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A  PROOF OF THEOREM IN SECTION 3

Theorem: Vz € X!, 3z’ € S[ll K] where the subspace 8{1 K]
is defined based on A\, > C' > A\g41, then ||z — a'||2< C.

Proof We assume that X' can be represented as a n; x m
matrix:
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where Z; € R™ is an m-dimensional embedding of a token
in the output of I-th layer. After performing SVD on X', we
have:
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where the unitary matrix U = [@] 4 ,...,4,,]", V =
[0, Ty , ..., )] T are n' x n' left singular matrix and
m X m right singular matrix, respectively. Therefore, the
two collections of vectors, i.e. @; = {u;1, Ui2, ..., U;, + and

¥; = {vi1, V2, ..., Uim }, are two subsets of basis for the
m-dimensional vector space (m << n!). Without loss of
generality, we assume x; € X' can be represented by its
corresponding left singular vector, singular values, and the

right singular matrix V', which yields:
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If we separate the singular values into two parts by C, where
Ak > C > Ag41 > 0, we can rewrite Eq. (1) by:
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By defining &} = Z;?:l)\j - ui; - Uj, where singular values
are taken from the larger group, we have:
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Where || - || is the norm, ® is the pairwise product, and | <
-,+ > | is the inner product in a vector space, X[k“’m], and
ﬁgkﬂ’m] are the sub-vectors of singular values and ; from
k+1-th to m-th dimensions, respectively, and y(m—k=1)xm
is the corresponding right singular sub-matrix. According
to Holder inequality, we have:
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Since V is a unitary matrix, V' - V = I, which yields
|[Vim—k—1)xm|| = 1. Hence,

1 — F|| < [P g gt
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Considering ||@|| = 1 and Ag41 < C, obviously we have
Hﬂ’[Hl,m}H <1land A; < C, when j > k + 1. Therefore,

Hfl _f;H <C-: \/ fk+1uzj <C

A case study where the vectors in the unitary matrix
U follows a uniform distribution in a L,-norm based
metric space

O

The theorem states that the learned features from a
transformer-based language model can be represented as
a closure which is defined as a C-neighbour of a k-
dimensional space. Here, we present a case study, assuming
the vectors u; in the unitary matrix U follows a uniform
distribution within a Lo-norm based metric space.

Under such an assumption, the
P(XJL, 14 /ui; < d) is the integral of the probabil-
ity density function in the corresponding area of a n-sphere,

denoted as S,,_1, defined by X7,

probability  of

2 .
uz;. It is clear

that P(X72, |y /uf; < d) > 0. Hence, we only discuss
the upper boundary of P in the following. We denote
the sub-area of X7, ., /ufj < d as Sg. To simplify

the notation, without loss of generality, we re-order the
elements in #; € R™ such that its last £ dimensions
correspond to the small singular values. Then, we have
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where B(+, -) is the beta function. The result show that the
probability of a singular vector residing in the sub-area S
will converge to 0 exponentially with the growth of k. As
such, when k, the number of smaller singular vectors, is

s n—k—i(wi)dqﬁl...d¢(n7k+1).
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large, the distance between the embedding space and the
subspace spanned by the larger singular vectors is bounded
by C, the smallest value in the larger singular value group.

B MODEL CONFIGURATIONS AND
TRAINING DETAILS

Unsupervised Setting In the unsupervised setting on the
STS task, we use the datasets processed by [Huang et al.|
2021]) and follow their evaluation pipeline by replacing their
Whitening function with our SoftDecay function in their
released codd'] We do not use any dataset to train the trans-
formation function, instead, we choose a fixed o empirically
(v is the hyper-parameter in Eq.(3)). As we did not see sig-
nificant changes across different o, we set o to —0.6 for all
the datasets and PTLMs. For metrics calculation, we use
t = 0.5 in RBF;; and we choose the nearest 12 points to
reconstruct the query point in LSDS.

Supervised Setting We apply SoftDecay to the out-
put of the last layer of a PTLM provide by hugging-
face, before layer normalisation. We use the default para-
meters configured in BERT-base- uncasecﬂ ALBERT-base-
VIEL RoBERTa- basdﬂ and DistilBERT-base- uncase(f] as the
baselines. For hyper-parameter setting, we search the initial
alpha for different datasets from [—0.2, —0.5, —0.8], and
set different learning rates from [2e — 3,2e — 5] for the
transformation layer and the pretrained models[]

C ADDITIONAL RESULTS ON
SEMANTIC TEXTUAL SIMILARITY
DATASET

In this section, we first examine the potential reasons
of improvement by comparing the learnt representations
from baselines models (i.e., vanilla PLTMs and Whitening-
BERT) and our proposed SoftDecay through quantitat-
ive evaluation results and the visualisation results (See in
and §c.2). We then discuss a comparison between
SoftDecay and a representative contrastive learning
method, SimCSE [Gao et al., [2021]], which also aims to

'https://github.com/Jun-jie-Huang/
WhiteningBERT

“https://huggingface.co/docs/
transformers/master/en/model_doc/bert

*https://huggingface.co/docs/
transformers/master/en/model_doc/albert

Yhttps://huggingface.co/docs/
transformers/master/en/model_doc/roberta

’https://huggingface.co/docs/
transformers/master/en/model_doc/distilbert

°As SVD decomposition generates an error in the ROBERTa-
base model, we exclude it in GLUE evaluation.
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BERT +SoftDecay | ALBERT +SoftDecay | DistilBERT +SoftDecay

Evs 0.6259 0.0252 0.6987 0.0326 0.7301 0.0341

STS-B RBFy;, -1.4624 -3.8534 -1.1602 -3.8016 -1.0549 -3.8052
TokenUni | 0.6195 0.0274 0.6983 0.036 0.7282 0.037

Evs 0.7383 0.0212 0.7711 0.0274 0.8135 0.0289

SICK RBFy;s -1.0323 -3.8671 -0.8979 -3.8268 -0.7367 -3.8241
TokenUni | 0.7361 0.023 0.7706 0.0295 0.8130 0.0311

Evs 0.6219 0.0182 0.7052 0.0247 0.7321 0.0245
STS-12  RBFy;s -1.4785 -3.8717 -1.4785 -1.1438 -3.8308 -3.8381
TokenUni | 0.6193 0.0203 0.7058 0.0273 0.7021 0.0329

Evs 0.5823 0.0221 0.6632 0.0287 0.7015 0.0302

STS-13  RBFy;, -1.6189 -3.8706 -1.3032 -3.8258 -1.1594 -3.8262
TokenUni | 0.5817 0.024 0.6637 0.031 0.7021 0.0329

Evs 0.5933 0.6729 0.0204 0.0151 0.712 0.0202
STS-14 RBFy;s -1.593 -3.9124 -1.2712 -3.8787 -1.1288 -3.8855
TokenUni | 0.5929 0.016 0.6743 0.0217 0.7127 0.0215

Evs 0.6072 0.0183 0.6827 0.0239 0.7225 0.0248

STS-15 RBFg, -1.5177 -3.8706 -1.2178 -3.8379 -1.0772 -3.8313
TokenUni | 0.6057 0.0216 0.6848 0.0273 0.7228 0.0291

Evs 0.6049 0.0267 0.6824 0.0333 0.7190 0.0363
STS-16 RBFy;, -1.5262 -3.8375 -1.5262 -1.2095 -3.7952 -3.7869
TokenUni | 0.6054 0.0286 0.6864 0.0360 0.7201 0.0390

Table 1: Uniformity metrics (EVs, TokenUni, RBF ;) evaluates the isotropy in transformed feature space comparing to the
vanilla PTLMs features. Smaller values means the features are better uniformly distributed. It can be seen that SoftDecay

can greatly improve the uniformity.

alleviate the anisotropy problem in language representa-

tions.

C.1 FEATURE EVALUATION RESULTS ON STS

DATASETS

We show in Table [T] and Figure [T|both the uniformity and
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local neighborhood preservation evaluation results of dif-
ferent methods over the seven STS datasets. The lower
scores returned by SoftDecay in Table[I]in comparison
to the base PTLMs verify its capability of alleviating an-
isotropic feature space derived from BERT. In Figure (1)),
SoftDecay preserves the local neighbourhood structure
better among all the datasets, which explains its performance
superiority comparing with Whitening which ignores the
original local manifold structure.

C.2 VISUALISATION OF FEATURES IN STS
DATASETS

We show the representations of sentence pairs generated
from BERT, with Whitening and with SoftDecay via
tSNE for the rest five STS datasets in Figure [2] In STSB,
STS13 and STS16, the representation mapping results in
Whitening are not unit Gaussian due to some abnormal
data point. Our proposed method SoftDecay gives better
uniformity score than vanilla BERT and better LSDS than
WhiteningBERT, as have been shown in Figure E] and
Table T
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Figure 1: Local Structure Discrepancy Score (LSDS) for
Whitening and SoftDecay transformed Representa-
tions. Smaller scores are preferred as the original local
neighborhood information learnt in the pretrained model
is preserved better.

C.3 COMPARISON WITH CONTRASTIVE
LEARNING ON STS

The objective of contrastive learning methods is to align
semantically-related positive data pairs and make the
learned representations evenly distributed in the resulting
embedding space [Wang and Isolal 2020||. The latter prop-
erty naturally addresses the token uniformity issue. There-
fore, we further compare Soft decay with a representative
contrastive learning method, SimCSE [Gao et al., 2021f], on
STS. As SimCSE needs to be trained on datasets to fine-tune
its parameters, we conduct experiments using SimCSE fol-



Figure 2: The tSNE visualisation of representations of sentence pairs in datasets SICKR, STSB, STS12-16 (except STS15)
in different columns. These representations from top to bottom are derived from vanilla BERT, BERT+whitening and
BERT+SoftDecay. For each sentence pair, the two sentences are denotes by different colors, e.g., black and red in BERT.
We can see clear clusters in BERT and BERT+SoftDecay for STS-B, STS-12 and STS-14 datasets.

lowing its original setup: (1) Unsupervised. Train the model
on sampled 1 million sentences from English Wikipediam
and pass the same sentence twice to a pre-trained encoder
with standard dropout to generate two different sentence
embeddings as positive pairs. Other sentences in the same
mini-batch are taken as negative pairs; (2) Supervised. Train
the model on natural language inference datasets, MNLI and
SNLI ﬂ and use the annotated entailment and contradictory
pairs as positive and negative sentence pairs, respectively.
The results are shown in Table 2l It can be observed that
SoftDecay outperforms SimCSE in general, especially
under the supervised setting. The end goal of our approach
(via increasing the weights of small singular values in the
output embedding space) is similar to SimCSE (via random
dropout masks) under the unsupervised setting, as both aim
to learn an isotropic embedding distribution. However, in
the supervised SimCSE, its contrastive loss is calculated on
a subset of training pairs, as such, it is relatively difficult to
achieve the universal isotropy, which is not the case in our

"Download link for Sampled English Wikipedia dataset
¥Download link for the combined NLI dataset

approach.

D ADDITIONAL RESULTS ON GLUE
DATASETS

In this section, we first show the results of comparing
SoftDecay with another method, which applies regular-
isation during training to alleviate the anisotropy issue. Then,
we display the Cumulative distribution function (CDF)
of singular value distributions before and after applying
SoftDecay.

D.1 COMPARING WITH ANOTHER SINGULAR
VALUE TRANSFORMATION FUNCTION

In addition to Sentence-BERT (S—BERT for short)
[imers and Gurevych| [2019] and BERT-CT
2021]], we also compare with another method which applies
regularisation on the output embedding matrix with an ex-
ponentially decayed singular value prior distribution during



 https://huggingface.co/datasets/princeton-nlp/datasets-for-simcse/resolve/main/wiki1m_for_simcse.txt
https://huggingface.co/datasets/princeton-nlp/datasets-for-simcse/resolve/main/nli_for_simcse.csv

Model STSB STS-12 STS-13  STS-14 STS-15 STS-16  SICK-R
Trained on wiki-text (unsupervised)
SimCSE [Goyal et al.|[2020] 74.48  66.01 81.48 71.77 77.55 76.53 69.36
SoftDecay 75.81 63.25 78.67 70.41 79.37 77.69 71.15
Trained on MNLI and SNLI dataset (supervised)
SimCSE [Goyal et al.|[2020] 82.26  77.37 78.12 77.81 84.65 81.10 78.73
SoftDecay 83.51 7531 81.70 79.88 86.33 81.37 79.04

Table 2: Comparison with contrastive learning method, SimCSE. Our methods demonstrate overall better results under the

supervised setting.

training (ExpDecay for short) [Wang et al., 2020].

ExpDecay is designed for an encoder-decoder architec-
ture in language generation. The singular value distribu-
tion of the output embedding matrix is derived from the
decoder. This approach is not directly applicable to our
setup since we don’t use the encoder-decoder architec-
ture here. Nevertheless, we modify our training object-
ive by adding the singular values {\;}1_, of output fea-
ture X: ve ZkK:l(/\k — c1e~*"). where e is a hyper-
parameter used to adjust the weight of the added term,
c1,c2, and «y are hyperparameters in the desirable expo-
nential prior term of singualar values. We empirically set
c1,c0=1,7v=2,7¢e =1le — 4.

By comparing with the results of ExpDecay in Table[3] we
don’t see substantial improvement using the fixed exponen-
tial decay term. It can be explained by 1) the difficulty of
balancing two losses by adding the exponential decay term
into the training objective function; 2) the sensitivity of the
hyper-parameter in the prior decay term in ExpDecay. In
our method, we only has a single parameter « in Eq. (2) and
its value can be automatically adjusted during training to fit
the downstream tasks under the supervised setting.

Dataset (size) BERT +SoftDecay(A%) +ExpDecay(A%)
CoLA(8.5k) 59.57  59.84*(10.45) 59.37(J0.34)
SST2(67k) 92.32  93.12#%(10.87) 92.43(11.19)
MRPC-Acc(3.7k)  84.00 85.20%*(11.43) 83.25(]0.89)
MRPC-F1(3.7k) 89.50 89.65(10.17) 87.92(41.21)
QNLI(105k) 91.25  91.98%*(10.80) 89.21(]2.23)
RTE(2.5k) 64.98  68.23**%(15.00) 64.98(10.00)

Table 3: Sentence-level classification results on five repres-
entative GLUE validation datasets. Matthews correlation
is used to evaluate CoLA, Accuracy/F1 is used in other
datasets. A% represents the relative improvement over the
baseline. Better results than BERT are in bold. No substan-
tial improvements are observed using ExpDecay.

D.2 SINGULAR VALUE DISTRIBUTION
The effects of dataset size on NLI dataset We highlight

the different singular value distribution in QNLI and RTE,
two datasets for language inference task (See in Figure [3).

BERT-Based Model Results For BERT-based model, we
show the CDF of singular values on all the evaluated data-
sets in Figure d] We observe that by applying SoftDecay
(bottom row of Figure E]), the CDF of singular values in
the last layer becomes more flattened compared to that in
vanilla BERT (top row of Figure [4).

ALBERT-Based and DistilBERT-based Model Results
We also show the results for ALBERT (Figure [5] and Fig-
ure[6) and Dist i1BERT (Figure[7|and Figure[§). By com-
paring with the vanilla PTLMs (the top row of each figure),
we notice that the application of SoftDecay has a larger
impact on ALBERT compared to DistilBERT, especially
on the CoL A dataset. For Dist 1 1BERT, its feature space
becomes anisotropic gradually as layers go deeper.
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Figure 3: The CDF of singular value in QNLI (left) and RTE (right) dataset derived from vanilla BERT. For the same
percentage 0.8, the larger dataset QNLI dataset has smaller AL; among all the layers, refers to a more serious token

uniformity issue.
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Figure 4: Cumulative distribution function (CDF) of singular value distributions. The upper ones are from vanilla BERT,
bottom ones are from BERT+SoftDecay. From left to right, the evaluation datasets are SST-2, MRPC, QNLI and CoLA.
Different curves represent distributions derived from different model layers. The x-axis represents the normalised singular
values sorted in an ascending order. SoftDecay adjusts the anisotropy of the feature space with the effect more noticeable
in MRPC and less obvious in QNLI.
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Figure 8: CDF of CoLA and RTE datasets. The upper row results are from the vanilla DistilBERT, the bottom ones are from

DistilBERT+SoftDecay.
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