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A PROOFS

Before going through the derivations, we briefly summarize
the CLOSURE function in pseudocode.

Algorithm 2 CLOSURE

Input: Ancestrality matrix M
Output: Updated ancestrality matrix M

fori,j € {1,...,dx} suchthati > j do
ifi <M jAi>mjVi~wmjthen
else if ¢ <1 j then
Mij — 1= ]
else if j <1 ¢ then
M;; +—j5 <1
end if
end for
converged < FALSE
while not converged do
converged < TRUE
fori,j,k € {1,...,dx}suchthati # j # k,i > k do
ifi <M 7 <M kA M, # i < k then
M, <+ i < k,converged < FALSE
elseif £ <n j <M @ A My, # k < i then
M, < k < i,converged < FALSE
end if
end for
end while

This subroutine is important because it allows us to draw
correct inferences in some cases where (R1)-(R3) do not
apply. Consider, for instance, the following graphs:

In Fig.[T(A), we may use (R1) to infer that X; < X (since
Z1 1L X5 | Z3 U [X1]) and again to infer that Xo < X3
(since Z5 1L X3 | Z1 U [X3]). However, this strategy will
not allow us to infer that X; < X3 due to the confounding
signal from Z;. Fortunately, the desired inference is easily

drawn via transitivity (X; < Xo A Xg < X3 = X7 < X3).

In Fig. EKB), the shaded node U denotes a latent variable. We
use (R2) to infer that X; =< X5 (since Zo )L X, | Z1 U [X3])
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Figure 1: Example graphs illustrating how CBL-ORACLE
exploits transitivity and antisymmetry to infer causal struc-
ture.

and again to infer that Xo < X (since Zy )L Xo | Zo U
[X1]). However, we cannot apply (R3) to learn that X; ~
X, since no set of observable non-descendants d-separates
the two. Still, the desired inference can be drawn via anti-
symmetry (X7 = Xo A X7 = Xo = X7 ~ X5).

A.1 PROOF OF THEOREM 1

CBL-ORACLE exhaustively applies (R1), (R2), and (R3)
only to non-descendants that were confirmed to be such
either by assumption (Z) or by previous application of the
rules, along with closure under transitivity and antisymme-
try. Therefore, it boils down to the soundness of the rules
themselves, as the starting set of non-descendants for all
X € X is Z. As we mentioned in the main text, (R3) is a
direct application of faithfulness since the conditioning set
contains no descendants of X or Y. The correctness of (R1)
and (R2) are a direct application of Lemma 1 of[Magliacane
et al.|[2016] and the partial order knowledge.

In order to obtain M;; = i < j, it must be the case that
(R1) was used with some A = Z U {X € X\{X;, X} :
X = {X;,X;}} to detect a minimal deactivation of the
form W 1L X; | A\w U [X;] for some W € A. Since
this confirms that X; < X, we satisfy the assumptions
of [Entner et al.| [2013]]’s (R1). Therefore, using the same
arguments, we conclude that both A and A\W are valid
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adjustment sets for (X;, X;). O

A.2 PROOF OF THEOREM 2

Without loss of generality, assume that foreground variables
are indexed such that X; < X forall j > i.

Let us start with dx = 2, and assume that X; ~ X5. Then
we either have that X; 1l g X5 | Z or X1 L5 X5 | Z. Inthe
former case, condition (i) applies, and we learn the proper
structure via (R3). If background variables do not d-separate
foreground variables, however, we may still be able to learn
that X; ~ X5 so long as each node activates a path from
one of its non-descendants to the other node. Graphical
criteria for this are characterized by condition (ii), in which
case (R2) applies twice. Since X; =< Xs and Xo <X X3
implies X; ~ Xo, we learn the true structure via closure
under antisymmetry.

Now assume that dx = 3, and our pair of interest is X; <
X3. If some background variable W € Z is d-separated
from X3 given Z\y, then condition (iii) is satisfied and
(R1) will fire. However, even if condition (iii) does not hold
for this pair, we may still draw the proper inference provided
that it does hold for both X; < X5 and Xy < X3. In this
case, condition (iv) is satisfied and we infer that X; < X3
by the transitivity of ancestral relations.

Assume that we are able to solve all ancestral relations for
Gx. As X; and X, satisfy the premises with ancestral set
Z, we will learn either X; < X4, or X; ~ X, . Hence,
we will know all the common ancestors of Xy and Xg4,
that are in X. We also know that conditioning on these
ancestors will not create an active backdoor path between
X9 and X4, since Z is a valid adjustment set for (X7, X5)
if X1 < X, and both Z and Z U {X, } are valid adjustment
sets for (Xo, X3) if X5 < X3. We can therefore redefine a
new Z by recursively adding shared ancestors, and iterate
the argument. []

A.3 PROOF OF THEOREM 3

Given that CBL-ORACLE performs all possible tests al-
lowed for a lazy oracle algorithm (subject to the conditions
of finding all possible non-descendants at each iteration),
this boils down to guaranteeing that we are not failing to take
into account further implications of (R1)-(R3) and that the
non-ancestral relationships are built up properly as iterations
progress.

We start with the case where dx = 2, and then prove the
general case by induction. The bipartite setting is similar
to that of [Entner et al., [2013]], except we do not assume
a causal order between X; and X5,. This means that we
will be unable to draw conclusions in some cases where
their algorithm can. For instance, CBL-ORACLE cannot
distinguish Z — X; < X» from Z — X; <> Xo. Armed

with the a priori knowledge that X1 < X5, however, Entner|
et al.|[2013] correctly infer that X; ~ X5 in the latter case
(more on this example below).

When dx = 2, there is at most one possible modification
that can be made to M, so we only need to consider Z as
the set of non-descendants of { X7, X5 }. If some lazy oracle
algorithm A dominates CBL-ORACLE, then there exists
some DAG G’ that is indistinguishable from G according
to (R1)-(R3) and closure rules, but for which A draws a
more informative inference. Assume, for concreteness, that
CBL-ORACLE outputs X; =< X5 but A outputs X; < Xo.

The completeness of our (R1) follows from the complete-
ness of (R1) in|Entner et al.|[2013]]. That proof makes no use
of the presumed partial order between X; and X5, except
that their algorithm does not need to flip the roles of X; and
Xo when applying the rules. We do the flip, but as shown
before, the rule remains sound.

Assume (R3) cannot be applied to G. It is clear that it cannot
be applied to G’ either, since adding an edge to G (that is,
X1 — X5) cannot introduce further independencies.

Assume (R1) cannot be applied to G. Now, given
X1 g X2 | Z (that is, (R3) does not apply to G), there
is at least one path P := X; « --- — X, which is
active given Z in G. We will show that no W € Z ex-
ists such that W 1Lg: X5 | Z\w U [X1], i.e. (R1) does not
apply to G’ either. To see this, assume that (R1) does ap-
ply to G’. Then, W LLg: X5 | Z\y U { X1}, which implies
W llg Xs | Z\w U {X1}, since adding edge X1 — X»
cannot create any new independence. It is not possible that
W g Xo | Z\w, otherwise (R1) would fire and incorrectly
imply that X; — Xy in G. Hence, W 1Lg X | Z\ . Given
that X 1l g X5 | Z\w U {W} by hypothesis, W cannot be
in P. Since X; — X5 is not in the equivalent P path in G’,
W must be connected to X; via some other path P’ into
X that is active given Z\yy in order for X; to d-separate
X, from W. But the concatenation of P’ with P in G’ will
contradict W 1Lg: X5 | Z\w U {X1}. By symmetry with
the case where Xy — X is added, (R1) cannot be applied
to either G nor G’.

Assume (R2) cannot be applied to G. Now, assume there
exists some W € Z such that W UL g, Xo | Z\w U [X1], ie.
(R2) applies to G'. This will also imply W 1Lg X5 | Z\yy, as
adding the edge could not have created a new independence.
Therefore, it must be the case that W' g X5 | Z\w U{X1},
otherwise (R2) would fire for G. This again results in a path
‘P’ which, concatenated with X; — X5, will contradict
w J_Lg/ Xo ‘ Z\W

Entner et al.| [2013]] include an extra inference rule with no
analogue in our setup. They show that if X; < X5, and
there exists some W € Z such that W I X | Z\y and
W1 X5 | Z\W, then X7 ~ Xs. (This is how they learn G x
in the example above, Z — X; < Xj.) Call this pattern



“cross-activation”, as opposed to the (de)activation signa-
tures characterized by (R1) and (R2). We have no need for
cross-activation, since it is either redundant or inapplicable
for a lazy oracle. (Note that cross-activation may be informa-
tive with classical oracles, where conditioning sets are unre-
stricted.) Redundancy is obvious when identifiability con-
ditions (i) or (ii) of Thm. 2 are satisfied, as CBL-ORACLE
will also infer that X; ~ X5 in this case. Yet even when
these conditions fail, lazy oracle cross-activation adds no
new information. To see this, we must articulate a partial
identification condition implicit in Thm. 2, indexed to be
continuous with that theorem’s list:

(v) If X; 2 Xj, then some V' € X<; is d-connected to
X; given X<;\{V}.

Cross-activation is inapplicable when no pair satisfies con-
dition (v), since in that case we could not use (R2) to learn
that X; < X5 in the first place (remember, this partial or-
der is not “learned” by [Entner et al.|[2013]]’s algorithm but
assumed upfront). However, if (v) holds for all partially or-
dered pairs, then we may infer X; ~ X5 via the closure of
(R2). Thus, to be useful, cross-activation requires a setting
in which X; < X, may be learned through activation but
X5 =< X cannot.

To summarize, we require a structure Wy — - -+ — X7
<o = Xg & -+ < Wy, where:

(a) X1 ~ XQ.

(b) {W1,Wa} C Z < {X1, X5}

(c) Woll X | Z\w, U [X2]. This is how we infer X; =
Xo.

(d) Wl—l‘(— X1 ‘ Z\W1 AN W1 AL X2 | Z\W1 . This is the hy-
pothesis of cross-activation.

(e) X1 X5 | Z. This prevents us from inferring the true
structure via (R3).

(f) Wl_M_XQ ‘ Z\W1 vV W1 J_LXQ ‘ Z\W1 @] {Xl} This
prevents us from inferring the true structure via (R2).

These desiderata are inconsistent. Observe that the second
conjunct of (d) is the negation of the first disjunct of (f).
Thus we infer that Wy 1L X5 | Z\w, U {X1}. By (a), (d),
and (e), we know that X7 must be a collider on the path from
W1 to X5. Thus conditioning on X; will activate this path,
which we know to be unblocked by Z given (e). Thus it
must be that W1 )L X5 | Z\w, U {X1}. But this contradicts
(f)’s second disjunct. Therefore if (a)-(d) are true, then it
must be the case that either (e) is false, and we can learn G x
via (R3), or (f) is false, and we can learn Gx via (R2).

Hence, for dx = 2, any failure to infer a structural rela-
tionship present in G using (R1)-(R3) and closure rules also
means that there exists some different graph, with the same
answers to the oracle, where that structural feature is not
present. Assume this is the case for all G with dx = n,
for some n > 2. We will show this is also the case for
dx =n+ 1.

Let X4 be any foreground vertex in G that has no children.
The graph implied by the removal of X4, G\ 4, will have all
of its lazy oracle-identifiable pairwise ancestral relationships
in M resolved by the induction hypothesis and the fact
that no descendants of a pair {X;, X} can be used in the
conditioning set of a query. Assuming there exists some ¢ by
which we find all possible non-descendants of X; € X\ X,
(which is the case for the exhaustive search done by CBL-
ORACLE), the oracle can then be invoked to sort all pairwise
relationships involving X ; for iterations greater than ¢. [J

A4 PROOF OF THEOREM 4

As noted in the text, this is simply an instance of [Shah and
Samworth|[2013[]’s Eq. 8, adapted for our modified target,
which is a conjunction of inclusion and exclusion state-
ments rather than a single selection event. The arguments
from their proof go through just the same so long as em-
pirical rates 74 (Z),, forall Z € Lg 4 are —1/4-concave
distributed. See Fig. 2] Appx.[B|for empirical evidence sup-
porting this assumption.
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Figure 2: Example probability mass functions of 74(Z)y, Z € Lg 4, (black points), alongside the —1/4-concave
distribution (smooth line), which has maximum tail probability beyond 0.4. Differences in expected values are due to
variation in # across rates. See [Shah and Samworth, 2013, Appx. A.4].

B STABILITY SELECTION

The following definition of r-concavity is from|Shah and Samworth|[2013| Sect. 3.3]. To define the r-concave distribution,
recall that the 7 generalized mean M,.(a, b; \) of a, b > 0 is given by

M,(a,b; \) = {(1 — A)a” + Xb"}/"

for » > 0. This is also well-defined for < 0 if we take M,.(a, b; A\) = 0 when ab = 0, and define 0" = oco. In addition, we
may define

My(a,b; \) := lim M,(a,b; \) = a' =0
r—0
M_(a,b;\) := lim M,(a,b;\) = min(a,b).

r——00
We may now define r-concavity.

Definition 1. A non-negative function f on an interval I C R is r-concave if, for every x,y € I and \ € (0, 1), we have:

F(A =Nz + Xy) > M. (f(z), f(y); A).

Definition 2. A probability mass function f supported on {0,1/B,2/B,...,1} is r-concave if the linear interpolant to
{(i, f(¢/B)) :i=0,1,..., B} is r-concave.

We find that the empirical probability mass functions of (de)activation rates for low-rate features are approximately —1/4-
concave. The fit is tightest for the lowest rates, which occur with the greatest frequency. See Fig. 2] especially the bottom left
quadrants of all four panels, which account for the vast majority of probability mass. Missing observed probabilities (typically
at x-axis values above 0.6) correspond to zero-frequency events, e.g. no feature is deactivated in 80% of training/validation

splits.

Let d4 be the number of conditioning variables for a given regression. Following the recommendations of [Shah and
Samworth|[2013, Sect. 3.4], we use B = 50 complementary pairs; fix § := d,* Zzil 7(Ag)y foreach ¢ € {d,a}, ¢y €
{i 2 j,j = i}; and plug in d4 as a conservative estimate of [L; , [ See Alg



Algorithm 3 STABILITYSELECTION

Input: Empirical rates }A%Wp, lower bound €, number of complementary subsamples B
Output: One of {i < 5,4 < j,j <1i,j 2 i,NA}

Initialize: pos + {0, }72,, out «+ NA
da = |[Rg |
0 dy' ik (A
for7 € {1/2B,1/B,...,1} s.t. 7 > edo
hi, < min{D(02,2r — 1, B,—1/2),D(0,7,2B, —1/4)}d4
H: g < {k:7g(Ar)y = T}
b+ 2BT
if |H, .| > hi, then
posy + 1
end if
end for
if ngl posy; > 0 then
ifo=d N ) =1=<jthen
out +—1 <y
elseif = a A 1 =i < j then
out «+—1=X7J
elseif p = d A ¥ = j < i then
out +j <1
elseif p =a N ¢ = j < ithen
out «+— 75 =1
end if
end if
return out




C SAMPLE ALGORITHM

The sample version of our CBL-ORACLE algorithm is provided in pseudocode below. The SAMPLE function draws
uniformly without replacement from its first argument, producing a set of size equal to its second argument. The feature
selection method s is a function with three arguments: a matrix of predictors, a vector of responses, and a set of row indices
on which to operate. The output is an active set of features, as determined by the chosen method (e.g., lasso or stepwise
regression). R is a |A| x 4 matrix storing empirical (de)activation rates. Ry, denotes the kth row of R, while R4 4
denotes the column of rates for a given ¢ € {d,a},v € {i < j,j = i}. The CONSISTENT function checks for inconsistent
inferences at a candidate threshold 7 (see Alg. [3).

Algorithm 4 CBL-SAMPLE

Input: Background variables Z, foreground variables X, feature selection method s, number of complementary subsam-
ples B, omission threshold
Output: Ancestrality matrix M

Initialize: converged < FALSE, M < [NA]
while not converged do
converged < TRUE
for Xi,Xj € X such that i > j, Mij = NA do
A+ ZU {X € X\{X“Xj} : X Mm {Xi,Xj}}
for b € [B] do
Dap—1 < SAMPLE([n], |n/2])
Doy < [n|\Dap_1
end for
for b € [2B] do
SY(Dy) « 5(A, X;, D), SHDy) = s(AU X, X;, D)
S;’(Db) — s(A, X;,Dy), jl(D ) < s(AUX;,X,;,Dy)
end for R .
if 7o > -y then
M,;; < i~ j, converged < FALSE
else
R + [N2]
fork e {1,...,|A|} do
'Fd(Ak;)ijj — #{b c A € S;J(Db) A Ay € (Db)}/QB
'fa(Ak)ijj — #{b cAg & »??(Db) NAg € S (Db)}/QB
Fa(Ar)j=<i < #{b: A, € SY(Dy) N Ay & Sl(Db)}/2B
'ra(Ak)]<z — #{b Ay € SO(Db) NA, € Sl(’Db)}/QB
R[k] — (Td(Ak)z-<J7Ta(Ak)r<j7Td(Ak)]-<z7ra(Ak>jji)
end for
¢ < min {7 € {1/2B,1/B,...,1} : CONSISTENT(R, 7) = TRUE }
for ¢ € {d,a},y € {i < j,j < i} do
M;; < M;; A STABILITYSELECTION(R .4 4], €, B)
if Mij = NA then
converged < FALSE
end if
end for
end if
end for
M + CLOSURE(M)
end while




This function checks for two types of errors. Internal errors occur when inconsistent inferences are drawn for a single
non-descendant; external errors occur when inconsistent inferences are drawn across multiple non-descendants.

Algorithm 5 CONSISTENT

Input: Empirical rate matrix R, inference threshold 7
Output: One of {TRUE, FALSE}

da <+ NROW(R)
int_error_vec « {Ok}iil
forke{1,...,da} do
if#{je{l,...,4} : Ry; > 7} > 1then
int_error_vec, «+ 1
end if
end for
if Zgil int_error_vecy > 0 then
int_error < TRUE
else
int_error < FALSE
end if
d_ij <« #{k e{l,...,da}: Ry 27’} >0
a_ij <« #{k e{l,...,da}: Ry 27’} >0
d_ji< #{ke{l,...,da}:Ry3>7} >0
a_ji« #{k e{l,...,da}: Ry 27’} >0
if (d_i3A(d_jiVva_ji))V (d_jiA(d_ijVa_ij)) then
ext_error < TRUE
else
ext_error < FALSE
end if
if int_error Vext_error then
out < FALSE
else
out < TRUE
end if
return out




D EXPERIMENTS

Complete code for all experiments can be found at https://github.com/dswatson/cbl/paper. Our simulation
design is as follows:

* Background variables Z are drawn from a multivariate normal distribution A'(0, X), where 0 denotes a length-d
vector of 0’s and Y. is a Toeplitz matrix with autocorrelation p = 0.25. Variance for each Z € Z is fixed at 1/d .

* In nonlinear settings, we create a new matrix Z in which 80% of background variables undergo some nonlinear
transformation. Specifically, the following transformations are applied with equal probability:

- Quadratic: Z = 22

- Square root: Z = \/|Z|

— Softplus: Z = log(1 + exp(Z))
- ReLU: Z = max(0, Z)

¢ Edges from Z to X are randomly generated with some fixed probability (1 — sparsity). In the linear case, foreground
variables are given by a linear combination of parents, X; = > j<i BijA; + €, where A; € A =Z U X_;. Inthe

nonlinear case, we substitute A for A, with transformations described above. Nonzero weights 8 # 0 are Rademacher
distributed, i.e. drawn uniformly from {—1, 1}. Residuals ¢; are independent Gaussians with variance selected to ensure
the target SNR.

For our bivariate experiments, we draw 100 random graphs according to each data generating process (with expected sparsity
1/2 and SNR = 2) and record results with lasso regression (for linear systems) and gradient boosting (for nonlinear systems).
The data generating process for the unidentifiable setting (c) is identical to (b)’s, except that half the shared parents of X and
Y are removed from Z.

CBL begins by splitting the data intro training and test sets, with the conventional ratio 4:1. For both lasso and GBM,
features are selected according to model performance on the test set. For the former, this requires a sequence of values for
the regularization parameter ), automatically generated by the glmnet package [Friedman et al.,|2010]]. For the latter, we
train a forest of up to 3500 trees with early stopping if performance does not improve after 10 rounds. This is efficiently
implemented via the 1ightgbm package [Ke et al., 2017]. Features never selected for splits are automatically discarded,
which is how GBMs naturally accommodate sparse model fits [Bithimann and Yul 2003]].

To implement [Entner et al.| [2013[’s constraint-based benchmark, we follow the authors’ advice in using conditional
independence tests to infer both conditional dependence (for low p-values) and independence (for high p-values). We set
decision thresholds of p < 0.1 and p > 0.5 for these respective tasks. We sample 1000 variable-subset pairs for linear data
and 500 for nonlinear, as the testing subroutine in the latter case is more computationally intensive. Since instances of
W ALY | A\w U [X] proved far more elusive than instances of X 1L Y" | A—i.e., the method finds separating sets with
much higher frequency than it does minimal deactivators—we used different thresholds for these two cases. Specifically, we
declare X — Y if minimal deactivations are detected in just 0.5% of all trials, while we infer X ~ Y if separating sets are
found in 20% of trials. These parameters were established after considerable experimentation, as the authors provide little
guidance on such matters. Different data generating processes will likely require different thresholds to guarantee reasonable
results.

For the score-based benchmark, we fit our model quartet with either lasso (for linear data) or GBM (for nonlinear data) and
compute the proportion of variance explained on a test set of m samples via the formula

m 2
PVE=1— mzf‘:l S

Zi:1(yi - @)2 ’

where €; denotes the model residual for sample ¢ and Y is the outcome variable with empirical mean y. Then, using the
same indexing as above, we score the hypotheses as follows:

X —Y: g = (PVE} +PVEL)/2
X < Y: gy = (PVE) +PVEL)/2
X ~Y: g3 = (PVE% + PVE}.)/2.

We evaluate potential dependencies between residuals and predictors via Pearson correlation with o = 0.1.


https://github.com/dswatson/cbl/paper

Multivariate experiments were run using the RFCI and GES implementations in the pcalg package [Kalisch et al.,|2012].
The SNP and mRNA data for S. cerevisiae, originally gathered by Brem and Kruglyak| [2005]], are distributed with the
trigger package [Chen et al.,[2007].
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