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Abstract

We propose a new bootstrap-based online al-
gorithm for stochastic linear bandit problems.
The key idea is to adopt residual bootstrap
exploration, in which the agent estimates the
next step reward by re-sampling the residu-
als of mean reward estimate. Our algorithm,
residual bootstrap exploration for stochastic
linear bandit (LinReBoot), estimates the lin-
ear reward from its re-sampling distribution
and pulls the arm with the highest reward es-
timate. In particular, we contribute a theoreti-
cal framework to demystify residual bootstrap-
based exploration mechanisms in stochastic
linear bandit problems. The key insight is that
the strength of bootstrap exploration is based
on collaborated optimism between the online-
learned model and the re-sampling distribu-
tion of residuals. Such observation enables us
to show that the proposed LinReBoot secure
a high-probability Õ(d

√
n) sub-linear regret

under mild conditions. Our experiments sup-
port the easy generalizability of the ReBoot
principle in the various formulations of linear
bandit problems and show the significant com-
putational efficiency of LinReBoot.

1 INTRODUCTION

Stochastic linear bandit is an online learning problem
that the learning agent acts by pulling arms, where
each arm is associated with a feature vector, then
learning the arms information from the corresponding
random rewards. In such problems, the typical goal
of a learning agent is to maximize its cumulative re-
ward. Learning more about an arm (explore) or pulling
the arm with the highest estimated reward (exploit)

leads to the well-known exploration- exploitation trade-
off, which is the central trade-off captured in many
decision-making applications in modern online service
industries. Consequently, the design of stochastic linear
bandit algorithms demands an easy-generalizable im-
plementation across various contextualize actions and
reward generation processes.

In the past decade of bandit literature, such demands
have invited researchers to investigate bootstrap-based
exploration-exploitation trade-offs and have drawn ris-
ing attention [Baransi et al., 2014, Eckles and Kaptein,
2014, Osband and Van Roy, 2015, Vaswani et al., 2018,
Hao et al., 2019, Kveton et al., 2019b, Wang et al.,
2020]. Yet, prior works on bootstrap-based bandit al-
gorithms focus on provable multi-armed bandit algo-
rithms and only provide a limited empirical evaluation
of bootstrap-based stochastic linear bandit algorithms,
and their theoretical counterpart remains unknown.
Such knowledge gap of bootstrapping stochastic lin-
ear bandit persuades our investigation on the provable
bootstrap-based stochastic linear bandits: Can we
theoretically and empirically support the valid-
ity and easy-generalizability of bootstrapping
procedure in stochastic linear bandit algorithms
design? In particular, we aim to deliver a generic
framework to demystify the bootstrap optimism in
stochastic linear bandit problems and validate the easy
generalizability of the bootstrap principle across various
contextual linear bandit problems.

Contributions. We introduce LinReBoot algorithms
that implement Residual Bootstrap Exploration for
stochastic linear bandit problem with sub-linear regret.
We theoretically show that LinReBoot secures Õ(d

√
n)

regret where d is the dimension of features. This sub-
linear regret bound matches the regret bound of the
same order as those theoretical results of Linear Thomp-
son Sampling algorithms. The key to achieving such
sub-linear regret guarantee is to carefully manage and
collaborate sample and bootstrap optimism (Section
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4.1). In particular, by measuring the ”sample-bootstrap
optimistic estimated discrepancy ratio” of the optimal
arm, LinReboot successfully avoids over or under explo-
ration and theoretically secures sub-linear mean regret
with high-probability. To our knowledge, this is the
first theoretical analysis to support the validity and
efficiency of the residual bootstrap-based procedure
for stochastic linear bandit problems. We empirically
show that LinReBoot rivals or exceeds competing al-
gorithms including Linear Thompson Sampling, Linear
PHE, Linear GIRO, and Linear UCB under stochastic
linear bandit problem as well as more complicated lin-
ear bandit settings. These significant results support
the easy-generalizability of proposed LinReBoot. In
summary, our contributions are as follows:

• Propose LinReBoot algorithms that implement Resid-
ual Bootstrap Exploration in linear bandit problems
without boundness assumption of rewards.

• Theoretically show that LinReBoot secures Õ(d
√

n)
regret, matching the regret bound of the same order as
those theoretical results of Linear Thompson Sampling
algorithms.

• Empirically show that LinReBoot rivals or exceeds
baseline algorithms and supports that LinReBoot is
easy-generalizable among linear bandit problems.

Related Works. Bootstrap-based contextual bandit
algorithms design has been actively studied in the last
half-decade and drawn a surge of interest from both
theoretical studies and industrial practice [Elmachtoub
et al., 2017, Eckles and Kaptein, 2014, Osband et al.,
2016, Kveton et al., 2019b, Hao et al., 2019]. Bootstrap-
based bandit algorithm design is a paradigm of sequen-
tial decision-making based on an exploration mecha-
nism with no pre-defined mean reward model. Such
paradigm enjoys a decisive advantage that engineers
are free to deploy any reward model of interests without
painful adaption to problem structure [Kveton et al.,
2019b,a]. ReBoot [Wang et al., 2020] provided a the-
oretical logarithmic regret guarantee for multi-armed
bandit (MAB) and empirical investigation to validate
the easy generalizability of the ReBoot principle. Our
work aims to provide a theoretical guarantee for the
bootstrap-based linear bandit algorithms and empiri-
cally investigate more general contextual linear bandit
setting to validate the ReBoot principle.

One close related work is [Kveton et al., 2020a] which
introduces perturbation of past samples for exploration
under stochastic linear bandit problem. The limitation
of [Kveton et al., 2020a] is the boundness of rewards,
indicating many broader classes of rewards such as
Gaussian rewards are not applicable with a theoretical
guarantee. In contrast, the proposed LinReBoot algo-
rithms relax the boundness reward assumption and thus
validate bootstrap-based bandit algorithms in wider

bandit environments with a broader class of reward
generation processes.

Early works about exploration in bandit problems
[Abbasi-Yadkori et al., 2011, Langford and Zhang, 2007,
Dani et al., 2008] are practical but no guarantee of the
optimality. Some works [Wang et al., 2020, Kveton
et al., 2019b,a, Thompson, 1933, Auer et al., 2002] pro-
vide well designed exploration for bandit problems and
have their own principles for adopting to more general
problems. In these works, three principles including
ReBoot[Wang et al., 2020], GIRO[Kveton et al., 2019b]
and PHE[Kveton et al., 2019a] are devising exploration
mechanism based on up-to-now history instead of on
pre-defined reward model in the other two principles
TS[Thompson, 1933] and UCB[Auer et al., 2002]. Our
work generalizes ReBoot into stochastic linear bandit
problems.

Notations. Let [n] be set {1, 2, ..., n}. 1 is a vector
with all ones and I is the identity matrix. For a vector
v, ∥v∥2 is 2-norm of v and ∥v∥2

A :=
√

v⊤Av for a
semidefinite matrix A. Let ⟨·, ·⟩ be the inner product
operation. Denote Ft as the history of randomness up
to round t. Et[·] := E[·|Ft−1] is defined as the condi-
tional expectation given Ft−1 and Pt(·) := P(·|Ft−1) is
defined as the conditional probability given Ft−1. I{·}
is indicator function. For a set or event E, we denote
its complement as Ē. N(µ, σ2) is Gaussian distribution
with mean µ and variance σ2. We use Õ for big O
notation up to logarithmic factor.

2 STOCHASTIC LINEAR BANDIT

Contextualize Action Set. In stochastic lin-
ear bandit problem, we identify the actions with
d−dimensional features from A ⊂ Rd and assume |A|,
the size of the action set, is finite. Let K := |A| be
the number of actions (arms), xk ∈ Rd be the context
vector of the k-th arm, that is, A = {x1, ..., xK}.

Reward generating mechanism. The reward func-
tion is parameterized by θ ∈ Rd such that, at time
t the agent chooses an action It ∈ [K] with feature
Xt = xIt ∈ A, the reward is generated by

Yt ≡ ⟨Xt, θ⟩+ ϵt. (1)

Specifically, the reward obtained by the agent at round
t when pulling arm It = k is generated from a distribu-
tion with mean µk := x⊤

k θ, conditioning on context xk.
The property of noise ϵt is described in Assumption 2.
Furthermore, denote the recieved reward by rIt

and
the reward random variable by Yt at round t.

Regret. Without loss of generality, assume that arm
1 is the unique optimal arm, that is µ1 > µk ∀k ̸= 1.



The optimal gap of the k-th arm is ∆k := µ1 − µk ≥ 0.
The expected n-round regret is denoted as

Rn :=
K∑

k=2
∆kE[

n∑
t=1

I{It = k}]. (2)

The goal of the agent is to maximize the expected
cumulative reward in n rounds, which is equivalent to
minimizing the expected regret Rn.

Assumption 1. (Boundness assumptions) True pa-
rameter θ is bounded: ∥θ∥2 ≤ S2.

Besides, we denote L as the upper bound for context
vectors: ∥xk∥2 ≤ L for all k ∈ [K]. Assumption 1 is
referred to the boundness assumptions in the stochastic
linear bandit literature and is to ensure the regret is
bounded if the agent pulls any sub-optimal actions (see
Section 5 in [Abbasi-Yadkori et al., 2011]).

Assumption 2. (Noise Clipping assumption) Noise
process {ϵt}∞

t=1 described in (1) satisfies that for some
L1, L2 > 0,

eL1η2
≤ E[eηϵt |Ft−1] ≤ eL2η2

, ∀η ≥ 0, (3)

where Ft−1 = {ϵ1, I1, · · · , ϵt−1, It−1}.

Assumption 2 implies that stochastic process {ϵt}∞
t=1

is conditionally sub-gaussian with constant L2. L1
contributes to the lower bound of moment generat-
ing function suggested by [Zhang and Zhou, 2020].
Note that the Assumption 2 allows heteroscedasticity
among different arms by choosing L2 as the largest
variance among arms. Such heteroscedasticity consid-
eration arises and has been identified as a challenge in
applications of Bayesian optimization [Kirschner, 2021,
Cowen-Rivers et al., 2020].

3 RESIDUAL BOOTSTRAP
EXPLORATION

3.1 REBOOT PRINCIPLE

This section presents essential proof of concepts to
implement ReBoot principle [Wang et al., 2020]. In
general, each round of interaction, the decision policy
admits four subroutines to implement ReBoot princi-
ple: 1) Learning, 2) Fitting, 3) Bootstrapping, and 4)
Exploring. Following elaborates on each subroutine:

1) Model Learning. The first subroutine outputs a
learned model based on current collected data. Our
implementation learns the parameter θ in Eq.(1) by
some user-specified model.

2) Data Fitting. The second subroutine fits the cur-
rent data set with the learned model in the previous

subroutine and then outputs the residual set. Intu-
itively, the residuals measure the goodness of fit of the
learned model and should drop a hint on the right
amount of exploration. In other words, the residuals
should suggest a right magnitude of exploration bonus
in decision policy (8). How to manage and integrate
uncertainty behind residuals into the exploration mech-
anism of policy is the main challenge.

3) Residuals Bootstraping. The third subroutine
associates the residuals obtained the last subroutine
with a bootstrapping distribution. Instead of maintain-
ing a belief distribution on a parameter in the Bayesian
approach, ReBoot principle maintains a bootstrapping
distribution on the statistical error based on residuals.
The challenge is to justify the efficacy of residual-based
optimism construction in both theory and practice.

4) Actions Exploring. The fourth subroutines sam-
ple the exploration bonus from the bootstrapping dis-
tribution and output an index for each action. Such
bootstrap procedure is more computationally efficient
than prior efforts since this procedure only requires
drawing a sample from the bootstrapping distribution.
The challenge is to prove that such bootstrap procedure
secures sub-linear regret in theory.

3.2 LINREBOOT ALGORITHM

We propose the Linear Residual Bootstrap Exploration
algorithm (LinReBoot, Algorithm 1) for stochastic lin-
ear bandit problems. This section elaborates the four
subroutines in Section 3.1 for the proposed LinReBoot.

1) LinReBoot uses ridge regression procedure, whose
learned parameter is θ̂t (4b) and estimated mean re-
ward for arm k is µ̂k,t (4c). Such way to estimate
mean reward is easy to manage the confidence [Abbasi-
Yadkori et al., 2011]. Thus, we focus on confidence
management for the bootstrap-based exploration.

Ridge Regression Procedure. LinReBoot fits linear
model at round t as follow,

V t = X⊤
t−1Xt−1 + λI, (4a)

θ̂t = V −1
t X⊤

t−1Y t−1, (4b)
µ̂k,t = x⊤

k θ̂t, ∀k ∈ [K], (4c)

where Xt−1 = (X1, ..., Xt−1)⊤ ∈ R(t−1)×d. The τ -
th row of Xt−1 is the context X⊤

τ for τ ∈ [t − 1],
Y t−1 = (Y1, ..., Yt−1)⊤ is reward vector whose elements
are rewards up to round t− 1. λ denotes the regular-
ization level. V t denotes the sample covariance matrix
up to round t and θ̂t is the ridge estimation of target
parameter θ in (1). µ̂k,t denotes the estimated mean of
arm k based on history. Note that the first K rounds
in proposed LinReBoot is fully exploring each arm



once. In other words, It = t when t ∈ [K], indicating
XK := (x1, ..., xK)⊤ ∈ RK×d. We call this XK the
context matrix with rank r ≤ min(K, d) and singular
values σ1, ..., σr. Also define σ2

min ≤ σ2
i ≤ σ2

max, ∀i ∈ [r].
With these definitions, we make a mild assumption
about the shrinkage effect of ridge regression:

Assumption 3. (Validity of Ridge Regression) The
singular value decomposition of context matrix XK

is denoted as XK := GΣU where G ∈ RK×K ,
Σ ∈ RK×d and U ∈ Rd×d. Define Ω := Σ(Σ⊤Σ +
λI)−1Σ⊤ ∈ RK×K and Z := GΩΣU ∈ RK×d. Let
z1 ∈ Rd be the first row of Z. Given any λ > 0,
there exists a corresponding positive scalar S1 such that
|x⊤

1 θ − z⊤
1 θ| ≥ S1 for the θ in (1).

Remark 1. Assumption 3 provides a lower bound of
the absolute difference between true mean x⊤

1 θ and
normalized mean z⊤

1 θ of the optimal arm. Note that
if λ→ 0, then z1 → x1 and S1 → 0. Thus this scalar
S1 measures the small perturbation on the mean of
the optimal arm when the ridge regression procedure is
applied. This Z can be interpreted as a ridge shrink-
age context matrix [Goldstein and Smith, 1974]. One
important phenomenon of online ridge regression is
that even if the ridge estimator is biased, the shrinkage
effect from ridge estimation provides exploration for
the agent leading to making a correct decision. The
positive scalar S1 describes the shrinkage effect on the
context. That is, the existence of S1 indicates the ridge
procedure is valid and its shrinkage effect exists.

2) The fitting part of LinReBoot outputs the residuals
under the linear model framework,

ek,t,i = rk,i − µ̂k,t, ∀i ∈ [sk,t−1], (5)

where sk,t−1 :=
∑t−1

τ=1 I{Iτ = k} is the number of
times pulling arm k by round t − 1, rk,i is the i-th
reward of arm k by round t− 1. The goodness of fit of
the learned ridge regression model can be summarised
by Residual Sum of Squares(RSS) [Archdeacon, 1994]
which is defined as

RSSk,t :=
sk,t−1∑

i=1
e2

k,t,i. (6)

Such measure plays an important role in the residual
bootstrap exploration mechanism.

3) The third part is Residuals Bootstrapping. This
subroutine is independent of the model which sug-
gests the power of generalizability of ReBoot prin-
ciple. ReBoot principle requires the computation of
the exploration bonus [Mammen, 1993], which is
s−1

k,t−1
∑sk,t−1

i=1 ωk,t,iek,t,i, where {ωk,t,i}
sk,t−1
i=1 is resid-

ual bootstrap weights for arm k at round t.

Algorithm 1 LinReBoot

Require: λ, s1,0 = ... = sK,0 = 0
for t = 1, ..., n do

if t < K + 1 then
It ← t

else
V t ←X⊤

t−1Xt−1 + λI

θ̂t ← V −1
t X⊤

t−1Y t−1
for k = 1, ..., K do

ek,t,i ← rk,i − x⊤
k θ̂t, ∀i ∈ {sk,t−1}

Generate {ωk,t,i}
sk,t−1
i=1

µ̃k ← x⊤
k θ̂t + s−1

k,t−1
∑sk,t−1

i=1 ωk,t,iek,t,i

end for
It ← arg max

k∈[K]
µ̃k

end if
sIt,t ← sIt,t−1 + 1 and sk,t ← sk,t−1. ∀k ̸= It

Pull arm It and get reward rIt,sIt

Xt ←
[
Xt−1
x⊤

It

]
and Y t ←

[
Y t−1
rIt,sIt

]
end for

Choice of Bootstrapping Weights. The bootstrap
weights considered in this work are i.i.d with zero mean
and variance σ2

ω. They are independent of the noise pro-
cess {ϵt}∞

t=1. In the literature of bootstrap procedure
[Mammen, 1993] , the choices of bootstrap weights
distribution include Gaussian weights, Rademacher
weights and skew correcting weights. In LinReBoot,
we adopt the Gaussian bootstrap weights to enable an
efficient implement described at section 3.3.

4) The last subroutine is the action exploring based
on residual bootstrap. More specifically, for arm k
at round t, LinReBoot adds exploration bonus from
residual bootstrapping on the estimated mean µ̂k,t as
follow,

µ̃k,t = µ̂k,t + 1
sk,t−1

sk,t−1∑
i=1

ωk,t,iek,t,i, (7)

then agent pulls arm with the highest bootstrapped
mean,

It ≡ arg max
k∈[K]

µ̃k,t. (8)

Note that the variance of bootstrapped mean µ̃k,t is
σ2

ωs−2
k,t−1RSSk,t, indicating an adaptive amount of ex-

tra exploration is controlled by sk,t−1 and RSSk,t.

Short Summary. Our proposed LinReBoot has fol-
lowing steps at round t > K,

1) Ridge estimation: compute V t, θ̂t.
2) Finding residuals for each arm: for arm k, compute

µ̂k,t and {ek,t,i}
sk,t−1
i=1 .



3) Compute Bootstrapped mean for each arm: for arm
k, generate {ωk,t,i}

sk,t−1
i=1 and compute µ̃k,t (7).

4) Pull arm with the highest µ̃k,t then observe reward.

Algorithm 1 describes LinReBoot. The strength of
LinReBoot is its easy generalizability across different
bandit problems including linear bandits and even more
complicated structured problems (Appendix D.1).

Remark 2. (LinTS perturbs system parameter esti-
mate, LinReBoot perturbs expected reward estimates)
Compare with the LinTS in [Agrawal and Goyal, 2013b],
in which LinTS samples a perturbed parameter θ̃

LinTS
t =

θ̂t+βtV
−1/2
t ηt with scaling βt and appropriate indepen-

dent noise ηt (defined in [Agrawal and Goyal, 2013b]).
Our proposed LinReBoot samples a perturbed expected
reward µ̃LinReBoot

k,t = ⟨θ̂t, xk⟩+ 1
sk,t−1

∑sk,t−1
i=1 wk,t,iek,t,i.

That is, LinReBoot is perturbing the expected reward
estimate via prediction error uncertainty, which is su-
pervised by real reward. In contrast, LinTS is perturbing
the system parameter, when can be wrong if the system
modeling is wrong.

3.3 EFFICIENT IMPLEMENTATION

By the attractive computational properties of Gaus-
sian distribution, the computational cost of LinReBoot
can be reduced significantly when Gaussian Boot-
strap weights are generated. Formally: assume ωk,t,i ∼
N(0, σ2

ω), ∀k, t, i, recalling (7), for k ∈ [K] and any
t ≥ 1, bootstrapped mean µ̃k,t follows a Gaussian dis-
tribution,

µ̃k,t|Ft−1 ∼ N(µ̂k,t, σ2
ωs−2

k,t−1RSSk,t). (9)

Such Gaussian-distributed property of µ̃k,t indicates
that if we can update µ̂k,t, sk,t−1 and RSSk,t incre-
mentally for arm k, this bootstrapped mean µ̃k,t can
be generated by Gaussian generator without inner loop
for generating weights. The first two terms, µ̂k,t and
sk,t−1, are naturally updated in incremental manner.
For RSSk,t, following decomposition ensures an incre-
mental update,

RSSk,t =
sk,t−1∑

i=1
r2

k,i + sk,t−1µ̂2
k,t − 2µ̂k,t

sk,t−1∑
i=1

rk,i.

Then an efficient generation for µ̃k,t|Ft−1 is ensured by
the incremental updates for µ̂k,t, sk,t−1,

∑sk,t−1
i=1 r2

k,i,∑sk,t−1
i=1 rk,i. Furthermore, since the residual bootstrap

weights are generated independently, µ̃k,t among arms
are also independent given historical randomness and
can be sampled from one multivariate Gaussian genera-
tion simultaneously. Formally, µ̃(t) = (µ̃1,t, . . . , µ̃K,t)⊤

is conditional distributed as

µ̃(t)|Ft−1 ∼ NK(µ̂(t), Σ(t)
ω ), (10)

where µ̂(t) = (µ̂1,t, . . . , µ̂K,t)⊤ and Σ(t)
ω is a diago-

nal matrix with diagonal elements σ2
ωs−2

k,t−1RSSk,t. De-
tailed steps and more illustration about efficient imple-
mentation is provided in Appendix D.7.1. Moreover,
an empirical study about computational efficiency is
conducted in Appendix D.7.2 and Table.3 provides the
computational cost of our proposed LinReBoot as well
as other baseline algorithms.

4 OPTIMISM DESIGN

Optimistic Estimated Discrepancy. This section
identifies and demystifies the technical challenge of im-
plementing ReBoot principle in the stochastic linear
bandit problem. The key is to conduct a detailed investi-
gation to produce probabilistic control on the behavior
of the ’Optimistic Estimate Discrepancy (OED)’ of
the LinReBoot policy (8). In principle, the OED is
given by

OED = Optimism× Action Context Norm, (11)

where the Action Context Norm is given by ∥xk∥V −1
t

and Optimism is given by ct,k for the kth action at
time t, defined in (14). Design of ct,k will be elaborated
in Section 4.1.

Sufficient Explored Arms. We define the concept of
Sufficient Explore Arms to facilitate the formal regret
analysis of LinReBoot. Intuitively, an arm is sufficient
explored if its index produced by the policy (8) is less
than the mean reward of the optimal arm. Technically,
we say an arm k is sufficiently explored at time t if the
adopted OED (ct,k∥xk∥V −1

t
) is bounded by its optimal

gap (∆k).

The above notion of sufficient explored arm defines the
concept of ”set of sufficient explored arms” St, formally

St := {k ∈ [K] : ct,k∥xk∥V −1
t

< ∆k}, (12)

where and ct,k is the collaborated optimism and
ct,k∥xk∥V −1

t
is an optimistic estimate of discrepancy

of policy index (8).

The key consequence of set (12) is that, any member
in St enjoys the property

∀j ∈ St ∩ [K] : µ̃j,t < µ1; (13)

that is, the LinReBoot policy always avoids an index
(8) from sufficiently explored subset such that the boot-
strapped mean of this index is less than the optimal
mean reward unless all arm are sufficiently explored.
(see equation (82) in the proof of Lemma A.1 at section
B.1 for technical details).



4.1 COLLABORATE OPTIMISM

Here we elaborate on the collaborated optimism
adopted in the definition of sufficient explored arms
(12). Concretely, the collaborated optimism has a form

ct,k = c1(t, k) + c2(t, k), (14)

where c1(t, k) is called sample optimism and c2(t, k) is
called bootstrap optimism for arm k at time t.

Sample Optimism. The sample optimism c1(t, k)
serves as a control on the event that ”the realized sam-
ple estimate discrepancy (ED) is bounded by sample
OED”:

Et,k := {|µ̂k,t − µk| ≤ c1(t, k)∥xk∥V −1
t

, } (15a)

Et :=
K⋂

k=1
Et,k, (15b)

where c1(t, k) is a constant which can be tuned by our
LinReBoot algorithm, making the bad event Ēt,k and
Ē become unlikely. In fact, this Et,k is the event that
the least squared estimation is "close" to the true mean
reward for arm k at round t. In section 5, the probability
of the bad event Ēt is controlled by a parameter tuned
by users based on lemma 5.1.

Bootstrap Optimism.

The bootstrap optimism c2(t, k) serves as a control on
the event that ”the realized bootstrap ED is bounded
by bootstrap OED”:

E′
t,k := {|µ̃k,t − µ̂k,t| ≤ c2(t, k)∥xk∥V −1

t
}, (16a)

E′
t :=

K⋂
k=1

E′
t,k, (16b)

where c2(t, k) is also a constant controlling the condi-
tional probability of the bad event Ē′

t. This c2(t, k) can
be tuned by our LinReBoot algorithm as well. Similar
to Et,k, this E′

t,k is the event that the residual boot-
strap based estimation is "close" to the least squared
estimate µ̂k,t for arm k at round t. In section 5, the
probability of bad event Ē′

t is controlled by a parameter
tuned by users based on lemma 5.2.

4.2 OPTIMISM DESIGN

Choice of sample optimism (α). The goal of this
part is to illustrate how to pick the sample OED such
that the event (15) holds with probability at least
1−α for a given confidence budget α ∈ (0, 1). Formally,
the goal is to find a sample OED function c1(t, k) :

[n] × [K] 7→ R such that the event (15a) holds with
probability at least 1−αk. To meet the purpose of the
risk control, we specify the sample OED function with
form

c1(t, k) := R2
√

d log((1 + tL2/λ)/αk) + λ1/2S2. (17)

Lemma 5.1 gives the formal result on why such choice
has confidence budget at most αk. For regret analysis,
define αmin = min

k∈[K]
αk and α = (α1, ..., αK)⊤.

Choice of bootstrap optimism (β). The goal of
this part is to pick bootstrapped OED such that the
event (16) holds with probability at least 1−β for given
confidence budget β ∈ (0, 1). Formally, the goal is to
find a sample OED function c2(t, k) : [n] × [K] 7→ R
such that the event (16a) holds with probability at
least 1− βk. To meet the purpose of the risk control,
we specify the bootstrapped OED function with form

c2(t, k) :=
√

(2σ2
ωRSSk,t log(2/βk))/s2

k,t−1∥xk∥2
V −1

t
.

(18)

Lemma 5.2 gives the formal result on why such choice
has a confidence budget at most βk. For regret anal-
ysis, let βmin be the smallest βk, ∀k ∈ [K] and β =
(β1, ..., βK)⊤.

4.3 OPTIMISM FOR OPTIMAL ARM

Sample-Bootstrap OED ratio of the optimal
arm (b). Indicated by the regret analysis in [Kveton
et al., 2020a], instead of controlling the exploration
independently, the relation between two sources of ex-
plorations needs to be considered because this relation
is critical for finding the optimal action. To meet such
observation, we define a good event,

E′′
t := {µ̃1,t − µ̂1,t > c1(t, 1)∥x1∥V −1

t
}. (19)

Given the good event E′′
t , the policy index µ̃1,t of the

optimal arm enjoys further positive bias, hence the
agent will have better chance to make optimal action.

In particular, we highlight a constant b used to measure
the ratio of the sample optimism (17) to the bootstrap
optimism (18); formally, we require b satisfies

c1(t, 1)/c2(t, 1) ≥ b ·
√

2 log (2/β1). (20)

Intuitively, the constant b measures the relation be-
tween sample OED and bootstrap OED of the optimal
arm. This b plays an important role of the probability
lower bound of event (19) (See Lemma 5.3). Note that,
if (20) holds, we have the lower bound (26) ; otherwise,
we have the lower bound (27). In both cases, we have
a lower bound for the event (19).



Notation Definition

ζ1(n, d)
(L2

√
d log

(
1+nL2/λ

αmin

)
+ λ1/2S2)×√

2(n−K)d log(1 +
∑r

i=1 σ2
i /dλ)

ζ2(n, d)

√
2σ2

ωlog( 2
βmin

)×√
2(n−K)d log(1 +

∑r
i=1 σ2

i /dλ)

ζ3(n) 2K

√
4L2σ2

ω log
(

2
βmin

)
(log n + 1)

ζ4(n) 2S2L((n−K)(α + β) + K − 1)

Table 1: Notations in Regret Analysis

Good event for optimal arm (γ). Here we introduce
the event that over exploration and under exploration
of the optimal arm have been avoided simultaneously.
Formally, the constant γ is the probability that the
bandit index (8) is not over-exploration (Event E′

t) and
also not under-exploration (Event E′′

t )

{c1(t, 1) < (µ̃1,t − µ̂1,t)/∥x1∥V −1
t

< c2(t, 1)}. (21)

Technically, we can show that the probability of the
event (21) is lower bounded by the term

Pt(E′′
t )− Pt(Ē′

t), (22)

with probability at least 1−γ (Lemma 5.4). Such lower
bound is translated into an upper bound in regret
analysis.

5 FORMAL RESULTS

5.1 REGRET BOUND FOR LINREBOOT

Theorem 5.1. Under Assumptions 1, 2, 3 and techni-
cal conditions (32) and (74), with probability at least
1−(δ+γ), the expected regret of Algorithm 1 is bounded
as,

Rn ≤C1(α1, β, γ, b)ζ1(n, d)
+C2(α, β, γ, b, δ)ζ2(n, d)
+C1(α1, β, γ, b)ζ3(n) + ζ4(n),

(23)

where ζ1, ζ2, ζ3 and ζ4 are defined in Table.1 and C1,
C2, M1, M2 are described in Table.2.

Proof. See Appendix A.1.

Corollary 5.2. Let α = β = 1√
n

1, the order of high
probability upper bound in Theorem 5.1 is Õ(d

√
n).

Proof. See Appendix A.2.

Corollary 5.2 shows that our regret bound scales as the
regret bound of Linear Thompson sampling [Agrawal
and Goyal, 2013b] and Linear PHE [Kveton et al.,
2020a].

5.2 VALIDATE SAMPLE OPTIMISM

Lemma 5.1. Under Assumptions 1, 2, 3 and choose
c1(t, k) as (17), P(Ēt,k), the probability of bad event
corresponded to least squared estimation described in
(15), is controlled. Formally, ∀k ∈ [K], ∀αk > 0, ∀t ≥
1,

P(|µ̂k,t − µk| ≤ c1(t, k)∥xk∥V −1
t

) ≥ 1− αk. (24)

Consequently, we have P(Ēt) ≤ α :=
∑K

k=1 αk.

Proof. See Appendix A.3.

Lemma 5.1 supports that the choice of c1(t, k) at (17)
for the sample optimism event (15) is valid with confi-
dence budget α.

5.3 VALIDATE BOOTSTRAP OPTIMISM

Lemma 5.2. Suppose bootstrap weights are Gaussian.
Pick c2(t, k) as (18). The conditional probability of
bad event corresponding to residual bootstrap explo-
ration described in (16), Pt(Ē′

t,k), is controlled. For-
mally, ∀k ∈ [K], ∀βk > 0, ∀t ≥ 1

Pt(|µ̃k,t − µ̂k,t| ≤ c2(t, k)∥xk∥V −1
t

) ≥ 1− βk. (25)

Consequently, we have Pt(Ē′
t) ≤ β :=

∑K
k=1 βk.

Proof. See Appendix A.4.

Lemma 5.2 supports that the choice of c2(t, k) at (18)
for the sample optimism event (16) is valid with confi-
dence budget β.

5.4 SAMPLE-BOOTSTRAP RATIO

Lemma 5.3. Under Assumptions 1, 2, 3. Suppose
bootstrap weights are Gaussian. The conditional proba-
bility of anti-concentration for optimal arm described in



Figure 1: Comparison of LinReBoot with Gaussian Bootstrap weights to baselines under three linear bandit
problems and three different context dimension d. First row referred to the setting in Section 6.1, second row is
for Section 6.2 and the last row is for Section 6.3. Three columns refer to d = 5, d = 10 and d = 20 respectively.

(19), Pt(Ē′′
t ), has lower bound. Formally, if b satisfies

(20),

Pt(E′′
t ) ≥ b√

2π
exp
(
−

3c2
1(t, 1)s2

1,t−1∥x1∥2
V −1

t

2σ2
ωRSS1,t

)
.

(26)
Otherwise,

Pt(E′′
t ) ≥ Φ(−b), (27)

where Φ is the CDF of standard normal distribution.

Proof. See Appendix A.5.

Lemma 5.3 provides the lower bound result for good
event E′′

t . The result indicates that, if the bootstrap op-
timism is not ’too large’, then the LinReBoot procedure
can enjoy additional regret reduction.

5.5 VALIDATE GOOD EVENT

Lemma 5.4. Under Assumptions 1, 2, 3 and suppose
Bootstrap weights are Gaussian. Assume b satisfies a
technical condition (74). Then, with probability at least

1− γ, Pt(E′′
t )− Pt(Ē′

t) has lower bound,

b√
2π

exp

− 3s
3/2
1,t−1c2

1(t, 1)∥x1∥2
2

8σ2
ω(σ2

min + λ)
√

1
M2

log
(

M1
1−γ

)
− β,

(28)
where M1 and M2 are defined in Table.2.

Proof. See Appendix A.6.

Lemma 5.4 provided the a high probability lower bound
for the difference between probability of the event for
anti-concentration E′′

t and probability of bad event
discussed in bootstrap optimism in Section 4.1. This
lower bound is also for probability of ‘not under and
not over exploration’ event (21). Lemma 5.4 links the
sample optimism and bootstrap optimism and holds a
right amount of exploration of the optimal arm.

6 EXPERIMENTS

In this section, we conduct empirical studies under
three settings: Stochastic Linear Bandit, Contextual



Linear Bandit and Linear Bandit with Covariates. Our
LinReBoot is compared to several baselines including
LinTS-G [Agrawal and Goyal, 2013b, Lattimore and
Szepesvári, 2020], LinTS-IG [Honda and Takemura,
2014, Riquelme et al., 2018], LinPHE [Kveton et al.,
2020a], LinGIRO [Kveton et al., 2019b] and LinUCB
[Abbasi-Yadkori et al., 2011, Lattimore and Szepesvári,
2020] . More details about baselines can be found in
Appendix D.6.

6.1 STOCHASTIC LINEAR BANDIT

We compare LinReBoot to other linear bandit algo-
rithms under stochastic linear bandit described in Sec-
tion 2. We experiment with several dimensions d in-
cluding 5, 10 and 20. K is chosen as 100. Synthetic
data generation for this setting is deferred to Appendix
D.2 in the supplementary material. Results. The first
row of Figure 1 reports the results for Stochastic Lin-
ear Bandit setting. Our LinReBoot rivals LinTS-G and
LinTS-IG while substantially exceeds LinGIRO, LinPHE
and LinUCB. When d increases, the performance of
LinReBoot rivals and exceeds the best of other meth-
ods.

6.2 CONTEXTUAL LINEAR BANDIT

In the second experiment, we compare LinReBoot to
other linear bandit algorithms under Contextual Linear
Bandit where the contexts are generated from some dis-
tributions by arms. Note that this setting matches pre-
vious work [Chu et al., 2011]. Linear bandit algorithms
can also be applied under this kind of environment.
In our experiment, the LinReBoot is implemented as
Algorithm 2 in Appendix D.1. Like the setting in Sec-
tion 6.1, the dimension of d is chosen as 5 or 10 or 20
and the synthetic data generation for this setting is
described in Appendix D.2. Results. The second row
of Figure 1 reports the results for Contextual Linear
Bandit. Our LinReBoot rival LinTS-G and substan-
tially exceed LinTS-IG, LinGIRO, LinPHE and LinUCB.
When d increases, the performance of LinReBoot rivals
LinTS-IG and exceeds others.

6.3 BANDIT WITH COVARIATES

Our last experiment is conducted under the setting of
linear bandit with covariates, which is also called linear
parametrized bandit by [Rusmevichientong and Tsitsik-
lis, 2010]. This problem is significantly different from
the previous two problems in the following ways. Each
arm has its true parameter θk. That is, each arm has
its estimate θ̂k from the ridge regression procedure in
Section 3.2. Also, unlike the setting in Section 6.2, the

contexts are generated from a distribution that is inde-
pendent of arms. Thus the overall task in this setting
is not only the estimation of the target parameter θ,
but also the detection of which arm a context belongs
to. This case is also referred to as the online decision-
making under covariates [Bastani and Bayati, 2020].
For the LinReBoot in this setting, detailed algorithm is
provided as Algorithm 3 in Appendix D.1. d is chosen
as 5 or 10 or 20 and K = 10. Synthetic data generation
for this setting is described in Appendix D.2. Results.
The third row of Figure 1 reports the results for Lin-
ear Bandit with Covariates. Our LinReBoot exceeds
all competing algorithms LinTS-G, LinTS-IG, LinGIRO,
LinPHE and LinUCB.

Summary. From Figure 1, the proposed LinReBoot
is always the top 3 algorithms under all settings and
all choice of dimension d. More specifically, LinReBoot
is clearly comparable to the state-of-the-art Linear
Thompson Sampling algorithms(LinTS-G, LinTS-IG)
or even outperforms them in many cases. Regard-
ing the computational cost, from Table.3, our pro-
posed LinReBoot is consistently computational efficient
among all settings compared to LinTS-G, LinTS-IG and
LinUCB under all three settings.

7 CONCLUSION

We propose LinReBoot algorithm for stochastic linear
bandit problems. In theory, we prove LinReBoot that
secures Õ(d

√
n) high probability expected regret. Em-

pirically, we show LinReBoot rivals LinTS-G, LinTS-IG
and exceeds LinPHE, LinGIRO and LinUCB, which sup-
ports the easy-generalizability of ReBoot principle in
[Wang et al., 2020] under various contextual bandit set-
tings including Stochastic Linear Bandit, Contextual
Linear Bandit, and Linear Bandit with Covariates.
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A PROOFS OF MAIN RESULTS

A.1 PROOF OF THEOREM 5.1

Proof. The regret bound analysis of algorithm 1 involves several key Lemmas and conditions. Inspired by the
definition of expected regret, one key Lemma is providing the upper bound for expected optimal gap given the
history Ft−1 at round t, Et[∆It

]. This is similar to the proof in other linear bandit algorithms such as LinPHE
[Kveton et al., 2020a] and LinUCB [Abbasi-Yadkori et al., 2011]. Lemma A.1 in the following part gives this result.
The other important Lemma is bounding sum of expected ‘square root of normalized RSS’ which is described in
Lemma A.2. The Third key result, Lemma A.3, is an algebra result from [Abbasi-Yadkori et al., 2011] which
bounds the sum of action context norms. Moreover, Lemmas in Section 5 play essential roles in regret bound
analysis. Lemma 5.1 and Lemma 5.2 control the sample optimism and bootstrap optimism respectively. Lemma
5.3 gives lower bound for the event of anti-concentration, which is necessary lower bound for analyzing exploration
in linear bandit algorithms. Another key step is carefully evaluating anti-concentration and its connection to
concentration, which is summarised by lemma 5.4. An technical condition about tuning parameter σ2

ω, which will
be discussed later in this proof is also needed for regret analysis. We start from listing the Lemmas and condition
and main proof of Theorem 5.1 will be given later.

Lemma A.1. Assume the same as Theorem 5.1. Suppose M ≥ max
k∈[K]

∆k. When c1(t, k), c2(t, k) ≥ 1 and

Pt(E′′
t )− Pt(Ē′

t) > 0 for ∀t > K and ∀k ∈ [K], then on event Et, almost surely,

Et[∆It
] ≤ ( 2

Pt(E′′
t )− Pt(Ē′

t)
+ 1)(c1(t, It) + c2(t, It))Et[∥xIt

∥V −1
t

] + MP(Ē′
t) (29)

Proof. See appendix B.1

Remark 3. Lemma A.1 provides the upper bound for expected optimal gap given the latest history. This result
directly impacts the upper bound of expected regret of LinReBoot, which means that each terms in the upper
bound given by Lemma A.1 need to be further bounded. As we expect, sample optimism (c1(t, It)Et[∥xIt

∥V −1
t

) and
Bootstrap optimism (c2(t, It)Et[∥xIt

∥V −1
t

) require further bounding. An interesting observation is the appearance
of term Pt(E′′

t ) − Pt(Ē′
t) which is the lower bound of probability of E′′

t defined in (21). Intuitively, this event
connects the exploration from ridge estimation and the exploration from residual Bootstrapping and iF the lower
bound Pt(E′′

t )− Pt(Ē′
t) is too small, then this upper bound in Lemma A.1 becomes trivial, which means our regret

analysis become meaningless.
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Lemma A.2. Assume the same as Theorem 5.1. With probability at least 1− δ,

n∑
t=K+1

E[
√

RSSIt,t

s2
It,t−1

] ≤
√

2(L2

√
r log(1 + σ2

max/λ) + 2log(1
δ

) + λ1/2S2)
n∑

t=K+1
E[∥xIt

∥V −1
t

] + 2
√

2K
√

L2(log n + 1)

(30)

Proof. See appendix B.2

Remark 4. Lemma A.2 is bounding sum of expected ‘square root of normalized RSS’, that is,
√

RSSIt,t/s2
It,t−1.

As discussed in Section 4, the RSS contributes additional exploration. As a matter of fact, the ‘square root of
normalized RSS’ is proportional to the variance of Bootstrapped mean. Consequently, this Lemma assists bounding
of the magnitude of extra exploration from residual Bootstrapping.

Lemma A.3. Assume the same as Theorem 5.1. Then

n∑
t=K+1

∥xIt∥V −1
t
≤

√
2(n−K)d log

(
1 +

∑r
i=1 σ2

i

dλ

)
(31)

Proof. See appendix B.3

Remark 5. Lemma A.3 bounds the sum of action context norms which is also bounded in regret analysis of most
contextual bandit algorithms.

Technical Condition. Suppose for any K < t ≤ n and some ρ > 0 such that ρ = Õ(1) with respect to n and d.
Then

s
3/2
1,t−1c2

1(t, 1) ≤ ρσ2
ω(σ2

min + λ)

√
1

M2
log
(

M1

1− γ

)
(32)

Remark 6. This condition indicates that there is a lower bound for σ2
ω, which means the extra exploration

contributes to bounding of expected regret. This lower bound strongly supports the necessity of residual Bootstrap
exploration. Another observation is that the lower bound is related to the time t and the number of pulling of
optimal arm, which means that this hyperparameter for exploration σ2

ω should depend on decision round t. However,
since σ2

ω is also related to some fixed constant related to environment and ρ which is a order of logarithm terms
of n and t, it remains hard to determine what is the exact relation between σ2

ω and n. This lower bound is only
providing the conservative guarantee that the regret bound is sub-linear.

Main proof of Theorem 5.1.



Following part is the main proof of Theorem 5.1, starting from decomposing regret by events,

Rn =
K∑

k=2
∆kE[

n∑
t=1

I{It = k}] (33a)

=
n∑

t=1
E[∆It

] (33b)

=
n∑

t=K+1
E[∆It ] +

K∑
t=1

E[∆It ] (33c)

≤
n∑

t=K+1
E[∆It

I{Et}] +
n∑

t=K+1
E[∆It

I{Ēt}] + 2S2L(K − 1) (by (34)) (33d)

≤
n∑

t=K+1
E[∆It

I{Et}] + 2S2L(n−K)P(Ēt) + 2S2L(K − 1) (by (34)) (33e)

=
n∑

t=K+1
E[Et[∆It

I{Et}]] + 2S2L(n−K)P(Ēt) + 2S2L(K − 1) (33f)

≤
n∑

t=K+1
E[( 2

Pt(E′′
t )− Pt(Ē′

t)
+ 1)(c1(t, It) + c2(t, It))Et[∥xIt

∥V −1
t

]]

+ 2S2L(
n∑

t=K+1
E[P(Ē′

t)] + (n−K)P(Ēt) + K − 1) (by lemma A.1) (33g)

≤
n∑

t=K+1
E[( 2

Pt(E′′
t )− Pt(Ē′

t)
+ 1)(c1(t, It) + c2(t, It))Et[∥xIt∥V −1

t
]]

+ 2S2L((n−K)(α + β) + K − 1) (by lemma 5.1 and 5.2) (33h)

Where (34) is upper bound of optimal gap, that is, ∀k ∈ [K]

∆k = θ⊤(x1 − xk)
≤ ∥θ∥2∥x1 − xk∥2

≤ ∥θ∥2

√
2∥x1∥2

2 + 2∥xk∥2
2

≤ 2S2L

(34)

By lemma 5.4 and the technical condition (32),

2
Pt(E′′

t )− Pt(Ē′
t)
≤ 2

b√
2π

exp
(
− 3s

3/2
1,t−1c2

1(t,1)∥x1∥2
2

8σ2
ω(σ2

min+λ)
√

1
M2

log( M1
1−γ )

)
− β

(35a)

≤ 2
b√
2π

exp
(
− 3

8∥x1∥2
2ρ
)
− β

(35b)

Where

M1 := (e− 1)2 exp
(

8σ2
maxS2

2L2
λ2

(σ2
max+λ)2 S2

1L1
− 6
)

(36)

M2 :=
4σ2

maxS2
2L2 − 2 λ2

(σ2
max+λ)2 S2

1L1

( λ2

(σ2
max+λ)2 S2

1L1)2
(37)



Define the following notations for simplicity, note that the following constants are independent of n and d,

C1(α1, β, γ, b) := 2
b√
2π

exp
(
− 3

8∥x1∥2
2ρ
)
− β

+ 1 (38a)

C2(α, β, γ, b, δ) := C1(α1, β, γ, b)×
√

2(L2

√
r log(1 + σ2

max/λ) + 2 log
(

1
δ

)
+ λ1/2S2) (38b)

Then, with probability at least 1− γ,

Rn ≤ C1(α1, β, γ, b)
n∑

t=K+1
E[(c1(t, It) + c2(t, It))Et[∥xIt∥V −1

t
]]

+ 2S2L((n−K)(α + β) + K − 1) (39a)

= C1(α1, β, γ, b)
n∑

t=K+1
E[c1(t, It)Et[∥xIt∥V −1

t
]]

+ C1(α1, β, γ, b)
n∑

t=K+1
E[c2(t, It)Et[∥xIt∥V −1

t
]]

+ 2S2L((n−K)(α + β) + K − 1) (39b)

≤ C1(α1, β, γ, b)(L2

√
d log

(
1 + nL2/λ

αmin

)
+ λ1/2S2)

n∑
t=K+1

E[∥xIt
∥V −1

t
]

+ C1(α1, β, γ, b)
n∑

t=K+1
E[

√√√√2σ2
ωRSSIt,t log

(
2

βIt

)
s2

It,t−1
]

+ 2S2L((n−K)(α + β) + K − 1) (39c)

≤ C1(α1, β, γ, b)(L2

√
d log

(
1 + nL2/λ

αmin

)
+ λ1/2S2)

n∑
t=K+1

E[∥xIt
∥V −1

t
]

+ C1(α1, β, γ, b)

√
2σ2

ω log
(

2
βmin

) n∑
t=K+1

E[
√

RSSIt,t

s2
It,t−1

]

+ 2S2L((n−K)(α + β) + K − 1) (39d)

Further define,

ζ1(n, d) := (L2

√
d log

(
1 + nL2/λ

αmin

)
+ λ1/2S2)

√√√√2(n−K)d log
(

1 +
r∑

i=1
σ2

i /dλ

)
(40)

ζ2(n, d) :=

√
2σ2

ω log
(

2
βmin

)√√√√2(n−K)d log
(

1 +
r∑

i=1
σ2

i /dλ

)
(41)

ζ3(n) := 2K

√
4L2σ2

ωlog( 2
βmin

)(log n + 1) (42)

ζ4(n) := 2S2L((n−K)(α + β) + K − 1) (43)

By lemma A.2, with probability at least 1− (δ + γ),

Rn ≤ C1(α1, β, γ, b)ζ1(n, d) + C2(α, β, γ, b, δ)ζ2(n, d) + C1(α1, β, γ, b)ζ3(n, d) + ζ4(n, d) (44)

The ζ1, ζ2, ζ3 and ζ4 can also be found in Table.1 and C1 and C2 are summarised in the Table.2.



Notation Definition

M1 (e− 1)2 exp
(

8σ2
maxS2

2L2

λ2S2
1L1/(σ2

max + λ)2 − 6
)

M2
4σ2

maxS2
2L2 − 2λ2S2

1L1/(σ2
max + λ)2

(λ2S2
1L1/(σ2

max + λ)2)2

C1 2
(

b√
2π

exp
(
− 3

8∥x1∥2
2ρ
)
− β

)−1
+ 1

C2 C1
√

2(L2

√
r log(1 + σ2

max/λ) + 2 log
( 1

δ

)
+ λ1/2S2)

Table 2: Constants in Analysis

A.2 PROOF OF COROLLARY 5.2

Proof. We will analyze terms C1, C2 and ζ1, ζ2, ζ3, ζ4 one by one in terms of the rate in the big O notation with
respect to n and d. Also recall that the notation Õ is the big O notation up to logarithmic factor with respect to
n and d. Following steps include the first step for C1 and C2, the second step for ζ1, ζ2, ζ3 and ζ4 and the last
one for combining results.
Step 1 As β is chosen as a vector with elements 1√

n
, the term C1 is actually O(ρ) which is assumed to be Õ(1).

Under stochastic linear bandit that contexts and subgaussian constant L2 are given, C2 is also Õ(1). Note that,
other parameters such as δ, λ and b are viewed as constants.
Step 2. From Table.1, as α is chosen as a vector with elements 1√

n
, we can conclude that ζ1(n, d) = O(

√
d log n×

√
nd log d), ζ2(n, d) = O(

√
log n×

√
nd log d), ζ3(n) = O(log n

√
log n) and ζ4(n) = O(

√
n). By the notation of Õ,

it can be summarised as ζ1(n, d) = Õ(d
√

n), ζ2(n, d) = Õ(
√

dn), ζ3(n) = Õ(1) and ζ4(n) = Õ(
√

n).
Step 3. As a result, expected regret of our LinReBoot in Theorem 5.1 under the choice of tuning parameter
mentioned in Corollary 5.2, has high probability upper bound with the order Õ(d

√
n)+Õ(

√
dn)+Õ(1)+Õ(

√
n) =

Õ(d
√

n).

A.3 PROOF OF LEMMA 5.1

Proof. Based on Theorem 2 in [Abbasi-Yadkori et al., 2011] which is Lemma C.1, for all α ∈ (0, 1),

P(
∥∥∥θ − θ̂t

∥∥∥
V t

≤ L2

√
d log

(
1 + tL2/λ

α

)
+ λ1/2S2) ≥ 1− α (45)

Thus, ∀αk ∈ (0, 1), with probability at least 1− αk

| ˆµk,t − µk| = |x⊤(θ̂t − θ)| (46a)

≤ ∥xk∥V −1
t

∥∥∥θ̂t − θ
∥∥∥

V t

(46b)

≤ L2

√
d log

(
1 + tL2/λ

α

)
+ λ1/2S2)∥xk∥V −1

t
(lemma C.1) (46c)

That is, let c1(t, k) := L2

√
d log

(
1+tL2/λ

αk

)
+ λ1/2S2,

P(Et,k) ≥ 1− αk (47)

Therefore,

P(Ēt) = P(
K⋃

k=1
Ēt,k) ≤

K∑
k=1

αk (48)



A.4 PROOF OF LEMMA 5.2

Proof. Recall the our definition of event E′
t,k and RSSk,t,

E′
t,k := {|µ̃k,t − µ̂k,t| ≤ c2(t, k)∥xk∥V −1

t
}

RSSk,t :=
sk,t−1∑

i=1
e2

k,t,i

Then control the probability of the bad event Ē′
t,k which indicates a "large" deviation between estimated mean

and Bootstrapped mean of the k-th arm at round t. That is, ∀t ≥ K + 1,∀k ∈ [K],

Pt(Ē′
t,k) = Pt(|µ̃k,t − µ̂k,t| > c2(t, k)∥xk∥V −1

t
) (49a)

= Pt(|
1

sk,t−1

sk,t−1∑
i=1

ωk,t,iek,t,i| > c2(t, k)∥xk∥V −1
t

) (49b)

= Pt(|

√
σ2

ω

∑sk,t−1
i=1 e2

k,t,i

s2
k,t−1

Z| > c2(t, k)∥xk∥V −1
t

) (49c)

= Pt(|Z| >
c2(t, k)sk,t−1∥xk∥V −1

t√
σ2

ωRSSk,t

) (Define Z ∼ N(0, 1)) (49d)

≤ Pt(|Z| >
c2(t, k)sk,t−1∥xk∥V −1

t√
σ2

ωRSSk,t

) (49e)

≤ 2 exp
(
−

c2
2(t, k)s2

k,t−1∥xk∥2
V −1

t

σ2
ωRSSk,t

)
(Z is subgaussian with constant 1) (49f)

Now let βk := 2 exp
(
−

c2
2(t,k)s2

k,t−1∥xk∥2
V

−1
t

σ2
ωRSSk,t

)
then

c2(t, k) :=

√√√√√2σ2
ωRSSk,t log

(
2

βk

)
s2

k,t−1∥xk∥2
V −1

t

(50)

Therefore,

Pt(|µ̃k,t − µ̂k,t| ≤ c2(t, k)∥xk∥V −1
t

) ≥ 1− βk (51)

A.5 PROOF OF LEMMA 5.3

Proof. Follow the same notations in A.4,

RSSk,t :=
sk,t−1∑

i=1
e2

k,t,i Z ∼ N(0, 1)



Similar to lemma 10 in [Wang et al., 2020], the vanilla Gaussian tail lower bound, lemma C.2, is used. That is, ∀t,
∀b > 0

Pt(E′′
t ) = Pt(µ̃1,t − µ̂1,t > c1(t, 1)∥x1∥V −1

t
) (52a)

= Pt(
1

s1,t−1

s1,t−1∑
i=1

ω1,ie1,t,i > c1(t, 1)∥x1∥V −1
t

) (52b)

= Pt(Z >
c1(t, 1)s1,t−1∥x1∥V −1

t√
σ2

ωRSS1,t

) (52c)

≥


b√
2π

exp
(
−

3c2
1(t,1)s2

1,t−1∥x1∥2
V

−1
t

2σ2
ωRSS1,t

)
if

c1(t,1)s1,t−1∥x1∥
V

−1
t√

σ2
ωRSS1,t

≥ b

Φ(−b) if 0 <
c1(t,1)s1,t−1∥x1∥

V
−1
t√

σ2
ωRSS1,t

< b

(52d)

Where b is the constant chosen by us. This b controlling the sharpness of the lower bound of Gaussian tail. Notice

that (20) is equivalent to the condition
c1(t,1)s1,t−1∥x1∥

V
−1
t√

σ2
ωRSS1,t

≥ b by the definition (17) and (18), the above lower
bound can be writed as,

Pt(E′′
t ) ≥


b√
2π

exp
(
−

3c2
1(t,1)s2

1,t−1∥x1∥2
V

−1
t

2σ2
ωRSS1,t

)
if c1(t,1)

c2(t,1) ≥ b

√
2 log

(
2

β1

)
Φ(−b) if c1(t,1)

c2(t,1) < b

√
2 log

(
2

β1

) (53)

A.6 PROOF OF LEMMA 5.4

Proof. Recall our true model:
Y t = Xtθ + ϵt

Further define matrix Qk,t which indicates the RSS decomposition for the k-th arm at time t:

[Qk,t]ij =
{

1 i = j and Ii = k

0 otherwise
∀i, j ∈ [t] (54)

In this proof, we will start from stating lemmas and technical condition, then give main proof which has three
steps.

Lemma A.4. By (54), which is definition of Qk,t, RSSt can be decomposed by arms,

RSSt :=
∥∥∥Y t −Xtθ̂t

∥∥∥2

2
=

K∑
k=1

RSSk,t (55)

And RSSk,t :=
∥∥∥Qk,t(Y t −Xtθ̂t)

∥∥∥2

2
can be re-writed as:

RSSk,t =
∥∥∥Qk,t−1(I −Xt−1V −1

t X⊤
t−1)Xt−1θ

∥∥∥2

2

+
∥∥∥Qk,t−1(I −Xt−1V −1

t X⊤
t−1)ϵt−1

∥∥∥2

2

+2θ⊤X⊤
t−1(I −Xt−1V −1

t X⊤
t−1)Q⊤

k,t−1Qk,t−1(I −Xt−1V −1
t X⊤

t−1)ϵt−1

(56)

Proof. See appendix B.4.



Remark. Lemma A.4 provides a decomposition of RSS for arm k at round t.

Lemma A.5. Stochastic process {ϵt}∞
t=1 satisfies that for some R1, R2 > 0,

eR1η2
≤ E[eηϵt |Ft−1] ≤ eR2η2

∀η ≥ 0

Singular value decomposition of XK and definition of ridge shrinkage context matrix Z are

XK := GΣU

Ω := Σ(Σ⊤Σ + λI)−1Σ⊤

Z := GΩΣU

Let z1 be the vector of the first row of matrix Z and suppose (x⊤
1 − z⊤

1 θ)2 ≥ S2
1 . Then ∀η ≥ 0, ∀t ≥ K + 1,

exp( λ2

(σ2
max + λ)2 S2

1L1η2) ≤ E[eηξt ] ≤ exp(σ2
maxS2

2L2η2) (57)

Where ξt := 1√
s1,t−1

θ⊤X⊤
t−1(I −Xt−1V −1

t X⊤
t−1)Q⊤

1,t−1Q1,t−1(I −Xt−1V −1
t X⊤

t−1)ϵt−1

Proof. See appendix B.5.

Remark. Lemma A.5 indicates that the random variable ξt which is based on noise process {ϵτ}t−1
τ=1 also has the

clipping noise property. Thus this random variable is also subgaussian. This result supports our application of
Lemma A.6 which is given in the next part.

Lemma A.6. Suppose X is a random variable such that ∃R1, R2 > 0

exp
(
R1t2) ≤ E[etX ] ≤ exp

(
R2t2) ∀t ≥ 0 (58)

Then
P(X ≥ x) ≥ C1 exp

(
−C2x2) (59)

Where C1 := (e− 1)2e
8R2
R1

−6 and C2 := 4R2−2R1
R2

1

Proof. See appendix B.6

Remark. This Lemma is inspired by the Theorem 1 and its proof in [Zhang and Zhou, 2020]. This Lemma gives
the lower tail bound of random variable X and the only condition is that there is upper and lower bound of the
form eCt2 for the moment generating function of X.

Technical Condition. The difference between Pt(E′′
t ) and Pt(Ē′

t) plays a key role in bounding regret when
applying the stochastic exploration on least squared framework. The following part is the probabilistic analysis of
lower bound of this difference, which will be denoted as D < Pt(E′′

t )− Pt(Ē′
t) in this proof. First impose some

requirements on the tuning parameters β, D, b:

D + β < min(Φ(−b), b√
2π

e− 3
2 b2

) (60)

This requirement indicates three results:

D + β < Φ(−b) (61)

D + β <
b√
2π

(62)

− 3
2 log

(√
2π
b (D + β)

) <
1
b2 (63)

Main proof of lemma 5.4
Step 1: Express event {Pt(E′′

t )− Pt(Ē′
t) > D} as an inequality of RSS1,t



The idea in this step is starting from decomposing our target event {Pt(Et′′)− Pt(Ē′
t) > D} by the condition

mentioned in lemma 5.3. That is,

P(Pt(E′′
t )− Pt(Ē′

t) > D) (64a)
≥P(Pt(E′′

t ) > D + β) (by lemma 5.2) (64b)

=P({Pt(E′′
t ) > D + β} ∩ {

c1(t, 1)s1,t−1∥x1∥V −1
t√

σ2
ωRSS1,t

≥ b})

+ P({Pt(E′′
t ) > D + β} ∩ {

c1(t, 1)s1,t−1∥x1∥V −1
t√

σ2
ωRSS1,t

< b}) (64c)

≥P({ b√
2π

exp
(
−

3s2
1,t−1c2

1(t, 1)∥x1∥2
V −1

t

2σ2
ωRSS1,t

)
> D + β} ∩ {

c1(t, 1)s1,t−1∥x1∥V −1
t√

σ2
ωRSS1,t

≥ b})

+ P({Φ(−b) > D + β} ∩ {
c1(t, 1)s1,t−1∥x1∥V −1

t√
σ2

ωRSS1,t

< b}) (by lemma 5.3) (64d)

Then we apply the technical condition described in 60,

P(Pt(E′′
t )− Pt(Ē′

t) > D) (65a)

≥P({RSS1,t > −
3c2

1(t, 1)s2
1,t−1∥x1∥2

V −1
t

2σ2
ω log

(√
2π
b (D + β)

) } ∩ {RSS1,t ≤
c2

1(t, 1)s2
1,t−1∥x1∥2

V −1
t

σ2
ωb2 })

+ P(RSS1,t >
c2

1(t, 1)s2
1,t−1∥x1∥2

V −1
t

σ2
ωb2 ) (by (61) and (62)) (65b)

=P(RSS1,t > −
3c2

1(t, 1)s2
1,t−1∥x1∥2

V −1
t

2σ2
ω log

(√
2π
b (D + β)

) ) (by (63)) (65c)

Step 2: Apply lemmas to give lower bounds
In this step, three lemmas are used.

P(RSS1,t > −
3c2

1(t, 1)s2
1,t−1∥x1∥2

V −1
t

2σ2
ω log

(√
2π
b (D + β)

) ) (66a)

≤P(θ⊤X⊤
t−1(I −Xt−1V −1

t X⊤
t−1)Q⊤

1,t−1Q1,t−1(I −Xt−1V −1
t X⊤

t−1)ϵt−1

>
3c2

1(t, 1)s2
1,t−1∥x1∥2

V −1
t

8σ2
ω log

(
b√

2π(D+β)

) ) (by (67)) (66b)

Where (67) is derived directly from lemma A.4,

RSS1,t ≥ 4θ⊤X⊤
t−1(I −Xt−1V −1

t X⊤
t−1)Q⊤

1,t−1Q1,t−1(I −Xt−1V −1
t X⊤

t−1)ϵt−1 (67)

Denote ξt := 1√
s1,t−1

θ⊤X⊤
t−1(I−Xt−1V −1

t X⊤
t−1)Q⊤

1,t−1Q1,t−1(I−Xt−1V −1
t X⊤

t−1)ϵt−1. By lemma A.5, moment
generating function of random variable ξt has upper bound and lower bound,

exp( λ2

(σ2
max + λ)2 S2

1L1η2) ≤ E[eηξt ] ≤ exp(σ2
maxS2

2L2η2)



Then applying lemma A.6,

P(Pt(E′′
t )− Pt(Ē′

t) > D) ≥P(RSS1,t > −
3c2

1(t, 1)s2
1,t−1∥x1∥2

V −1
t

2σ2
ω log

(√
2π
b (D + β)

) ) (68a)

≥P(ξt >
3c2

1(t, 1)s3/2
1,t−1∥x1∥2

V −1
t

8σ2
ω log

(
b√

2π(D+β)

) ) (68b)

≥M1 exp

−M2(
3c2

1(t, 1)s3/2
1,t−1∥x1∥2

V −1
t

8σ2
ω log

(
b√

2π(D+β)

) )2

 (68c)

Where

M1 := (e− 1)2 exp
(

8σ2
maxS2

2L2
λ2

(σ2
max+λ)2 S2

1L1
− 6
)

(69)

M2 :=
4σ2

maxS2
2L2 − 2 λ2

(σ2
max+λ)2 S2

1L1

( λ2

(σ2
max+λ)2 S2

1L1)2
(70)

Let 1− γ := M1 exp
(
−M2(

3c2
1(t,1)s

3/2
1,t−1∥x1∥2

V
−1
t

8σ2
ω log

(
b√

2π(D+β)

) )2

)
, then

D := b√
2π

exp

−3c2
1(t, 1)s3/2

1,t−1∥x1∥2
V −1

t

8σ2
ω

√
1

M2
log
(

M1
1−γ

)
− β (71)

Thus the connection between concentration and anti-concentration can be described as the following high
probability lower bound,

P(Pt(E′′
t )− Pt(Ē′

t) >
b√
2π

exp

−3c2
1(t, 1)s3/2

1,t−1∥x1∥2
V −1

t

8σ2
ω

√
1

M2
log
(

M1
1−γ

)
− β) ≥ 1− γ (72)

Notice that ∥x1∥2
V −1

t
≤ ∥x1∥2

2
σ2

min+λ
, then ∀t ≥ K + 1, with probability at least 1− γ,

Pt(E′′
t )− Pt(Ē′

t) >
b√
2π

exp

− 3s
3/2
1,t−1c2

1(t, 1)∥x1∥2
2

8σ2
ω(σ2

min + λ)
√

1
M2

log
(

M1
1−γ

)
− β (73)

Where M1, M2 are defined as (69) and (70).

Technical condition on b becomes,

b√
2π

exp

− 3s
3/2
1,t−1c2

1(t, 1)∥x1∥2
2

8σ2
ω(σ2

min + λ)
√

1
M2

log
(

M1
1−γ

)
 < min(Φ(−b), b√

2π
e− 3

2 b2
) (74)



B PROOFS OF TECHNICAL LEMMAS

B.1 PROOF OF LEMMA A.1

Proof. This proof is mainly adapted from proof of lemma 2 in [Kveton et al., 2020a]. The main extension is to
redefine the concept of ”least uncertain undersampled” arm to meet the need of residual bootstrap exploration.
First define ’under sampled’ arms,

S̄t := {k ∈ [K] : ct,k∥xk∥V −1
t
≥ ∆k} (75)

Where ct,k := c1(t, k) + c2(t, k) and the set of "sufficiently sampled" arms is St := [K] \ S̄t. Also define the "least
uncertain" arm at round t,

Jt := arg min
k∈S̄t

ct,k∥xk∥V −1
t (76)

Then when event E′
t occurs,

∆It
= µ1 − µIt

+ µJt
− µJt

(77a)
= ∆Jt

+ µJt
− µIt

(77b)
= ∆Jt

+ µJt
− µ̃Jt,t + µ̃Jt,t − µ̃It,t + µ̃It,t − µIt

(77c)
≤ ∆Jt

+ ct,Jt
∥xJt
∥V −1

t
+ ct,It

∥xIt
∥V −1

t
+ µ̃Jt,t − µ̃It,t (Et ∩ E′

t) (77d)

≤ ∆Jt
+ ct,Jt

∥xJt
∥V −1

t
+ ct,It

∥xIt
∥V −1

t
(µ̃Jt,t < µ̃It,t) (77e)

≤ 2ct,Jt∥xJt∥V −1
t

+ ct,It∥xIt∥V −1
t

(Jt ∈ S̄t) (77f)

Thus conditional expected gap can be bounding by the norms of two special arms It and Jt at round t,

Et[∆It ] = Et[∆ItI{E′
t}] + Et[∆ItI{Ē′

t}] (78a)
≤ Et[2ct,Jt∥xJt∥V −1

t
+ ct,It∥xIt∥V −1

t
] + MPt(Ē′

t) (78b)

Now we need to bound the norm of Jt by the norm of It. The key observation to find the relation between It and
Jt is

Et[ct,It
∥xIt
∥V −1

t
] ≥ Et[ct,It

∥xIt
∥V −1

t
|It ∈ S̄t]Pt(It ∈ S̄t) ≥ ct,Jt

∥xJt
∥V −1

t
Pt(It ∈ S̄t) (79)

Thus

ct,Jt∥xJt∥V −1
t
≤

Et[ct,It
∥xIt
∥V −1

t
]

Pt(It ∈ S̄t)
(80)

Now we need to give lower bound of Pt(It ∈ S̄t),

Pt(It ∈ S̄t) = Pt(∃k ∈ S̄t s.t µ̃k,t > max
j∈St

µ̃j,t) (81a)

≥ Pt(µ̃1,t > max
j∈St

µ̃j,t) (1 ∈ S̄t) (81b)

≥ Pt({µ̃1,t > max
j∈St

µ̃j,t} ∩ E′
t) (81c)

≥ Pt({µ̃1,t > µ1} ∩ E′
t) (by (82)) (81d)

≥ Pt(µ̃1,t > µ1)− Pt(Ē′
t) (81e)

≥ Pt(E′′
t )− Pt(Ē′

t) (by (83)) (81f)

Where (82), (83) are
∀j ∈ St µ̃j,t ≤ µj + ct,j∥xj∥V −1

t
< µj + ∆j = µ

⇒{µ̃1,t > µ1} ⊂ {µ̃1,t > µ̃j,t ∀j ∈ St}
(82)

{µ̃1,t − µ̂1,t > c1(t, 1)∥x1∥V −1
t
} ⊂ {µ̃1,t > µ1} (since Et occurs) (83)

Therefore,
Et[∆It

] ≤ ( 2
Pt(E′′

t )− Pt(Ē′
t)

+ 1)(c1(t, It) + c2(t, It))Et[∥xIt
∥V −1

t
] + MP(Ē′

t) (84)



B.2 PROOF OF LEMMA A.2

Proof. First define {ϵIt,i}
sIt,t−1
i=1 for the noise of arm It at round t. Note that these {ϵIt,i}

sIt,t−1
i=1 is a subset of

the noise vector ϵt−1 = (ϵ1, ..., ϵt−1)⊤ at round t. Also define FIt,i, the randomness history until the noise
ϵIt,i is generated and let IIt,t be the set of time stamps when arm It is pulled up to round t. For example,
suppose arm 1 is pulled at round 1, 11, 21, 25 up to round 26, then I1,26 = {1, 11, 21, 25} and noise set is
{ϵ1,i}

s1,25
i=1 = {ϵ1,1, ϵ1,2, ϵ1,3, ϵ1,4}. For one of these noises such as ϵ1,3, F1,3 = F20 since ϵ1,3 = ϵ21, indicating

E[eηϵ1,3 |F20] ≤ eR2η2 , ∀η ≥ 0. As a result, other expressions of residuals and RSS of the arm pulled at round
t ≥ K + 1 are

eIt,t,i = x⊤
It

θ + ϵIt,i − x⊤
It

θ̂t (85)

RSSIt,t =
sIt,t−1∑

i=1
e2

It,t,i =
sIt,t−1∑

i=1
(x⊤

It
θ + ϵIt,i − x⊤

It
θ̂t)2 (86)

Starting from ridge estimate θ̂t,

θ̂t = V −1
t X⊤

t−1(Xt−1θ + ϵt−1) (87a)
= V −1

t X⊤
t−1Xt−1θ + V −1

t X⊤
t−1ϵt−1 (87b)

= V −1
t X⊤

t−1ϵt−1 + V −1
t (X⊤

t−1Xt−1 + λI)θ − λV −1
t θ (87c)

= V −1
t X⊤

t−1ϵt−1 − λV −1
t θ + θ (87d)

Thus,

x⊤
It

θ − x⊤
It

θ̂t = x⊤
It

θ − x⊤
It

V −1
t X⊤

t−1ϵt−1 + λx⊤
It

V −1
t θ − x⊤

It
θ (88a)

= ⟨xIt
, X⊤

t−1ϵt−1⟩V −1
t
− λ⟨xIt

, θ⟩V −1
t

(88b)

So RSS becomes,

RSSIt,t =
sIt,t−1∑

i=1
(x⊤

It
θ − x⊤

It
θ̂t + ϵIt,i)2

≤ 2sIt,t−1

(
⟨xIt

, X⊤
t−1ϵt−1⟩V −1

t
− λ⟨xIt

, θ⟩V −1
t

)2
+ 2

sIt,t−1∑
i=1

ϵ2
It,i

(89)

Therefore,

n∑
t=K+1

E[
√

RSSIt,t

s2
It,t−1

] ≤
n∑

t=K+1
E[

√√√√2
(
⟨xIt

, X⊤
t−1ϵt−1⟩V −1

t
− λ⟨xIt

, θ⟩V −1
t

)2
+ 2

s2
It,t−1

sIt,t−1∑
i=1

ϵ2
It,i] (90a)

≤
√

2
n∑

t=K+1
E

(t)
1 +

√
2

n∑
t=K+1

E
(t)
2 (90b)

where

E
(t)
1 = E[⟨xIt

, X⊤
t−1ϵt−1⟩V −1

t
− λ⟨xIt

, θ⟩V −1
t

] (91)

E
(t)
2 = E[

√√√√ 1
s2

It,t−1

sIt,t−1∑
i=1

ϵ2
It,i] (92)

The following part is bounding
∑n

t=K+1 E
(t)
1 and

∑n
t=K+1 E

(t)
2 respectively.

Bounding
∑n

t=K+1 E
(t)
1 .



By Cauchy-Schwarz inequality,

(
⟨xIt , X⊤

t−1ϵt−1⟩V −1
t
− λ⟨xIt , θ⟩V −1

t

)2
≤
(
∥xIt∥V −1

t

∥∥∥X⊤
t−1ϵt−1

∥∥∥
V −1

t

+ λ∥xIt∥V −1
t
∥θ∥V −1

t

)2
(93a)

≤
(
∥xIt
∥V −1

t

∥∥∥X⊤
t−1ϵt−1

∥∥∥
V −1

t

+ ∥xIt
∥V −1

t
(λ1/2S2)

)2
(by (94))

(93b)

=
(
∥xIt∥V −1

t

(
∥X⊤

t−1ϵt−1∥V −1
t

+ λ1/2S2
))2

(93c)

where (94) is

∥θ∥2
V −1

t
≤ λmax(V −1

t )∥θ∥2
2 = 1

λ
∥θ∥2

2 ≤
1
λ

S2
2 (94)

By lemma C.3, with probability at least 1− δ,

(
⟨xIt

, X⊤
t−1ϵt−1⟩V −1

t
− λ⟨xIt

, θ⟩V −1
t

)2
≤ ∥xIt

∥2
V −1

t
(L2

√√√√2 log
(

det(V t)1/2 det(λI)−1/2

δ

)
+ λ1/2S2)2 (95a)

= ∥xIt∥
2
V −1

t
(L2

√√√√2 log
(

(λd−r
∏r

j=1(σ2
j + λ))1/2λ−d/2

δ

)
+ λ1/2S2)2

(95b)

≤ ∥xIt∥
2
V −1

t
(L2

√
rlog(1 + σ2

max/λ) + 2 log
(

1
δ

)
+ λ1/2S2)2 (95c)

Therefore, with probability at least 1− δ,

n∑
t=K+1

E
(t)
1 ≤ (L2

√
r log(1 + σ2

max/λ) + 2 log
(

1
δ

)
+ λ1/2S2)

n∑
t=K+1

E[∥xIt∥V −1
t

] (96a)

Bounding
∑n

t=K+1 E
(t)
2 .

First separate
∑n

t=K+1 E
(t)
2 by arms,

n∑
t=K+1

E
(t)
2 =

n∑
t=K+1

E[

√√√√ 1
s2

It,t−1

sIt,t−1∑
i=1

ϵ2
It,i] (97a)

≤
K∑

k=1
E[
∑

t∈Ik,n

√√√√ 1
s2

k,t−1

sk,t−1∑
i=1

ϵ2
k,i] (97b)

=
K∑

k=1
E[

sk,n−1∑
j=1

√
1
j2 (ϵ2

k,1 + · · ·+ ϵ2
k,j)] (97c)



For each arm,

E[
sk,n−1∑

j=1

√
1
j2 (ϵ2

k,1 + · · ·+ ϵ2
k,j)] (98a)

=E[
sk,n−1∑

j=1
E[
√

1
j2 (ϵ2

k,1 + · · ·+ ϵ2
k,j)|Fk,j ]] (98b)

≤E[
sk,n−1∑

j=1

√
E[ 1

j2 (ϵ2
k,1 + · · ·+ ϵ2

k,j)|Fk,j ]] (98c)

≤E[
sk,n−1∑

j=2

√
1
j2 (ϵ2

k,1 + · · ·+ ϵ2
k,j−1) + 1

j2 4L2 + 2
√

L2] (by lemma C.4) (98d)

=E[
sk,n−1−1∑

j=1

√
1

(j + 1)2 (ϵ2
k,1 + · · ·+ ϵ2

k,j) + 1
(j + 1)2 4L2 + 2

√
L2] (98e)

Conditioning on appropriate historical randomness Fk,j again,

E[
sk,n−1∑

j=1

√
1
j2 (ϵ2

k,1 + · · ·+ ϵ2
k,j)] (99a)

=E[
sk,n−1−1∑

j=1
E[
√

1
(j + 1)2 (ϵ2

k,1 + · · ·+ ϵ2
k,j) + 1

(j + 1)2 4L2|Fk,j ] + 2
√

L2] (99b)

≤E[
sk,n−1−1∑

j=1

√
E[ 1

(j + 1)2 (ϵ2
k,1 + · · ·+ ϵ2

k,j) + 1
(j + 1)2 4L2|Fk,j ] + 2

√
L2] (99c)

≤E[
sk,n−1−1∑

j=2

√
1

(j + 1)2 (ϵ2
k,1 + · · ·+ ϵ2

k,j−1) + 2
(j + 1)2 4L2 + 2√

2
√

L2 + 2
√

L2] (by lemma C.4) (99d)

=E[
sk,n−1−2∑

j=1

√
1

(j + 2)2 (ϵ2
k,1 + · · ·+ ϵ2

k,j) + 2
(j + 2)2 4L2 + (1 + 1

2)× 2
√

L2] (99e)

Applying conditional expectation given historical randomness until there is no randomness from noise,

E[
sk,n−1∑

j=1

√
1
j2 (ϵ2

k,1 + · · ·+ ϵ2
k,j)] ≤ 2

√
L2E[(1 + 1

2 + · · ·+ 1
sk,n−1

)] (100a)

≤ 2
√

L2E[log(sk,n−1) + 1] (by (101)) (100b)
≤ 2
√

L2(log n + 1) (100c)

where (101) is
sk,n−1∑

i=1

1
i
≤ 1 +

∫ sk,n−1

1

1
u

du = log(sk,n−1) + 1 (101)

Consequently,
n∑

t=K+1
E

(t)
2 ≤ 2K

√
L2(log n + 1) (102)

Therefore, with probability at least 1− δ,
n∑

t=K+1
E[
√

RSSIt,t

s2
It,t−1

] ≤
√

2(L2

√
r log(1 + σ2

max/λ) + 2 log
(

1
δ

)
+ λ1/2S2)

n∑
t=K+1

E[∥xIt∥V −1
t

] + 2
√

2K
√

L2(log n + 1)

(103)



B.3 PROOF OF LEMMA A.3

Proof. Similar version of this lemma is proven by [Abbasi-Yadkori et al., 2011] and [Lattimore and Szepesvári,
2020], following part is adapted version based on the notations in this paper. The main adaptation is using
the eigenvalues of context matrix XK under stochastic linear bandit setting. This proof requires proof of two
elementary algebraic results,

log
det(V n)

det(V K+1) =
n∑

t=K+1
log
(

1 + ∥xIt∥
2
V −1

t

)
(104)

log det(V n)
det(V K+1) ≤ d log

(
λ + n

∑r
i=1 σ2

i /d

det(V K+1)1/d

)
(105)

Step 1: Proof of (104).
Starting from the determinant of V n,

det(V n) = det(V n−1 + xIn−1x⊤
In−1

) (106a)

= det(V 1/2
n−1(I + V

−1/2
n−1 xIn−1x⊤

In−1
V

−1/2
n−1 )V 1/2

n−1) (106b)

= det(V n−1)(1 +
∥∥xIn−1

∥∥2
V −1

n−1
) (106c)

= det(V K+1)
n∏

t=K+1
(1 +

∥∥xIt−1

∥∥2
V −1

t−1
) (106d)

Then take logarithm on both side and (104) is obtained.
Step 2: Proof of (105).
By inequality between trace and determinant and notice that eigenvalues of V n are σ2

1 + λ, ..., σ2
r + λ and d− r λ,

then,

det(V n) ≤ (1
d

tr(V n))d = (dλ +
∑r

i=1 σ2
i

d
)d (107)

Thus,

log det(V n)
det(V K+1) ≤ log

(
1

det(V K+1) (dλ +
∑r

i=1 σ2
i

d
)d

)
= d log

(
λ +

∑r
i=1 σ2

i /d

det(V K+1)1/d

)
(108)

Step 3: Provide upper bound of sum of norms
By (104) and (105), using a analytic result x ≤ 2log(1 + x)∀x ≥ 0,then sum of the context norm under matrix
V −1

t can be bounded,
n∑

t=K+1
∥xIt
∥2

V −1
t
≤

n∑
t=K+1

2 log
(

1 + ∥xIt
∥2

V −1
t

)
(109a)

= 2 log det(V n)
det(V K+1) (by (104)) (109b)

≤ 2d log
(

λ + n
∑r

i=1 σ2
i /d

det(V K+1)1/d

)
(by (105)) (109c)

= 2d log
(

λ +
∑r

i=1 σ2
i /d

(λd−r
∏r

i=1(σ2
i + λ))1/d

)
(109d)

≤ 2d log
(

1 + n
∑r

i=1 σ2
i

dλ

)
(109e)

Therefore, from Cauchy-Schwarz inequality,

n∑
t=K+1

∥xIt
∥V −1

t
≤

√√√√(n−K)
n∑

t=K+1
∥xIt
∥2

V −1
t
≤

√
2(n−K)d log

(
1 +

∑r
i=1 σ2

i

dλ

)
(110)



B.4 PROOF OF LEMMA A.4

Proof. For simplicity, focuses on the k-th arm at time t,

Q := Qk,t−1, X := Xt−1, Y := Y t−1, ϵ := ϵt−1, V := V t

Therefore,

RSSk,t =
∥∥∥Q(Y −Xθ̂t)

∥∥∥2

2
(111a)

=
∥∥∥Q(Y −XV −1

t X⊤Y )
∥∥∥2

2
(111b)

=
∥∥∥Q(I −XV −1

t X⊤)Y
∥∥∥2

2
(111c)

=
∥∥∥Q(I −XV −1

t X⊤)Xθ + Q(I −XV −1
t X⊤)ϵ

∥∥∥2

2
(by Y = Xθ + ϵ) (111d)

=
∥∥∥Q(I −XV −1

t X⊤)Xθ
∥∥∥2

2
+
∥∥∥Q(I −XV −1

t X⊤)ϵ
∥∥∥2

2

+ 2θ⊤X⊤(I −XV −1
t X⊤)Q⊤Q(I −XV −1

t X⊤)ϵ (111e)

B.5 PROOF OF LEMMA A.5

Proof. Follow the same simplified notations in B.4,

Q := Qk,t−1, X := Xt−1, Y := Y t−1, ϵ := ϵt−1, V := V t

In the following part of proof, we overload the notations for singular value decomposition of matrices Xt−1 and
XK , note that this notations are only used in this proof for lemma A.5,

X := Xt−1 = GΣU and M := I −XV −1X⊤

Further denote s := s1,t−1 and
a := 1√

s
MQ⊤QMXθ = (a1, ..., at−1)⊤

Step 1: Two sided bounds given a
The key observation is that random vector a is deterministic given history Ft−2 ∪ {{ωk,t−1,i}

sk,t−1
i=1 }K

k=1. Recalling
that noise ϵτ is independent of ωk,t,i for ∀τ, k, t, i, by conditioning on Ft−2,

E[eηξt ] = E[E[eηa⊤ϵ|Ft−2 ∪ {{ωk,t−1,i}
sk,t−1
i=1 }K

k=1]] = E[eη
∑t−2

i=1
aiϵiE[eat−1ϵt−1 |Ft−2]] (112)

which indicates
E[eη2

∑t−2
i=1

aiϵi · eη2a2
t−1L1 ] ≤ E[eηξt ] ≤ E[eη2

∑t−2
i=1

aiϵi · eη2a2
t−1L2 ] (113)

Therefore, by conditioning on Ft−2,Ft−3, ...,F1 consecutively, the partial randomness from vector a is left to
integrated by the outside expectation E and

E[eη2∥a∥2
2L1 ] ≤ E[eηξt ] ≤ E[eη2∥a∥2

2L2 ] (114)

Step 2: Two sided bounds for ∥a∥2
2

Another key observation is from eigenvalues of XV −1X⊤ under the ridge regression procedure. It can be shown
that the eigenvalues of matrix XV −1X⊤ are σ2

1
σ2

1+λ
, ..,

σ2
r

σ2
r+λ and t− 1− r zeros. Thus, spectral decomposition of

matrix M is, M = G(I −Ω)G⊤ and I −Ω is diagonal matrix with with diagonal elements λ
σ2

1+λ
, .., λ

σ2
r+λ and



t− 1− r ones. We use λmax(A) to denote the maximum eigenvalue of a matrix A.
Thus,

∥a∥2
2 = 1

s
θ⊤X⊤MQ⊤QMMQ⊤QMXθ (115a)

= 1
s

θ⊤X⊤G(I −Ω)G⊤QG(I −Ω)G⊤G(I −Ω)G⊤QG(I −Ω)G⊤Xθ (115b)

= 1
s

θ⊤X⊤G(I −Ω)G⊤QG(I −Ω)2G⊤QG(I −Ω)G⊤Xθ (115c)

For upper bound,

∥a∥2
2 ≤ θ⊤X⊤G(I −Ω)G⊤QG(I −Ω)2G⊤QG(I −Ω)G⊤Xθ (s ≥ 1) (116a)
≤ λmax((I −Ω)2)θ⊤X⊤G(I −Ω)G⊤QG(I −Ω)G⊤Xθ (116b)
= θ⊤U⊤Σ⊤(I −Ω)G⊤QG(I −Ω)ΣUθ (X := GΣU and λmax((I −Ω)2) = 1) (116c)
≤ θ⊤U⊤Σ⊤(I −Ω)2ΣUθ (λmax(Q) = 1) (116d)
≤ θ⊤U⊤Σ⊤ΣUθ (116e)
≤ σ2

maxθ⊤U⊤Uθ (λmax(Σ⊤Σ) = σ2
max) (116f)

= σ2
max∥θ∥

2
2 (116g)

≤ σ2
maxS2

2 (116h)

For lower bound,

∥a∥2
2 ≥

1
s

λmin((I −Ω)2)θ⊤U⊤Σ⊤(I −Ω)G⊤QG(I −Ω)ΣUθ (117a)

= 1
s

( λ

σ2
max + λ

)2θ⊤U⊤Σ⊤(I −Ω)G⊤QG(I −Ω)ΣUθ (λmin((I −Ω)2) = ( λ

σ2
max + λ

)2) (117b)

= 1
s

( λ

σ2
max + λ

)2θ⊤(X −Z)⊤Q(X −Z)θ (Z := GΩΣU) (117c)

= ( λ

σ2
max + λ

)2θ⊤(x1 − z1)(x1 − z1)⊤θ (117d)

= ( λ

σ2
max + λ

)2((x1 − z1)⊤θ)2 (117e)

≥ ( λ

σ2
max + λ

)2S2
1 (117f)

Therefore, ∀η ≥ 0,

exp
(

λ2

(σ2
max + λ)2 S2

1L1η2
)
≤ E[eηξt ] ≤ exp

(
σ2

maxS2
2L2η2) (118)

B.6 PROOF OF LEMMA A.6

Proof. This proof is inspired by the Theorem 1 and its proof in [Zhang and Zhou, 2020]. Also, an important
lemma, lemma C.5, which is called Paley-Zygmund inequality is used. Since t = 0 is the trivial case, in the
following part, we assume t > 0. Take

x := R1t− 1
t
∀t > 0 (119)



Then

P(X ≥ R1t− 1
t
) = P(etX ≥ eR1t2−1) (120a)

≥ P(etX ≥ e−1E[etX ]) (120b)

≥ (1− e−1)2 (E[etX ])2

E[e2tX ] (by lemma C.5) (120c)

≥ (1− e−1)2 (eR1t2)2

e4R2t2 (120d)

= (1− e−1)2 exp
(
−(4R2 − 2R1)t2) (120e)

By (119), t satisfies a quadratic equation R1t2 − xt− 1 = 0. Since t > 0,

t = x +
√

x2 + 4R1

2R1
(121)

Therefore,

P(X ≥ x) ≥ (1− e−1)2 exp
(
−(4R2 − 2R1)(x +

√
x2 + 4R1

2R1
)2
)

(122a)

= (1− e−1)2 exp
(
−2R2 −R1

2R2
1

(4x2 + 8R1)
)

(122b)

= (e− 1)2e
8R2
R1

−6 exp
(
−4R2 − 2R1

R2
1

x2
)

(122c)



C SUPPORTING LEMMAS

C.1 CONFIDENCE ELLIPSOID UNDER LEAST SQUARED ESTIMATION

Lemma C.1. Under assumptions 1 and 2 and notations from (4), ∀α > 0, with probability at least 1− α, for all
t ≥ 1, θ lies in the following confidence ellipsoid,

Ct := {θ ∈ Rd :
∥∥∥θ − θ̂t

∥∥∥
V t

≤ L2

√
d log

(
1 + tL2/λ

α

)
+ λ1/2S2} (123)

C.2 LOWER BOUND OF GAUSSIAN TAIL

Lemma C.2. Set Z ∼ N(0, 1). Then, ∀c > 0

P(Z ≥ t) ≥
{

b√
2π

exp
(
− 3

2 t2) if t ≥ b

Φ(−c) if 0 < t < b
(124)

C.3 SELF-NORMALIZED BOUND FOR MARTINGALES

Lemma C.3. Let {Ft}∞
t=0 be a filtration and {ϵt}∞

t=0 be a real-valued stochastic process such that:
(i) ϵt is Ft-measurable
(ii) ϵt is conditionally subgaussian with constant R, that is, for some R and ∀t ≥ 0

E[eλϵt |Ft−1] ≤ e
λ2R

2 ∀λ ∈ R

Let {Xt}∞
t=0 be a Rd-valued stochastic process such that Xt is Ft−1-measurable and assume V is d by d positive

definite matrix. For any t, define

V̄ t = V +
t∑

s=1
XsX⊤

s St =
t∑

s=1
ϵtXs

Then for any δ > 0 and any t ≥ 0, with probability at least 1− δ,

∥St∥2
V̄

−1
t
≤ 2R log

(
det(V̄ t)1/2det(V )−1/2

δ

)

C.4 SECOND MOMENT BOUND FOR SUBGAUSSIAN RANDOM VARIABLES

Lemma C.4. Suppose random variable X is subgaussian with constant R, that is, E[etX ] ≤ eRt2 ∀t ∈ R, then

E[X2] ≤ 4R (125)

C.5 PALEY-ZYGMUND INEQUALITY

Lemma C.5. Suppose X be a random variable, then when ∀θ ∈ [0, 1] and ∀t ≥ 0,

P(etX ≥ θE[etX ]) ≥ (1− θ)2
+

(E[etX ])2

E[e2tX ]
(126)



D SUPPLEMENT TO EXPERIMENTS

D.1 ALGORITHMS FOR LINREBOOT

In the paper, Algorithm 1 implements LinReBoot for the stochastic bandit problems. In our experiments, there
are two other additional setting with linear reward function for linear bandit problem. We provide other two
implementations of LinReBoot. The first one is LinReBoot for linear contextualized bandit, which is given in
Algorithm 2. Another one is LinReBoot for linear bandit with covariates, which is given in Algorithm 3.

Algorithm 2 LinReBoot in Contextual Linear Bandit
Require: λ, s1,0 = ... = sK,0 = 0

for t = 1, ..., n do
if t < K + 1 then

It ← t
else

Get new contexts x1, ..., xK

V t ←X⊤
t−1Xt−1 + λI

θ̂t ← V −1
t X⊤

t−1Y t−1
for k = 1, ..., K do

ek,t,i ← rk,i − x⊤
k θ̂t, ∀i ∈ {sk,t−1}

Generate {ωk,t,i}
sk,t−1
i=1

µ̃k ← x⊤
k θ̂t + s−1

k,t−1
∑sk,t−1

i=1 ωk,t,iek,t,i

end for
It ← arg max

k∈[K]
µ̃k

end if
sIt,t ← sIt,t−1 + 1 and sk,t ← sk,t−1. ∀k ̸= It

Pull arm It and get reward rIt,sIt

Xt ←
[
Xt−1
x⊤

It

]
and Y t ←

[
Y t−1
rIt,sIt

]
end for

D.2 EXPERIMENTAL SETTING

This part provides the detailed description of the experimental setting in Section 6. There are three settings in
our experiment: Stochastic Linear Bandit, Contextual Linear Bandit and Linear Bandit with Covariates. Each of
them has own synthetic data generation procedure which is described in the following parts.

Stochastic Linear Bandit. In the first experiment, we compare LinReBoot to other linear bandit algorithms
under stochastic linear bandit described in Section 2. The LinReBoot is implemented as the efficient version of
algorithm 1. Our experiment is conducted under three choice of dimension d including 5, 10 and 20. The number
of arm in this setting is 100. True parameter θ has norm 1 and is generated from uniform distribution by entries.
In other word, generate θi ∼ U(−0.5, 0.5),∀i ∈ [d] and then shrink ∥θ∥2 = 1. Context features x1, ..., xK are
generated by xik ∼ U(0, 1),∀i ∈ [d], k ∈ [K] and normalized to ∥xk∥2 = 1. By the normalization of θ and {xk}K

k=1,
the true mean of reward is bounded by 1, making LinPHE and LinGIRO become easier to choose a reasonable
bounds for reward. Noise ϵt is generated from N(0, 0.1). At each choice of d, our results are averaged over 100
randomly chosen environment and we evaluate all algorithms under the exact same environment with horizon
length 10000. Regularization parameter λ is chosen as 0.1 through out the experiments. Tuning parameters for
each algorithms are described in Appendix D.6.

Contextual Linear Bandit. In the second experiment, we compare LinReBoot to other linear bandit algorithms
under linear bandit with uncertain/random context. We experiment with several dimensions d including 5, 10
and 20. The number of arm is 100. True parameter is generated by the same way as stochastic linear bandit
setting in Section 6.1. Contexts of arm k has distribution Nd(νk, 1/(2K)I) where νk is generated by following:



Algorithm 3 LinReBoot in Linear Bandit wit Covariates
Require: λ, s1,0 = ... = sK,0 = 0

for t = 1, ..., n do
if t < K + 1 then

It ← t
else

Get new context xt

for k = 1, ..., K do
V k,t ←X⊤

k,t−1Xk,t−1 + λI

θ̂k,t ← V −1
k,tX

⊤
k,t−1Y k,t−1

ek,t,i ← rk,i − x⊤
k θ̂t, ∀i ∈ {sk,t−1}

Generate {ωk,t,i}
sk,t−1
i=1

µ̃k ← x⊤
k θ̂t + s−1

k,t−1
∑sk,t−1

i=1 ωk,t,iek,t,i

end for
It ← arg max

k∈[K]
µ̃k

end if
sIt,t ← sIt,t−1 + 1 and sk,t ← sk,t−1. ∀k ̸= It

Pull arm It and get reward rIt,sIt

XIt,t ←
[
XIt,t−1

x⊤
t

]
and Y It,t ←

[
Y It,t−1
rIt,sIt

]
end for

νik ∼ U(0, 1),∀i ∈ [d] k ∈ [K] and normalized to ∥νk∥2 = 1. Note that νk are predefined before the simulation.
Noise ϵt is generated from N(0, 0.5). Remaining environment setting is designed as the same in Section 6.1:
number of simulation is 100, horizon length is 10000, regularization parameter λ = 0.1. Most hyperparameters
are chosen as the same as Section 6.1 except for the reward bounds in LinPHE and LinGIRO. Detailed description
is provided in Appendix D.6.

Linear Bandit with Covariates Our last experiment is conducted under the setting of linear bandit with
covariates. Again, we experiment with several dimensions d including 5, 10 and 20 while the number of arms is 10
in this setting. True parameter θ1, ..., θK are generated one by one and each of them is generated in the following
way: (1) Choose an integer n− ≤ d by n− ∼ Binomial(d, 1/2) and randomly sample n− integers from 1 to d,
these n− integers indicates the entries that has negative direction in θk. (2) generate a d-dimensional vector with
n−1 entries are −1 and remaining n+ := d− n− entries are 1 by the n− integers sampled in the previous step. (3)
Each entries will add a random perturbation from U(−0.95, 0.95) to make the magnitude of the each entry is
spread between 0.05 to 1. (4) The resulting vector will be normalized by ∥θk∥ = k

K , indicating the norm of the
true parameters θ1, ..., θK are designed as 1

K , ..., 1. Contexts are sampled from N(0, I) which is independent of
arms. Noise ϵt is generated from N(0, 0.1). Remaining environment setting is designed as the same in Section 6.1
or Section 6.2: number of repetition is 100 and horizon length is 10000 as well as λ = 0.1. Reward bounds in
LinPHE and LinGIRO are chosen based on the noise variance and other algorithms are designed as the same as
the previous two settings. More specific description is provided in Appendix D.6.

D.3 LINREBOOT IN STOCHASTIC LINEAR BANDIT

The algorithm of LinReBoot is described in Algorithm 1 and steps of our LinReBoot and its efficient implementation
under Gaussian bootstrap weights are summarized in Section 3. For the parameter tuning of LinReBoot, our
first step candidate set for σω in LinReBoot is {0.05, 0.1, 0.2, 0.5, 1.0}. The following result, figure 2, shows that
the values 0.05, 0.1, 0.2 are not enough for resampling exploration under all three choice of context dimension.
However, we notice that too large σω leads to slow convergence even if it is indeed sub-linear. Thus 0.5 is the best
result under our stochastic linear bandit setting. We decide to do the further fined tuning, using the candidate set
{0.3, 0.4, 0.6, 0.7} and the result is shown in figure 3. It is clear that σω = 0.3 is the best choice when d = 5 while
σω = 0.4 is the best choice under the setting of d = 10. When d = 20, we conclude that σω = 0.5 is better than
other candidates. As a result, our experiment in Section 6 choose σω = 0.3 for d = 5, choose σω = 0.4 for d = 10



and choose σω = 0.5 for d = 20.

Figure 2: First Step Tuning for LinReBoot-G under Stochastic Linear Bandit. The x axis is round t and y axis
is cumulative regret. The candidate set for σω is {0.05, 0.1, 0.2, 0.5, 1.0} and these three plots from left to right
corresponds to d = 5, d = 10 and d = 20 respectively.

Figure 3: Second Step Tuning for LinReBoot-G under Stochastic Linear Bandit. The x axis is round t and y
axis is cumulative regret. The candidate set for σω is {0.3, 0.4, 0.6, 0.7} and these three plots from left to right
corresponds to d = 5, d = 10 and d = 20 respectively.

D.4 LINREBOOT IN CONTEXTUAL LINEAR BANDIT

The algorithm 2 is LinReBoot under Contextual Linear Bandit. It is almost the same as algorithm 1 while
the algorithm new requires the random contexts from each arm at each round t. For the parameter tuning of
LinReBoot, our candidate set is designed as {0.05, 0.1, 0.2, 0.5, 1.0} and the following result shows that σω = 0.05
is the best choice for all three design of context dimension d. Thus our experiment choose σω = 0.05 for three
possible d under this setting of Contextual Linear Bandit.

D.5 LINREBOOT IN LINEAR BANDIT WITH COVARIATES

The last version of LinReBoot is LinReBoot under Linear Bandit with Covariates which is provided as algorithm
3. This algorithm is different from the previous two version due to the different task under linear bandit with
covariates which requires the algorithm not only the estimation of the target parameter θ, but also detection
of which arm a context belongs to. For the parameter tuning of LinReBoot, our candidate set is designed as
{0.05, 0.1, 0.2, 0.5, 1.0} and the following result shows that σω = 1 is the best choice for the cases including d = 5
and d = 10. When d = 20, σω = 1 is still acceptable while σω = 0.5 might be preferred one. In fact, it must
be pointed out that when d becomes larger, the performances among difference choice of σω becomes smaller



Figure 4: Tuning for LinReBoot-G under Contextual Linear Bandit. The x axis is round t and y axis is cumulative
regret. The candidate set for σω is {0.05, 0.1, 0.2, 0.5, 1.0} and these three plots from left to right corresponds to
d = 5, d = 10 and d = 20 respectively.

and larger σω might be worse for larger d. At the end, our experiment choose σω = 1 for d = 5 and d = 10 and
σω = 0.5 for d = 20.

Figure 5: Tuning for LinReBoot-G under Linear Bandit with Covariates. The x axis is round t and y axis is
cumulative regret. The candidate set for σω is {0.05, 0.1, 0.2, 0.5, 1.0} and these three plots from left to right
corresponds to d = 5, d = 10 and d = 20 respectively.

D.6 OTHER LINEAR BANDIT ALGORITHMS

Linear Thompson Sampling with Gaussian Prior (LinTS-G). Thompson Sampling is a classic algorithm
[Thompson, 1933] which requires only that one can sample from the posterior distribution over plausible problem
instances (for example, values or rewards). Linear Thompson sampling is a Bayesian linear bandit algorithm
which has studied by lots of previous works such as [Agrawal and Goyal, 2013a,b, Riquelme et al., 2018, Russo
et al., 2018]. In our experiment, we mainly depends on [Agrawal and Goyal, 2013b, Lattimore and Szepesvári,
2020] for implementing Linear Thompson sampling with Gaussian prior. There is almost the same among three
different settings in our work. The only difference is that stochastic linear bandit and Contextual Linear Bandit
is estimating/sampling parameter shared among arms while parameters are estimated/sampled using the rewards
and contexts from only one arm in the setting of linear bandit with covariates. As mentioned in section 6, the
Gaussian prior variance is chosed as 1

λ = 10 by Bayesian perspective of ridge regression model.

Linear Thompson Sampling with Inverse Gamma Prior (LinTS-IG). Another version of Thompson
sampling under linear bandit is adding inverse gamma prior [Honda and Takemura, 2014, Riquelme et al., 2018,
Bishop, 2006]. We implement this inverse gamma version based on the detail suggested as [Riquelme et al., 2018].
Similar to LinTS-G, three settings share almost the same LinTS-IG and only difference is the parameters in linear



bandit with covariates setting are estimated/sampled using the data from one arm. Moreover, Gaussian prior
parameter is designed as 1

10 which match our overall design for regularization λ = 0.1 and the inverse gamma
prior parameters is suggest by [Riquelme et al., 2018]. More specifically, by σ2

0 ≈ α/(α− 1) where σ2
0τ2 = 10 is

the initial variance on diagonal for sampling our target parameter θ, τ2 = 5 is Gaussian prior parameter and
α = 2 is the prior parameter for inverse gamma.

Linear Perturbed-History Exploration (LinPHE). A well designed algorithm for stochastic linear bandit under
bounded reward is LinPHE [Kveton et al., 2020a]. The idea is also inspired from successfully adding exploration
under Multi-armed bandit setting [Kveton et al., 2019a]. Our experiments use the suggested hyperparameter
a = 0.5. However, since the original work is only designed for stochastic linear bandit with bounded rewards, we
extended it to more general settings with Gaussian rewards. The detail is provided as follow. In stochastic linear
bandit setting, based on our experimental design, true mean of each arm is bounded by 1 and noise variance
is set as 0.1, indicating that we have high probability that the reward will be bounded by 1 + 3/

√
10 on both

sides. In the setting of Contextual Linear Bandit, the original efficient implementation from [Kveton et al., 2020a]
can not be used. But we modified by drawing a number from Binomial distribution Binomial(⌈a(t− 1)⌉, 1/2) at
round t and divided this number into t − 1 parts randomly which are added as perturbation of rewards. The
reward is bounded by 1 + 3/

√
2. For the last setting, linear bandit with covariates, similar to previous setting, we

modify by using Binomial distribution to adapt the non-integer value of a but this time we need to apply the
perturbed history by arm, that is using Binomial(⌈ask,t−1⌉, 1/2) for all k ∈ [K]. The reward is bounded by 1.3.

Linear Garbage In Reward Out (LinGIRO). Garbage In, Reward Out(GIRO) is a bootstrapping based algorithm
designed for multi-armed bandit with bounded reward [Kveton et al., 2019b]. Since its idea of bootstrapping
and perturbation on mean estimation is highly related to our residual bootstrapping exploration, it is worthy to
compare with this classical bootstrapping based algorithm. But like PHE, it is originally designed for multi-armed
bandit and we need to extend it to linear bandit setting with unbounded reward and then apply it to three
settings in our experiment. Previous work [Kveton et al., 2019b, Wang et al., 2020] suggest the conservative
choice of a is 1, indicating adding one high pseudo reward and one low pseudo reward at each round. The detail,
which is almost the same as previous modification for LinPHE, is provided as follow. In stochastic linear bandit
and linear bandti with random context settings, we bootstrapping the previous reward-context pair and use the
new sample to do least squared estimation. After pulling arm, 2a pseudo reward-context pairs are added: one is
current context with reward upper bound and the other one is current context with reward lower bound. For the
last setting, linear bandit with covariates, the only difference is that the bootstrapping is conducted by arm and
the pseudo reward-context pairs are added to one arm at each round. The reward bound is chosen as 1 + 3/

√
10

for stochastic linear bandit and 1 + 3/
√

2 for the setting of Contextual Linear Bandit while 1.3 is chosen for linear
bandit with covariates setting.

Linear Upper Confidence Bound (LinUCB). Upper Confidence Bound(UCB) is a important type of bandit
algorithms which is widely used. LinUCB is the version extended to linear bandit setting [Abbasi-Yadkori et al.,
2011, Chu et al., 2011]. Since its popularity and usage, we believe it should be involved in our experiment and
we implement LinUCB mainly relying on [Abbasi-Yadkori et al., 2011, Lattimore and Szepesvári, 2020]. The
confidence level is chosen as 95% which matches the traditional statistical sense. Moreover, LinUCB is almost the
same among three different setting. The only difference is stochastic linear bandit and Contextual Linear Bandit
are using the rewards and contexts to estimate one target parameter, like (4) in our paper while the last setting,
linear bandit with covariates, requires the least squared estimation to be done by arms.

D.7 COMPUTATION EFFICIENCY

D.7.1 Efficient Implementation of LinReBoot-G

Section 3.3 discusses about why LinReBoot-G can be implemented efficiently. This section provides a further
illustration and implementation in practice. First recall µ̃(t) = (µ̃1,t, . . . , µ̃K,t)⊤ is conditional distributed as

µ̃(t)|Ft−1 ∼ NK(µ̂(t), Σ(t)
ω ) (127)



where µ̂(t) = (µ̂1,t, . . . , µ̂K,t)⊤ = XK θ̂t and Σ(t)
ω is a diagonal matrix with diagonal elements σ2

ωs−2
k,t−1RSSk,t.

Note that Σ(t) can be computed by µ̂(t) and vectors,

r
(t)
1 := (

s1,t−1∑
i=1

r1,i, . . . ,

sK,t−1∑
i=1

rK,i)⊤,

r
(t)
2 := (

s1,t−1∑
i=1

r2
1,i, . . . ,

sK,t−1∑
i=1

r2
K,i)⊤,

s(t) := (s1,t−1, . . . , sK,t−1)⊤.

These vectors can be updated incrementally by the above illustration. To sum up, when bootstrap weights are
Gaussian, the efficient implementation for computing µ̃k,t at round t has steps as follow,

• Compute V t, θ̂t and µ̂(t) = XK θ̂t

• Compute Σ(t) using µ̂(t), r
(t)
1 , r

(t)
2 and s(t)

• Sample µ̃(t) ∼ NK(µ̂(t), Σ(t))
• Pull arm It and get its corresponding reward rIt

• Update r
(t+1)
1 , r

(t+1)
2 and s(t+1)

D.7.2 Computational Cost

The computation cost of linear bandit algorithms involved in our experiment are listed in the following table.
Each running time is for one horizon with length 10000. The settings are also provided in Appendix D.2 and the
description of algorithms are provided in Appendix D.6.

Model Run time (seconds)
Setting d LinReBoot LinTS-G LinTS-IG LinGIRO LinPHE LinUCB
Stochastic Linear Bandit 5 3.2 1.8 2.2 6.5 4.0 6.2
Stochastic Linear Bandit 10 3.5 2.1 2.5 10.3 4.7 6.6
Stochastic Linear Bandit 20 4.8 3.9 3.8 24.6 5.6 7.4
Contextualized Linear Bandit 5 3.3 1.8 2.2 6.5 4.0 6.3
Contextualized Linear Bandit 10 3.5 2.1 2.5 10.2 4.7 6.6
Contextualized Linear Bandit 20 3.8 3.1 3.6 24.1 5.2 6.9
Linear Bandit with Covariates 5 1.4 7.8 12.9 10.3 5.2 1.2
Linear Bandit with Covariates 10 1.5 9.4 14.1 11.5 5.9 1.4
Linear Bandit with Covariates 20 1.6 14.2 18.9 15.2 7.4 1.5

Table 3: Computational Cost for Linear Bandit Algorithms
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