bpξpvX

]
≥ 1− δp . (69)

The final result follows by applying a union bound to combine the events in equations 67, 68 and 69 into Equation 61.



D FULL EXPERIMENTAL RESULTS

D.1 5D CONTINUOUS EQUATION

Table 1: 5D Continuous Equation Integration Results (% Error).

N MC BQ GBQ-U RBF GBQ-G RBF
10 9.67± 8.43 20.39± 3.85 23.77± 4.33 20.35± 3.99
25 9.32± 7.7 3.21± 1.87 6.02± 2.46 3.0± 1.97
50 5.57± 4.14 0.61± 0.34 2.48± 0.51 0.88± 0.42
100 3.81± 2.1 2.05± 0.35 0.89± 0.44 2.25± 0.4
200 2.65± 2.23 2.29± 0.24 0.52± 0.26 2.45± 0.27
300 3.89± 2.44 2.28± 0.21 0.4± 0.17 2.44± 0.19
400 2.74± 1.7 2.28± 0.2 0.33± 0.14 2.44± 0.2
500 1.29± 1.06 2.27± 0.14 0.22± 0.12 2.43± 0.16
600 1.53± 0.97 2.28± 0.12 0.21± 0.09 2.44± 0.17
700 2.39± 2.43 2.29± 0.12 0.16± 0.1 2.43± 0.16
800 1.42± 1.06 2.24± 0.1 0.17± 0.12 2.38± 0.16
900 1.64± 1.21 2.24± 0.09 0.15± 0.09 2.38± 0.12
1000 1.79± 1.09 2.22± 0.08 0.14± 0.09 2.37± 0.13

D.2 5D DISJOINT EQUATION

Table 2: 5D Disjoint Equation Integration Results (% Error).

N MC BQ GBQ-G RBF GBQ-G M3/2
10 23.94± 13.0 33.32± 3.0 33.26± 3.12 38.11± 3.78
25 16.84± 20.99 18.26± 0.86 17.96± 1.08 22.17± 1.22
50 7.58± 5.92 15.15± 0.59 14.87± 0.6 16.69± 0.7
100 5.89± 3.64 1.71± 0.83 2.06± 1.28 5.53± 4.55
200 4.81± 4.15 2.24± 0.73 2.17± 1.44 5.58± 2.91
300 6.24± 4.39 0.59± 0.46 0.62± 0.44 2.07± 0.67
400 3.98± 2.28 1.11± 0.42 1.7± 0.55 0.79± 0.64
500 4.17± 4.17 3.37± 0.44 4.28± 0.7 3.55± 0.84
600 3.22± 2.83 2.63± 0.34 3.18± 0.68 2.59± 0.58
700 3.93± 2.51 1.03± 0.34 1.31± 0.61 0.85± 0.44
800 3.0± 1.8 0.78± 0.44 1.15± 0.6 0.89± 0.51
900 3.58± 2.21 0.48± 0.29 0.92± 0.54 0.48± 0.42
1000 3.24± 2.15 0.38± 0.24 0.89± 0.46 0.53± 0.5
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