
Appendix for "Differentially Private SGDA for Minimax Problems"

A Motivating Examples
We provide several examples that can be formulated as a stochastic minimax problem. All these examples
have corresponding empirical minimax formulations.
AUC Maximization. Area Under the ROC Curve (AUC) is a widely used measure for binary classification.
Optimizing AUC with square loss can be formulated as

min
θ∈Θ

Ez,z′ [(1− h(θ;x) + h(θ;x′))2|y = 1, y′ = −1]

where h : Θ×Rd → R is the scoring function for the classifier. It has been shown this problem is equivalent
to a minimax problem once auxiliary variables a, b,v ∈ R are introduced [Ying et al., 2016].

min
θ,a,b

max
v

F (θ, a, b, c) = Ez[f(θ, a, b,v; z)]

where f = (1 − p)(h(θ;x) − a)2I[y = 1] + p(h(θ;x) − b)2I[y = −1] + 2(1 + v)(ph(θ;x)I[y = −1] − (1 −
p)h(θ;x)I[y = 1])] − p(1 − p)v2 and p = P[y = 1]. Such problem is (non)convex-concave. In particular,
Liu et al. [2020] showed that when h is a one hidden layer neural network the objective f satisfies the
Polyak-Łojasiewicz condition. Differential privacy has been applied to learn private classifier by optimizing
AUC [Wang et al., 2021]. The proposed privacy mechanisms there are objective perturbation and output
perturbation.
Generative Adversarial Networks (GANs). GAN is introduced in Goodfellow et al. [2014] which can
be regarded as a game between a generator network Gv and a discriminator network Dw. The generator
network produces synthetic data from random noise ξ, while the discriminator network discriminates between
the true data and the synthetic data. In particular, a popular variant of GAN named as WGAN [Arjovsky
et al., 2017] can be written as a minimax problem

min
w

max
v

E[f(w,v; z, ξ)] := Ez[Dw(z)]− Eξ[Dw(Gv(ξ))].

Recently Sahiner et al. [2021] showed that WGAN with a two-layer discriminator and generator can be
expressed as a convex-concave problem. An heuristic differentially private version of RMSProp were employed
to train GANs by Xie et al. [2018]. Recently differential privacy has successfully applied to private synthetic
data generation by GAN framework [Jordon et al., 2018, Beaulieu-Jones et al., 2019].
Markov Decision Process (MDP). Let A be a finite action space. For any a ∈ A, P (a) ∈ [0, 1]n×n is
the state-transition probability matrix and r(a) ∈ [0, 1]n is the vector of expected state-transition rewards.
In the infinite-horizon average-reward Markov decision problem, one aims to find a stationary policy π to
make an infinite sequence of actions and optimize the average-per-time-step reward v̄. By classical theory of
dynamics programming [Puterman, 2014], finding an optimal policy is equivalent as solving the fixed-point
Bellman equation

v̄∗ + h∗i = max
a∈A

{ n∑
j=1

(pij(a)h∗i + pij(a)rij(a))
}
, ∀i

where h ∈ Rn is the difference-of-value vector. Wang [2017] showed that this problem is equivalent to the
minimax problem as follow

min
h∈H

max
µ∈U

µ>((P (a)− I)h + r(a))

where H and U are the feasible regions chosen according to the mixing time and stationary distribution. We
refer to Zhang et al. [2021] for a discussion on the measure of population risk.
Robust Optimization and Fairness. Let D1, · · · ,Dm be m different distributions on some support. The
aim is to minimize the worst population risks L parameterized by some w among multiple scenarios:

min
w∈W

L(w) = max
1≤i≤m

{
Ez1∼D1 [`(w; z1)], · · · ,Ezm∼Dm [`(w; zm)]

}

1



This problem can be reformulated as a zero-sum game between two players w and v as follow

min
w∈W

max
v∈∆m

m∑
i=1

viEzi∼Di [`(w; zi)] = E
[ m∑
i=1

vi`(w; zi)
]

where ∆m =
{
v ∈ Rm : vi ≥ 0,

∑m
i=1 vi = 1

}
denotes the m-dimensional simplex. Such robust optimization

formulation has been recently proposed to address fairness among subgroups [Mohri et al., 2019] and federated
learning on heterogeneous populations [Li et al., 2019].

B Proofs of Theorem 1 and Remark 1
In this section, we prove the privacy guarantee of DP-SGDA based on the privacy-amplification by the
subsampling result, which is a direct application of Theorem 1 in Abadi et al. [2016]. First we introduce
some necessary definitions.

Definition 1. Given a function g : Zn → Rd, we say g has ∆(g) `2-sensitivity if for any neighboring datasets
S, S′ we have

‖g(S)− g(S′)‖2 ≤ ∆(g).

Definition 2 ([Abadi et al., 2016]). For an (randomized) algorithm A, and neighboring datasets S, S′ the
λ-th moment is given as

αA(λ, S, S′) = logEO∼A(S)

[( P[A(S) = O]

P[A(S′) = O]

)λ]
.

The moments accountant is then defined as

αA(λ) = sup
S,S′

αA(λ, S, S′).

Lemma 1 ([Abadi et al., 2016]). Consider a sequence of mechanisms {At}t∈[T ] and the composite mechanism
A = (A1, · · · , AT ).

a) [Composability] For any λ,

αA(λ) =

T∑
t=1

αAt(λ).

b) [Tail bound] For any ε, the mechanism A is (ε, δ) differentially private for

δ = min
λ
αA(λ)− λε.

Lemma 2 ([Abadi et al., 2016]). Consider a sequence of mechanisms At = gt(St) + ξt where ξ ∼ N (0, σ2I).
Here each function gt : Zm → Rd has `2-sensitivity of 1. And each St is a subsample of size m obtained by
uniform sampling without replacement 1 from S, i.e. St ∼ (Unif(S))m, Then

αA(λ) ≤ m2nλ(λ+ 1)

n2(n−m)σ2
+O(

m3λ3

n3σ3
).

Theorem 1 (Theorem 1 restated). There exist constants c1, c2 and c3 so that for any ε < c1T/n
2, Algorithm

1 is (ε, δ)-differentially private for any δ > 0 if we choose

σw ≥
c2Gw

√
T log(1/δ)

nε
and σv ≥

c3Gv

√
T log(1/δ)

nε
.

1In our case we use uniform sampling on each iteration to construct It and therefore St, as opposed to the Poisson sampling
in Abadi et al. [2016]. However, one can verify that similar moment estimates lead to our stated result [Wang et al., 2019]
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Proof. Let S = {z1, · · · , zn} and S′ = {z′1, · · · , z′n} be two neighboring datasets. At iteration t, we first
focus on Aw

t = 1
m

∑m
j=1∇wf(wt,vt; zijt

) + ξt. Since f(·,v; z) is Gw-Lipschitz continuous, it implies for any
neighboring datasets S, S′,∥∥∥ 1

m

m∑
j=1

∇wf(wt,vt; zijt
)− 1

m

m∑
j=1

∇wf(wt,vt; z
′
ijt

)
∥∥∥

2
≤ 2Gw

m
.

Therefore we can define gt(St) = 1
2Gw

∑m
j=1∇wf(wt,vt, zijt

) such that ∆(gt) = 1. By Lemma 1 b) and 2,
the log moment of the composite mechanism Aw = (Aw

1 , · · · , Aw
T ) can be bounded as follows

αAw(λ) ≤ m2Tλ2

n2σ̃2
w

.

where σ̃w = σw/2Gw. Similarly, since Av
t = ∇wf(wt,vt; zit) + ζt has `2-sensitivity 2Gv/m, then the log

moment of the final output A = (Aw
1 , A

v
1 , · · · , Aw

T , A
v
T ) can be bounded as follows

αA(λ) ≤ αAv(λ) + αAw(λ) ≤ m2Tλ2

n2σ̃2
w

+
m2Tλ2

n2σ̃2
v

.

By Lemma 1 a), to guarantee A to be (ε, δ)-differentially private, it suffices that

λ2m2T

n2σ̃2
w

≤ λε

4
,
λ2m2T

n2σ̃2
v

≤ λε

4
, exp(−λε

4
) ≤ δ, λ ≤ σ̃2

w log(
n

mσ̃w
) and λ ≤ σ̃2

v log(
n

mσ̃v
)

It is now easy to verify that when ε = c1m
2T/n2, we can satisfy all these conditions by setting

σ̃w ≥
c2
√
T log(1/δ)

nε
and σ̃v ≥

c3
√
T log(1/δ)

nε

for some explicit constants c1, c2 and c3. The proof is complete.

Proof of Remark 1. Without loss of generality, we consider with only one σ in the the proof of Theorem 1.
Then algorithm A is guaranteed to be (ε, δ)-DP if one can find λ > 0 such that

λ2m2T

n2σ2
≤ λε

2
, exp(−λε

2
) ≤ δ, and λ ≤ σ2 log(

n

mσ
)

Given δ = 1
n2 , the second inequality can be reformulated as λ ≥ 4 log(n)

ε . Therefore by choosing σ2 =
8m2T log(n)

n2ε2 , the first inequality becomes λ ≤ 4 log(n)
ε , indicating λ = 4 log(n)

ε . It suffices to show such choice
of λ satisfies the third inequality, which is straightforward by the choice of m and ε ≤ 1. The proof is
complete.

C Proofs for the convex-concave setting in Section 3.1
Recall that the error decomposition (4) given in Section 3.1 that the weak PD risk can be decomposed as
follows:

4w(w̄T , v̄T ) = 4w(w̄T , v̄T )−4wS (w̄T , v̄T ) +4wS (w̄T , v̄T ), (1)

where the term 4w(w̄T , v̄T ) − 4wS (w̄T , v̄T ) is the generalization error and the term 4wS (w̄T , v̄T ) is the
optimization error.
The proof of Theorem 2 involves the estimation of the optimization error and generalization error which are
performed in the subsequent subsection, respectively.
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C.1 Estimation of Optimization Error
We start by studying the optimization error for Algorithm 1. This is obtained as a direct corollary of
Nemirovski et al. [2009], with the existence of the Gaussian noise’s variance and the mini-batch. Recall that
d = max{d1, d2}.
Lemma 3. Suppose (A1) holds, and FS is convex-concave. Let the stepsizes ηw,t = ηv,t = η, t ∈ [T ] for
some η > 0. Then Algorithm 1 satisfies

sup
v∈V

EA[FS(w̄T ,v)]− inf
w∈W

EA[FS(w, v̄T )] ≤ η(G2
w +G2

v)

2
+
D2

w +D2
v

ηT
+

(DwGw +DvGv)√
mT

+ ηd(σ2
w + σ2

v).

Proof. According to the non-expansiveness of projection and update rule of Algorithm 1, for any w ∈ W,
we have

‖wt+1 −w‖22 ≤
∥∥∥wt −w − η

m

m∑
j=1

∇wf(wt,vt; zijt
)− ηξt

∥∥∥2

2

≤‖wt −w‖22 + 2η
〈
w −wt,

1

m

m∑
j=1

∇wf(wt,vt; zijt
) + ξt

〉
+ η2

∥∥∥ 1

m

m∑
j=1

∇wf(wt,vt; zijt
)
∥∥∥2

2
+ η2‖ξt‖22

+ 2η2
〈 1

m

m∑
j=1

∇wf(wt,vt; zijt
), ξt

〉
≤‖wt −w‖22 + 2η〈w −wt,∇wFS(wt,vt)〉+ 2η

〈
w −wt,

1

m

m∑
j=1

∇wf(wt,vt; zijt
)−∇wFS(wt,vt)

〉
+ η2G2

w + η2‖ξt‖22 + 2η2
〈 1

m

m∑
j=1

∇wf(wt,vt; zijt
), ξt

〉
+ 2η〈w −wt, ξt〉,

where in the last inequality we have used f(·,vt, zijt ) is Gw-Lipschitz continuous. According to the convexity
of FS(·,vt) we know

2η(FS(wt,vt)−FS(w,vt)) ≤‖wt−w‖22−‖wt+1−w‖22+2η
〈
w−wt,

1

m

m∑
j=1

∇wf(wt,vt; zijt
)−∇wFS(wt,vt)

〉
+ η2G2

w + η2‖ξt‖22 + 2η2
〈 1

m

m∑
j=1

∇wf(wt,vt; zijt
), ξt

〉
+ 2η〈w −wt, ξt〉.

Taking a summation of the above inequality from t = 1 to T we derive

2η

T∑
t=1

(FS(wt,vt)− FS(w,vt)) ≤ ‖w1 −w‖22 + 2η

T∑
t=1

〈
w −wt,

1

m

m∑
j=1

∇wf(wt,vt; zijt
)−∇wFS(wt,vt)

〉

+ Tη2G2
w + η2

T∑
t=1

‖ξt‖22 + 2η2
T∑
t=1

〈 1

m

m∑
j=1

∇wf(wt,vt; zijt
), ξt

〉
+ 2η〈w −wt, ξt〉.

It then follows from the concavity of FS(w, ·) and Schwartz’s inequality that

2

T∑
t=1

η(FS(wt,vt)− FS(w, v̄T )) ≤ 2D2
w − 2η

T∑
t=1

〈
wt,

1

m

m∑
j=1

∇wf(wt,vt; zijt
)−∇wFS(wt,vt)

〉

+ 2Dwη
∥∥∥ T∑
t=1

(
1

m

m∑
j=1

∇wf(wt,vt; zijt
)−∇wFS(wt,vt)

∥∥∥
2

+ Tη2G2
w + η2

T∑
t=1

‖ξt‖22 + 2η2
T∑
t=1

〈 1

m

m∑
j=1

∇wf(wt,vt; zijt
), ξt

〉
+ 2η〈w −wt, ξt〉. (2)
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We can take expectations on the randomness of A over both sides of(2) and get

2η

T∑
t=1

EA[FS(wt,vt)−FS(w, v̄T )] ≤2D2
w+2DwηEA

[∥∥∥ T∑
t=1

1

m

m∑
j=1

∇wf(wt,vt; zijt
)−∇wFS(wt,vt)

∥∥∥
2

]
+ Tη2G2

w + η2d1σ
2
w,

where we used that the variance EA[‖ξt‖22] = d1σ
2
w, the unbiasedness EA[〈wt,

1
m

∑m
j=1∇wf(wt,vt; zijt

) −
∇wFS(wt,vt)〉] = 0, the independence EA[〈 1

m

∑m
j=1∇wf(wt,vt; zijt

), ξt〉] = 0 and EA[〈w − wt, ξt〉] = 0.
Since the above inequality holds for all w, we further get

2η

T∑
t=1

EA[FS(wt,vt)]− inf
w∈W

EA[FS(w, v̄T )] ≤2D2
w+2DwηEA

[∥∥∥ T∑
t=1

1

m

m∑
j=1

∇wf(wt,vt; zijt
)−∇wFS(wt,vt)

∥∥∥
2

]
+ Tη2G2

w + η2d1σ
2
w, (3)

According to Jensen’s inequality and Gw-Lipschitz continuity we further derive

(
EA
[∥∥∥ T∑

t=1

(
1

m

m∑
j=1

∇wf(wt,vt; zijt
)−∇wFS(wt,vt)

∥∥∥
2
)
])2

≤EA
[∥∥∥ T∑

t=1

(
1

m

m∑
j=1

∇wf(wt,vt; zijt
)−∇wFS(wt,vt))

∥∥∥2

2

]
=

T∑
t=1

EA
[∥∥∥ 1

m

m∑
j=1

∇wf(wt,vt; zijt
)−∇wFS(wt,vt)

∥∥∥2

2

]
≤TG

2
w

m
.

Plugging the above estimate into (3) we arrive

2η

T∑
t=1

EA[FS(wt,vt)]− inf
w∈W

EA[FS(w, v̄T )] ≤ 2D2
w +

2DwηGw

√
T√

m
+ Tη2G2

w + Tη2d1σ
2
w.

By dividing 2ηT on both sides we have

1

T

T∑
t=1

EA[FS(wt,vt)]− inf
w∈W

EA[FS(w, v̄T )] ≤ D2
w

ηT
+
DwGw√
mT

+
ηG2

w

2
+
ηd1σ

2
w

2
. (4)

In a similar way, we can show that

1

T

T∑
t=1

sup
v∈V

EA[FS(w̄T ,v)]− EA[FS(wt,vt)] ≤
D2

v

ηT
+
DvGv√
mT

+
ηG2

v

2
+
ηd2σ

2
v

2
. (5)

The stated bound then follows from (4) and (5) and the fact that d = max{d1, d2}.

C.2 Estimation of Generalization Error
Next we move on to the generalization error. Firstly, we introduce a lemma that bridges the generalization
and the stability. We say the randomized algorithm A is ε-weakly-stable if, for any neighboring datasets
S, S′, there holds

sup
z

(
sup
v∈V

EA[f(Aw(S),v; z)− f(Aw(S′),v; z)] + sup
w∈W

EA[f(w, Av(S); z)− f(w, Av(S′); z)]
)
≤ ε.

Lemma 4. [Lei et al., 2021] If A is ε-weakly-stable, then there holds

4w(Aw(S), Av(S))−4wS (Aw(S), Av(S)) ≤ ε.
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We also need the following standard lemma before we prove the stability of DP-SGDA.

Lemma 5 ([Rockafellar, 1976]). Let f be a convex-concave function. Then〈(
w −w′

v − v′

)
,

(
∇wf(w,v)−∇wf(w′,v′)
∇vf(w′,v′)−∇vf(w,v)

)〉
≥ 0.

The stability analysis is given in the following lemma. This lemma is an extension of the uniform argument
stability results in Lei et al. [2021] to the case of mini-batch DP-SGDA.

Lemma 6. Suppose the function FS is convex-concave. Let the stepsizes ηw,t = ηv,t = η for some η > 0.

a) Assume (A1) and (A3) hold, then Algorithm 1 satisfies

4w(w̄T , v̄T )−4wS (w̄T , v̄T ) ≤
4
√
e(T + T 2/n)(Gw +Gv)2η exp(L2Tη2/2)√

n
.

b) Assume (A1) holds, then Algorithm 1 satisfies

4w(w̄T , v̄T )−4wS (w̄T , v̄T ) ≤ 4
√

2η(Gw +Gv)2
(√

T +
T

n

)
.

Proof. Without loss of generality, let S = {z1, · · · , zn}, S′ = {z′1, · · · , z′n} be neighboring datasets differing
by the last element, i.e. zn 6= z′n. Let {wt,vt}, {w′t,v′t} be the sequence produced by Algorithm 1 w.r.t. S
and S′, respectively. We first prove Part a). In the case n 6∈ It, by the non-expansiveness of projection, we
have∥∥∥∥(wt+1 −w′t+1

vt+1 − v′t+1

)∥∥∥∥2

2

≤

∥∥∥∥∥
(
wt − η

m

∑m
j=1∇wf(wt,vt; zijt

)− ηξt −w′t + η
m

∑m
j=1∇wf(w′t,v

′
t; zijt

) + ηξt
vt + η

m

∑m
j=1∇vf(wt,vt; zijt

) + ηζt − v′t −
η
m

∑m
j=1∇vf(w′t,v

′
t; zijt

)− ηζt

)∥∥∥∥∥
2

2

=

∥∥∥∥(wt −w′t
vt − v′t

)∥∥∥∥2

2

+
η

m

m∑
j=1

〈(
wt −w′t
vt − v′t

)
,

(
∇wf(wt,vt; zijt

)−∇wf(w′t,v
′
t; zijt

)

∇vf(w′t,v
′
t; zijt

)−∇vf(wt,vt; zijt
)

)〉

+

∥∥∥∥( η
m

∑m
j=1(∇wf(wt,vt; zn)−∇wf(w′t,v

′
t; z
′
n))

η
m

∑m
j=1(∇vf(wt,vt; zn)−∇vf(w′t,v

′
t; z
′
n))

)∥∥∥∥2

2

≤ (1 + L2η2)

∥∥∥∥(wt −w′t
vt − v′t

)∥∥∥∥2

2

,

where the last inequality follows from Lemma 5 and the L-smoothness assumption. If n ∈ It, then it follows
that∥∥∥∥(wt+1 −w′t+1

vt+1 − v′t+1

)∥∥∥∥2

2

≤

∥∥∥∥∥
(
wt − η

m

∑m
j=1∇wf(wt,vt; zijt

)− ηξt −w′t + η
m

∑m
j=1∇wf(w′t,v

′
t; z
′
ijt

) + ηξt

vt + η
m

∑m
j=1∇vf(wt,vt; zijt

) + ηζt − v′t −
η
m

∑m
j=1∇vf(w′t,v

′
t; z
′
ijt

)− ηζt

)∥∥∥∥∥
2

2

≤ 1

m

∑
ijt∈It,i

j
t 6=n

∥∥∥∥∥
(
wt − η∇wf(wt,vt; zijt

)−w′t + η∇wf(w′t,v
′
t; z
′
ijt

)

vt + η∇vf(wt,vt; zijt
)− v′t − η∇vf(w′t,v

′
t; z
′
ijt

)

)∥∥∥∥∥
2

2

+
1

m

∥∥∥∥(wt − η∇wf(wt,vt; zn)−w′t + η∇wf(w′t,v
′
t; z
′
n)

vt + η∇vf(wt,vt; zn)− v′t − η∇vf(w′t,v
′
t; z
′
n)

)∥∥∥∥2

2

≤ m− 1

m
(1 + L2η2)

∥∥∥∥(wt −w′t
vt − v′t

)∥∥∥∥2

2

+
1 + p

m

∥∥∥∥(wt −w′t
vt − v′t

)∥∥∥∥2

2

+
1 + 1/p

m
η2

∥∥∥∥(∇wf(wt,vt; zn)−∇wf(w′t,v
′
t; z
′
n)

∇vf(wt,vt; zn)−∇vf(w′t,v
′
t; z
′
n)

)∥∥∥∥2

2

, (6)
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where in the last inequality we used the elementary inequality (a+b)2 ≤ (1+p)a2 +(1+1/p)b2 (p > 0). Since
It are drawn uniformly at random with replacement, the event n 6∈ It happens with probability 1−m/n and
the event n ∈ It happens with probability m/n. Therefore, we know

Eit

[∥∥∥∥(wt+1 −w′t+1

vt+1 − v′t+1

)∥∥∥∥2

2

]
≤ (n−m)(1 + L2η2)

n

∥∥∥∥(wt −w′t
vt − v′t

)∥∥∥∥2

2

+
m(1 + L2η2)

n

m− 1

m

∥∥∥∥(wt −w′t
vt − v′t

)∥∥∥∥2

2

+
m

n

1 + p

m

∥∥∥∥(wt −w′t
vt − v′t

)∥∥∥∥2

2

+
m

n

4(1 + 1/p)

m
η2(G2

w +G2
v)

≤
(

1 + L2η2 + p/n
)∥∥∥∥(wt −w′t

vt − v′t

)∥∥∥∥2

2

+
4(1 + 1/p)

n
η2(G2

w +G2
v).

Applying this inequality recursively, we derive

EA

[∥∥∥∥(wt+1 −w′t+1

vt+1 − v′t+1

)∥∥∥∥2

2

]
≤ 4(1 + 1/p)

n
(G2

w +G2
v)

t∑
k=1

η2
t∏

j=k+1

(
1 + L2η2 + p/n

)
.

By the elementary inequality 1 + a ≤ exp(a), we further derive

EA

[∥∥∥∥(wt+1 −w′t+1

vt+1 − v′t+1

)∥∥∥∥2

2

]
≤ 4(1 + 1/p)

n
(G2

w +G2
v)

t∑
k=1

η2
t∏

j=k+1

exp
(
L2η2 + p/n

)

=
4(1 + 1/p)

n
(G2

w +G2
v)

t∑
k=1

η2 exp
(
L2

t∑
j=k+1

η2 + p(t− k)/n
)

≤ 4(1 + 1/p)

n
(G2

w +G2
v) exp

(
L2

t∑
j=1

η2 + pt/n
) t∑
k=1

η2.

By taking p = n/t we get

EA

[∥∥∥∥(wt+1 −w′t+1

vt+1 − v′t+1

)∥∥∥∥2

2

]
≤ 4e(G2

w +G2
v)(1 + t/n)

n
exp

(
L2

t∑
j=1

η2
) t∑
k=1

η2.

Now by the Lipschitz continuity and Jensen’s inequality we ave

sup
z

(
sup
v∈V

EA[f(Aw(S),v; z)− f(Aw(S′),v; z)] + sup
w∈W

EA[f(w, Av(S); z)− f(w, Av(S′); z)]
)

≤GwEA[‖w̄T − w̄′T ‖2] +GvEA[‖v̄T − v̄′T ‖2] ≤
4
√
e(T + T 2/n)(Gw +Gv)2η exp(L2Tη2/2)√

n
.

According to Lemma 4 we know

4w(w̄T , v̄T )−4wS (w̄T , v̄T ) ≤
4
√
e(T + T 2/n)(Gw +Gv)2η exp(L2Tη2/2)√

n
.

Next we focus on Part b). We consider two cases at the t-th iteration. If n 6∈ It, then analogous to the
discussions in Lei et al. [2021] we can show∥∥∥∥(wt+1 −w′t+1

vt+1 − v′t+1

)∥∥∥∥2

2

≤

∥∥∥∥∥
(
wt − η

m

∑m
j=1∇wf(wt,vt; zijt

)− ηξt −w′t + η
m

∑m
j=1∇wf(w′t,v

′
t; zijt

) + ηξt
vt + η

m

∑m
j=1∇vf(wt,vt; zijt

) + ηζt − v′t −
η
m

∑m
j=1∇vf(w′t,v

′
t; zijt

)− ηζt

)∥∥∥∥∥
2

2

≤
∥∥∥∥(wt −w′t

vt − v′t

)∥∥∥∥2

2

+ 4(G2
w +G2

v)η2. (7)
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Combining the preceding inequality with (6) and using the probability of n 6∈ It, we derive

Eit

[∥∥∥∥(wt+1 −w′t+1

vt+1 − v′t+1

)∥∥∥∥2

2

]
≤ n− 1

n

(∥∥∥∥(wt −w′t
vt − v′t

)∥∥∥∥2

2

+ 4(G2
w +G2

v)η2

)

+
1 + p

n

∥∥∥∥(wt −w′t
vt − v′t

)∥∥∥∥2

2

+
4(1 + 1/p)

n
(G2

w +G2
v)η2

= (1 + p/n)

∥∥∥∥(wt −w′t
vt − v′t

)∥∥∥∥2

2

+ 4(G2
w +G2

v)η2(1 + 1/(np)).

Applying this inequality recursively implies that

EA

[∥∥∥∥(wt+1 −w′t+1

vt+1 − v′t+1

)∥∥∥∥2

2

]
≤ 4(G2

w +G2
v)η2

(
1 + 1/(np)

) t∑
k=1

(
1 +

p

n

)t−k
= 4(G2

w +G2
v)η2

(
1 +

1

np

)n
p

((
1 +

p

n

)t
− 1
)

= 4(G2
w +G2

v)η2
(n
p

+
1

p2

)((
1 +

p

n

)t
− 1
)
.

By taking p = n/t in the above inequality and using (1 + 1/t)t ≤ e, we get

EA

[∥∥∥∥(wt+1 −w′t+1

vt+1 − v′t+1

)∥∥∥∥2

2

]
≤ 16(G2

w +G2
v)η2

(
t+

t2

n2

)
.

Now by the Lipschitz continuity and Jensen’s inequality we ave

sup
z

(
sup
v∈V

EA[f(Aw(S),v; z)− f(Aw(S′),v; z)] + sup
w∈W

EA[f(w, Av(S); z)− f(w, Av(S′); z)]
)

≤GwEA[‖w̄T − w̄′T ‖2] +GvEA[‖v̄T − v̄′T ‖2] ≤ 4
√

2(Gw +Gv)2η2
(√

T +
T

n

)
.

According to Lemma 4 we know

4w(w̄T , v̄T )−4wS (w̄T , v̄T ) ≤ 32(Gw +Gv)2η2
(√

T +
T

n

)
.

C.3 Proof of Theorem 2
Finally we are ready to present the proof of Theorem 2.

Theorem 2 (Theorem 2 restated). Suppose the function FS is convex-concave. Let the stepsizes ηw,t =
ηv,t = η, t = [T ] for some η > 0.

a) Assume (A1) and (A3) hold. If we choose T � n and η � 1/
(√

Lmax{
√
n,
√
d log(1/δ)/ε}

)
, then

Algorithm 1 satisfies

4w(w̄T , v̄T ) = O
(

max{G2
w +G2

v, (Gw +Gv)2, D2
w +D2

v, DwGw +DvGv}max
{ 1√

n
,

√
d log(1/δ)

nε

})
.

b) Assume (A1) holds. If we choose T � n2 and η � 1/
(
nmax{

√
n,
√
d log(1/δ)/ε}

)
, then Algorithm 1

satisfies

4w(w̄T , v̄T ) = O
(

max{G2
w +G2

v, (Gw +Gv)2, D2
w +D2

v, DwGw +DvGv}max
{ 1√

n
,

√
d log(1/δ)

nε

})
.
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Proof of Theorem 2. We first focus on Part a). According to Part a) of Lemma 6 we know

4w(w̄T , v̄T )−4wS (w̄T , v̄T ) ≤
4
√
e(T + T 2/n)(Gw +Gv)2η exp(L2Tη2/2)√

n

and by Lemma 3 we know

4wS (w̄T , v̄T ) ≤ η(G2
w +G2

v)

2
+
D2

w +D2
v

2ηT
+
DwGw +DvGv√

mT
+ ηd(σ2

w + σ2
v).

Combining the above two quantities we have

4w(w̄T , v̄T ) ≤
4
√
e(T + T 2/n)(Gw +Gv)2η exp(L2Tη2/2)√

n
+
η(G2

w +G2
v)

2
+
D2

w +D2
v

2ηT

+
DwGw +DvGv√

mT
+ ηd(σ2

w + σ2
v). (8)

Furthermore, by Theorem 1, we know

σ2
w = O

(G2
wT log(1/δ)

n2ε2

)
, σ2

v = O
(G2

vT log(1/δ)

n2ε2

)
.

Plugging it back into (8) we have

4w(w̄T , v̄T ) = O
(√(T + T 2/n)(Gw +Gv)2η exp(L2Tη2)√

n

+
η(G2

w +G2
v)

2
+
D2

w +D2
v

2ηT
+
DwGw +DvGv√

mT
+
η(G2

w +G2
v)Td log(1/δ)

n2ε2

)
.

By picking T � n and η � 1/
(
Lmax{

√
n,
√
d log(1/δ)/ε}

)
we have exp(L2Tη2) = O

(
min{1, nε2

d log(1/δ)}
)

=

O(1) and

4w(w̄T , v̄T ) = O
(

max{G2
w +G2

v, (Gw +Gv)2, D2
w +D2

v, DwGw +DvGv}max
{ 1√

n
,

√
d log(1/δ)

nε

})
.

We now turn to Part b). According to Lemma 6 Part b) we know

4w(w̄T , v̄T )−4wS (w̄T , v̄T ) ≤ 4
√

2η(Gw +Gv)2
(√

T +
T

n

)
.

Similar to Part a) we have

4w(w̄T , v̄T )=O
(
η(Gw+Gv)2

(√
T+

T

n

)
+
η(G2

w+G2
v)

2
+
D2

w+D2
v

2ηT
+
DwGw+DvGv√

mT
+
η(G2

w+G2
v)Td log(1/δ)

n2ε2

)
.

By picking T � n2 and η � 1/
(
nmax{

√
n,
√
d log(1/δ)/ε}

)
we have

4w(w̄T , v̄T ) = O
(

max{G2
w +G2

v, (Gw +Gv)2, D2
w +D2

v, DwGw +DvGv}max
{ 1√

n
,

√
d log(1/δ)

nε

})
.

The proof is complete.
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D Proofs for the nonconvex-strongly-concave setting in Section 3.2
In this section, we will provide the proofs for the theorems in Section 3.2. Recall that we define R∗S =
minw∈W RS(w), and R∗ = minw∈W R(w). Then, for any w∗ ∈ arg minw R(w) we have the error decompo-
sition:

E[R(wT )−R∗] =E[R(wT )−RS(wT )] + E[RS(wT )−R∗S ] + E[R∗S −RS(w∗)] + E[RS(w∗)−R(w∗)]

≤E[R(wT )−RS(wT )] + E[RS(w∗)−R(w∗)] + E[RS(wT )−R∗S ].

The term E[RS(wT )−R∗S ] is the optimization error which characterizes the discrepancy between the primal
empirical risk of an output of Algorithm 1 and the least possible one. The term E[R(wT ) − RS(wT )] +
E[RS(w∗) − R(w∗)] is called the generalization error which measures the discrepancy between the primal
population risk and the empirical one. The estimations for these two errors are described as follows.

D.1 Proof of Theorem 3
To prove Theorem 3, i.e., optimization error, we introduce several necessary lemmas. The first lemma is an
application of Danskin’s Theorem.

Lemma 7 ([Lin et al., 2020]). Assume (A3) holds and FS(w, ·) is ρ-strongly concave. Assume V is a convex
and bounded set. Then the function RS(w) is L + L2/ρ-smooth and ∇RS(w) = ∇wFS(w, v̂S(w)), where
v̂S(w) = arg maxv∈V FS(w,v). And v̂S(w) is L/ρ Lipschitz continuous.

The second lemma shows that RS also satisfies the PL condition whenever FS does.

Lemma 8. Assume (A3) holds. Assume FS(·,v) satisfies PL condition with constant µ and FS(w, ·) is
ρ-strongly concave. Then the function RS(w) satisfies the PL condition with µ.

Proof. From Lemma 7, ‖∇RS(w)‖22 = ‖∇wFS(w, v̂S(w))‖22. Since FS satisfies PL condition with constant
µ, we get

‖∇RS(w)‖22 ≥ 2µ
(
FS(w, v̂S(w))− min

w′∈W
FS(w′, v̂S(w))

)
. (9)

Also, since FS(w′, v̂S(w)) ≤ maxv∈V FS(w′,v), we have

min
w′∈W

FS(w′, v̂S(w)) ≤ min
w′∈W

max
v∈V

FS(w′,v) = min
w′∈W

RS(w′) (10)

Combining equation (9) and (10), we have

‖∇RS(w)‖22 ≥ 2µ
(
RS(w)− min

w′∈W
RS(w′)

)
.

The proof is complete.

Now we present two key lemmas for the convergence analysis. The next lemma characterizes the descent
behavior of RS(wt).

Lemma 9. Assume (A2) and (A3) hold. Assume FS(·,v) satisfies the µ-PL condition and FS(w, ·) is
ρ-strongly concave. For Algorithm 1, the iterates {wt,vt}t∈[T ] satisfies the following inequality

E[RS(wt+1)−R∗S ] ≤(1− µηw,t)E[RS(wt)−R∗S ] +
L2ηw,t

2
E[‖v̂S(wt)− vt‖22]

+
(L+ L2/ρ)η2

w,t

2
(
B2

w

m
+ dσ2

w).

Proof. Because RS is L+ L2/ρ-smooth by Lemma 7, we have

RS(wt+1)−R∗S ≤RS(wt)−R∗S + 〈∇RS(wt),wt+1 −wt〉+
L+ L2/ρ

2
‖wt+1 −wt‖22

=RS(wt)−R∗S − ηw,t〈∇RS(wt),
1

m

m∑
j=1

∇wf(wt,vt; zijt
) + ξt〉

+
(L+ L2/ρ)η2

w,t

2
‖ 1

m

m∑
j=1

∇wf(wt,vt; zijt
) + ξt‖22.

10



We denote Et as the conditional expectation of given wt and vt. Taking this conditional expectation of both
sides, we get

Et[RS(wt+1)−R∗S ] =RS(wt)−R∗S − ηw,t〈∇RS(wt),∇wFS(wt,vt)〉

+
(L+ L2/ρ)η2

w,t

2
‖ 1

m

m∑
j=1

∇wf(wt,vt; zijt
)−∇wFS(wt,vt) +∇wFS(wt,vt)− ξt‖22

≤RS(wt)−R∗S − ηw,t〈∇RS(wt),∇wFS(wt,vt)〉

+
(L+ L2/ρ)η2

w,t

2
‖∇wFS(wt,vt)‖22 +

(L+ L2/ρ)η2
w,t

2
(
B2

w

m
+ dσ2

w)

≤RS(wt)−R∗S −
ηw,t

2
‖∇RS(wt)‖22 +

ηw,t
2
‖∇RS(wt)−∇wFS(wt,vt)‖22

+
(L+ L2/ρ)η2

w,t

2
(
B2

w

m
+ dσ2

w),

where in first inequality since Et[‖ 1
m

∑m
j=1∇wf(wt,vt; zijt

)−∇wFS(wt,vt)‖22] = 1
m

∑m
j=1 Et[‖∇wf(wt,vt; zijt

)−

∇wFS(wt,vt)‖22] ≤ B2
w

m and Et[‖ξt‖22] = d1σ
2
w ≤ dσ2

w, and the last inequality we use ηw ≤ 1/(L + L2/ρ).
Because RS satisfies PL condition with µ by Lemma 8, we have

Et[RS(wt+1)−R∗S ] ≤(1− µηw,t)(RS(wt)−R∗S) +
ηw,t

2
‖∇RS(wt)−∇wFS(wt,vt)‖22

+
(L+ L2/ρ)η2

w,t

2
(
B2

w

m
+ dσ2

w)

≤(1− µηw,t)(RS(wt)−R∗S) +
L2ηw,t

2
‖v̂S(wt)− vt‖22 +

(L+ L2/ρ)η2
w,t

2
(
B2

w

m
+ dσ2

w),

where the second we use FS is L-smooth. Now taking expectation of both sides yields the claimed bound.
The proof is complete.

The next lemma characterizes the descent behavior of vt.

Lemma 10. Assume (A2) and (A3) hold. Assume FS(·,v) satisfies PL condition with constant µ and
FS(w, ·) is ρ-strongly concave. Let v̂S(w) = arg maxv∈V FS(w,v). For Algorithm 1 and any ε > 0, the
iterates {wt,vt} satisfies the following inequality

E[‖vt+1−v̂S(wt+1)‖22] ≤((1+
1

ε
)2L4/ρη2

w,t+(1+ε)(1−ρηv,t))E[‖vt−v̂S(wt)‖22]+(1+
1

ε
)η2

w,tL
2/ρ2(

B2
w

m
+dσ2

w)

+ (1 +
1

ε
)4L2/ρ2(L+ L2/ρ)η2

w,tE[RS(wt)−R∗S ] + (1 + ε)η2
v,t(

B2
v

m
+ dσ2

v).

Proof. By Young’s inequality, we have

‖vt+1 − v̂S(wt+1)‖22 ≤ (1 + ε)‖vt+1 − v̂S(wt)‖22 + (1 +
1

ε
)‖v̂S(wt)− v̂S(wt+1)‖22.

For the term ‖v̂S(wt)−v̂S(wt+1)‖22, since v̂S(·) is L/ρ-Lipschitz by Lemma 7, taking conditional expectation,
we have

Et[‖v̂S(wt+1)− v̂S(wt)‖22] ≤ L2/ρ2Et[‖wt+1 −wt‖22] = L2/ρ2η2
w,tEt[‖

1

m

m∑
j=1

∇wf(wt,vt; zijt
) + ξt‖22]

≤ L2/ρ2η2
w,t‖∇wFS(wt,vt)‖22 + L2/ρ2η2

w,t(
B2

w

m
+ dσ2

w)

≤ 2L2/ρ2η2
w,t‖∇RS(wt)−∇wFS(wt,vt)‖22 + 2L2/ρ2η2

w,t‖∇RS(wt)‖22 + L2/ρ2η2
w,t(

B2
w

m
+ dσ2

w)

≤ 2L4/ρ2η2
w,t‖v̂S(wt)− vt‖22 + 2L2/ρ2η2

w,t‖∇RS(wt)‖22 + L2/ρ2η2
w,t(

B2
w

m
+ dσ2

w),
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where the last step uses the fact that FS is L-smooth. Because RS is L+L2/ρ-smooth by Lemma 7 we have
1

2(L+L2ρ)‖∇RS(wt)‖22 ≤ RS(wt)−R∗S . Therefore

Et[‖v̂S(wt+1)− v̂S(wt)‖22] ≤2L4/ρ2η2
w,t‖v̂S(wt)− vt‖22 + 4L2/ρ2(L+ L2/ρ)η2

w,t(RS(wt)−RS(w∗))

+ L2/ρ2η2
w,t(

B2
w

m
+ dσ2

w). (11)

For the term ‖vt+1 − v̂S(wt)‖22, by the contraction of projection, we have

Et[‖vt+1 − v̂S(wt)‖22] ≤ Et[‖vt + ηv,t(
1

m

m∑
j=1

∇vf(wt,vt; zijt
) + ζt)− v̂S(wt)‖22]

≤ ‖vt − v̂S(wt)‖22 + 2ηv,tEt[〈vt − v̂S(wt),
1

m

m∑
j=1

∇vf(wt,vt; zijt
)〉] + η2

v,tEt[‖
1

m

m∑
j=1

∇vf(wt,vt; zijt
) + ζt‖22]

≤ ‖vt − v̂S(wt)‖22 + 2ηv,t〈vt − v̂S(wt),∇vFS(wt,vt)〉+ η2
v,t‖∇vFS(wt,vt)‖22 + η2

v,t(
B2

v

m
+ dσ2

v)

≤ (1−ρηv,t)‖vt− v̂S(wt)‖22 +2ηv,t(FS(wt,vt)−FS(wt, v̂S(wt))+η2
v,t‖∇vFS(wt,vt)‖22 +η2

v,t(
B2

v

m
+dσ2

v),

where the third inequality we use the FS(w, ·) is ρ-strongly concave. Since FS is L-smooth, by choosing
ηv,t ≤ 1/L, we have

Et[‖vt+1−v̂S(wt)‖22] ≤(1−ρηv,t)‖vt−v̂S(wt)‖22−
ηv,t
L
‖∇vFS(wt,vt)‖22+η2

v,t‖∇vFS(wt,vt)‖22+η2
v,t(

B2
v

m
+dσ2

v)

≤(1− ρηv,t)‖vt − v̂S(wt)‖22 + η2
v,t(

B2
v

m
+ dσ2

v). (12)

Combining (12) and (11) we have

Et[‖vt+1−v̂S(wt+1)‖22] ≤((1+
1

ε
)2L4/ρ2η2

w,t+(1+ε)(1−ρηv,t))‖vt−v̂S(wt)‖22+(1+
1

ε
)η2

w,tL
2/ρ2(

B2
w

m
+dσ2

w)

+ (1 +
1

ε
)4L2/ρ2(L+ L2/ρ)η2

w,t(RS(wt)−RS(w∗)) + (1 + ε)η2
v,t(

B2
v

m
+ dσ2

v).

Taking expectation on both sides yields the desired bound. The proof is complete.

Lemma 11. Assume (A2) and (A3) hold. Assume FS(·,v) satisfies PL condition with constant µ and
FS(w, ·) is ρ-strongly concave. Define at = E[RS(wt)−RS(w∗)] and bt = E[‖v̂S(wt)−vt‖22]. For Algorithm
1, if ηw,t ≤ 1/(L + L2/ρ) and ηv,t ≤ 1/L, then for any non-increasing sequence {λt > 0} and ε > 0, the
iterates {wt,vt}t∈[T ] satisfy the following inequality

at+1 + λt+1bt+1 ≤ k1,tat + k2,tλtbt

+
(L+ L2/ρ)η2

w,t

2
(
B2

w

m
+ dσ2

w) + 2(1 +
1

ε
)λtL

2/ρ2η2
w,t(

B2
w

m
+ dσ2

w) + λt(1 + ε)η2
v,t(

B2
v

m
+ dσ2

v),

where

k1,t =(1− µηw,t) + λt(1 +
1

ε
)4L2/ρ2(L+ L2/ρ)η2

w,t,

k2,t =
L2ηw,t

2λt
+ (1 + ε)(1− ρηv,t) + (1 +

1

ε
)2L4/ρ2η2

w,t.

12



Proof. Combining Lemma 9 and Lemma 10, we have for any λt+1 > 0, we have

at+1 + λt+1bt+1 ≤((1− µηw,t) + λt+1(1 +
1

ε
)4L2/ρ2(L+ L2/ρ)η2

w,t)at

+ (
L2ηw,t

2
+ λt+1(1 + ε)(1− ρηv,t) + λt+1(1 +

1

ε
)2L4/ρ2η2

w,t)bt

+
(L+ L2/ρ)η2

w,t

2
(
B2

w

m
+dσ2

w)+2(1+
1

ε
)λt+1L

2/ρ2η2
w,t(

B2
w

m
+dσ2

w)+λt+1(1+ε)η2
v,t(

B2
v

m
+dσ2

v)

≤((1− µηw,t) + λt(1 +
1

ε
)4L2/ρ2(L+ L2/ρ)η2

w,t)at

+ (
L2ηw,t

2
+ λt(1 + ε)(1− ρηv,t) + λt(1 +

1

ε
)2L4/ρ2η2

w,t)bt

+
(L+ L2/ρ)η2

w,t

2
(
B2

w

m
+dσ2

w)+2(1+
1

ε
)λtL

2/ρ2η2
w,t(

B2
w

m
+dσ2

w)+λt(1+ε)η2
v,t(

B2
v

m
+dσ2

v)

=((1− µηw,t) + λt(1 +
1

ε
)4L2/ρ2(L+ L2/ρ)η2

w,t)at

+ λt(
L2ηw,t

2λt
+ (1 + ε)(1− ρηv,t) + (1 +

1

ε
)2L4/ρ2η2

w,t)bt

+
(L+ L2/ρ)η2

w,t

2
(
B2

w

m
+dσ2

w)+2(1+
1

ε
)λtL

2/ρ2η2
w,t(

B2
w

m
+dσ2

w)+λt(1+ε)η2
v,t(

B2
v

m
+dσ2

v).

where the first inequality we used λt+1 ≤ λt. The proof is completed.

We are now ready to state the convergence theorem of Algorithm 1.

Theorem 3 (Theorem 3 restated). Assume (A2) and (A3) hold. Assume FS(·,v) satisfies PL condition
with constant µ and FS(w, ·) is ρ-strongly concave. Assume µ ≤ 2L2 and Let κ = L

ρ . For Algorithm 1, if

ηw,t = O( 1
µt ) and ηv,t = O(

κ2 max{1,
√
κ/µ}

µt2/3
), then the iterates {wt,vt}t∈[T ] satisfy the following inequality

E[RS(wT+1)−R∗S ] = O(min
{ 1

L
,

1

µ

}
(
B2

w/m+ dσ2
w

T 2/3
) + max

{
1,

√
Lκ

µ

}Lκ3

µ2
(
B2

v/m+ dσ2
v

T 2/3
)). (13)

Furthermore, if σw, σv are given by (3), we have

E[RS(wT+1)−R∗S ]

=O(min
{ 1

L
,

1

µ

}
(
B2

w

mT 2/3
+
G2

wdT
1/3 log(1/δ)

n2ε2
) + max

{
1,

√
Lκ

µ

}Lκ3

µ2
(
B2

v

mT 2/3
+
G2

vdT
1/3 log(1/δ)

n2ε2
)). (14)

Proof. Since ηv,t ≤ 1/L, we can pick ε =
ρηv,t

2(1−ρηv,t) . Then we have (1 + ε)(1 − ρηv,t) = 1 − ρηv,t
2 and

1 + 1
ε ≤

2
ρηv,t

. Therefore Lemma 11 can be simplified as

k1,t ≤(1− µηw,t) + λt
8L2/ρ2(L+ L2/ρ)η2

w,t

ρηv,t
,

k2,t ≤
L2ηw,t

2λt
+ 1− ρηv,t

2
+

4L4/ρ2η2
w,t

ρηv,t
.

If we choose λt =
4L2ηw,t
ρηv,t

and ηw,t ≤ min{
√
µ

8κ2
√
L+L2/ρ

, 1
4
√

2κ2
}ηv,t, then further we have k1,t ≤ 1 − µηw,t

2

13



and k2,t ≤ 1− ρηv,t
4 . By Lemma 11 we have

at+1 + λt+1bt+1 ≤(1−min{µ
2
, L2}ηw,t)(at + λtbt) +

(L+ L2/ρ)η2
w,t

2
(
B2

w

m
+ dσ2

w)

+
16L4/ρ3η3

w,t

ρη2
v,t

(
B2

w

m
+ dσ2

w) +
4L2(2− ρηv,t)ηw,tηv,t

2ρ(1− ρηv,t)
(
B2

v

m
+ dσ2

v)

≤(1− µηw,t
2

)(at + λtbt) +
(L+ L2/ρ)η2

w,t

2
(
B2

w

m
+ dσ2

w)

+
16L4/ρ3η3

w,t

ρη2
v,t

(
B2

w

m
+ dσ2

w) +
4L2(2− ρηv,t)ηw,tηv,t

2ρ(1− ρηv,t)
(
B2

v

m
+ dσ2

v),

where we used µ ≤ 2L2. Taking ηw,t = 2
µt and ηv,t = max{8κ2

√
(L+ L2/ρ)/µ, 4

√
2κ2} 2

µt2/3
and multiplying

the preceding inequality with t on both sides, there holds

t(at+1 + λt+1bt+1) ≤ (t− 1)(at + λtbt) +
2(L+ L2/ρ)

µ2t
(
B2

w

m
+ dσ2

w)

+
32L4/ρ3 min{

√
µ

8κ2
√
L+L2/ρ

, 1
4
√

2κ2
}2

µρt2/3
(
B2

w

m
+ dσ2

w) +
16L2 max{8κ2

√
(L+ L2/ρ)/µ, 4

√
2κ2}

2µ2ρt2/3
(
B2

v

m
+ dσ2

v).

Applying the preceding inequality inductively from t = 1 to T , we have

T (aT+1 + λT+1bT+1) ≤2(L+ L2/ρ)

µ2
(
B2

w

m
+ dσ2

w) log(T ) +
32L4/ρ3 min{

√
µ

8κ2
√
L+L2/ρ

, 1
4
√

2κ2
}2

µρ
(
B2

w

m
+ dσ2

w)T 1/3

+
16L2 max{8κ2

√
(L+ L2/ρ)/µ, 4

√
2κ2}

2µ2ρ
(
B2

v

m
+ dσ2

v)T 1/3.

Consequently,

E[RS(wT+1)−R∗S ] ≤aT+1 + λT+1bT+1

≤2(L+ L2/ρ)(B2
w/m+ dσ2

w)

µ2

log(T )

T
+

32(B2
w/m+dσ2

w)L4/ρ3min{
√
µ

8κ2
√
L+L2/ρ

, 1
4
√

2κ2
}2

µρ

1

T 2/3

+
16(B2

v/m+dσ2
v)L2max{8κ2

√
(L+L2/ρ)/µ, 4

√
2κ2}

2µ2ρ

1

T 2/3
. (15)

Therefore, the estimation (13) follows from the fact that κ = L/ρ.

The result in Theorem 3 follows by observing max
{

1,
√

Lκ
µ

}
Lκ3

µ2 ≥ min
{

1
L ,

1
µ

}
. Substituting the values of

σw, σv, i.e., σw =
c2Gw

√
T log( 1

δ )

nε and σv =
c3Gv

√
T log( 1

δ )

nε , into (13) yields the desired estimation (14).

D.2 Proof of Theorem 4 (Generalization Error)
We first focus on to the generalization error E[R(wT )−RS(wT )]. Firstly, we introduce a lemma that bridges
the generalization and the uniform argument stability. We modify the lemma so that it satisfies our needs.

Lemma 12 ([Lei et al., 2021]). Let A be a randomized algorithm and ε > 0. If for all neighboring datasets
S, S′, there holds

EA[‖Aw(S)−Aw(S′)‖2] ≤ ε.

Furthermore, if the function F (w, ·) is ρ-strongly-concave and Assumptions 1, (A3) hold, then the primal
generalization error satisfies

ES,A
[
R(Aw(S))−RS(Aw(S))

]
≤
(
1 + L/ρ

)
Gwε.
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The next proposition states the set of saddle points is unique with respect to the variable v when FS(w, ·)
is strongly concave.

Proposition 1. Assume FS(w, ·) is ρ-strongly concave with ρ > 0. Let (ŵS , v̂S) and (ŵ′S , v̂
′
S) be two saddle

points of FS. Then we have v̂S = v̂′S.

Proof. Given ŵS , by the strong concavity, we have

FS(ŵS , v̂S) ≥ FS(ŵS , v̂
′
S) + 〈∇vFS(ŵS , v̂S), v̂S − v̂′S〉+

ρ

2
‖v̂S − v̂′S‖22.

Since (ŵS , v̂S) is a saddle point of FS , it implies v̂S attains maximum of FS(ŵS , ·). By the first order
optimality we know 〈∇vFS(ŵS , v̂S), v̂S − v̂′S〉 ≥ 0 and therefore

FS(ŵS , v̂S) ≥ FS(ŵS , v̂
′
S) +

ρ

2
‖v̂S − v̂′S‖22 ≥ FS(ŵ′S , v̂

′
S) +

ρ

2
‖v̂S − v̂′S‖22, (16)

where in the second inequality we used (ŵ′S , v̂
′
S) is also a saddle point of FS . Similarly, given ŵ′S we can

show

FS(ŵ′S , v̂
′
S) ≥ FS(ŵS , v̂S) +

ρ

2
‖v̂S − v̂′S‖22. (17)

Adding (16) and (17) together implies that ρ‖v̂S − v̂′S‖22 ≤ 0. This implies v̂S = v̂′S which completes the
proof.

Recall that πS :W →W is the projection onto the set of saddle points ΩS = {ŵS : (ŵS , v̂S ∈ arg min maxFS(w,v)}.
i.e. πS(w) = arg minŵS∈ΩS

1
2‖w − ŵS‖22. Proposition 1 makes sure the projection is well-defined. The next

lemma shows that PL condition implies quadratic growth (QG) condition. The proof follows straightforward
from Karimi et al. [2016] and we omit it for brevity.

Lemma 13. Suppose the function FS(·,v) satisfies µ-PL condition. Then FS satisfies the QG condition
with respect to w with constant 4µ, i.e.

FS(w,v)− FS(πS(w),v) ≥ 2µ‖w − πS(w)‖22, ∀v ∈ V

With the help of Assumption 4 and the preceding lemmas, we can derive the uniform argument stability.

Lemma 14. Assume (A1), (A3) and (A4) hold. Assume FS(·,v) satisfies PL condition with con-
stant µ and FS(w, ·) is ρ-strongly concave. Let A be a randomized algorithm. If for any S, E[‖Aw(S) −
πS(Aw(S))‖2] = O(εA), then we have

E[‖Aw(S)−Aw(S′)‖2] ≤ O(εA) +
1

n

√
G2

w

4µ2
+
G2

v

ρµ
.

Proof. Let (πS(Aw(S)), v̂S) ∈ arg minw maxv FS(w,v) and (πS′(Aw(S′)), v̂S′) defined in the similar way.
By triangle inequality we have

E[‖Aw(S)−Aw(S′)‖2] ≤E[‖Aw(S)−πS(Aw(S))‖2]+‖πS(Aw(S))−πS′(Aw(S′))‖2+E[‖Aw(S′)−πS′(Aw(S′))‖2]

=‖πS(Aw(S))− πS′(Aw(S′))‖2 +O(εA).

Since πS(Aw(S)) ∈ arg minw∈W FS(w, v̂S) and by Assumption (A4) we know that πS(Aw(S)) is the closest
optimal point of FS to πS′(Aw(S′)). And since v̂S is fixed, by Lemma 13, we have

2µ‖πS(Aw(S))− πS′(Aw(S′))‖22 ≤FS(πS′(Aw(S′)), v̂S)− FS(πS(Aw(S)), v̂S).

Similarly, we have

2µ‖πS(Aw(S))− πS′(Aw(S′))‖22 ≤FS′(πS(Aw(S)), v̂S′)− FS′(πS′(Aw(S′)), v̂S′).
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Summing up the above two inequalities we have

4µ‖πS(Aw(S))− πS′(Aw(S′))‖22 ≤FS(πS′(Aw(S′)), v̂S)− FS(πS(Aw(S)), v̂S)

+ FS′(πS(Aw(S)), v̂S′)− FS′(πS′(Aw(S′)), v̂S′). (18)

On the other hand, by the ρ-strong concavity of FS(·,v) and v̂S = arg maxv∈V FS(πS(Aw(S)),v), we have
ρ

2
‖v̂S − v̂S′‖22 ≤FS(πS(Aw(S)), v̂S)− FS(πS(Aw(S)), v̂S′).

Similarly, we have
ρ

2
‖v̂S − v̂S′‖22 ≤FS′(πS′(Aw(S′)), v̂S′)− FS′(πS′(Aw(S′)), v̂S).

Summing up the above two inequalities we have

ρ‖v̂S − v̂S′‖22 ≤FS(πS(Aw(S)), v̂S)− FS(πS(Aw(S)), v̂S′)

+ FS′(πS′(Aw(S′)), v̂S′)− FS′(πS′(Aw(S′)), v̂S). (19)

Summing up (18) and (19) rearranging terms, we have

4µ‖πS(Aw(S))− πS′(Aw(S′))‖22 + ρ‖v̂S − v̂S′‖22
≤FS(πS′(Aw(S′)), v̂S)− FS′(πS′(Aw(S′)), v̂S) + FS′(πS(Aw(S)), v̂S′)− FS(πS(Aw(S)), v̂S′)

=
1

n

(
f(πS′(Aw(S′)), v̂S ; z)− f(πS′(Aw(S′)), v̂S ; z′) + f(πS(Aw(S)), v̂S′ ; z′)− f(πS(Aw(S)), v̂S′ ; z)

)
≤2Gw

n
‖πS(Aw(S))− πS′(Aw(S′))‖2 +

2Gv

n
‖v̂S − v̂S′‖2

≤ 1

n

√
G2

w

µ
+

4G2
v

ρ
×
√

4µ‖πS(Aw(S))− πS′(Aw(S′))‖22 + ρ‖v̂S − v̂S′‖22,

where the second inequality is due to Lipschitz continuity of f , the third inequality is due to Cauchy-Schwartz
inequality. Therefore

2
√
µ‖πS(Aw(S))− πS′(Aw(S′))‖2 ≤

√
4µ‖πS(Aw(S))− πS′(Aw(S′))‖22 + ρ‖v̂S − v̂S′‖22 ≤

1

n

√
G2

w

µ
+

4G2
v

ρ
.

The proof is complete.

We are now ready to present the generalization error of Algorithm 1 in terms of wT .

Theorem 4. Assume (A1), (A3) and (A4) hold. Assume FS(·,v) satisfies PL condition with constant µ
and f(w, ·; z) is ρ-strongly concave. For Algorithm 1, the iterates {wt,vt} satisfies the following inequality

E[R(wT )−RS(wT )] ≤ (1 +
L

ρ
)Gw

(√εT
2µ

+
1

n

√
G2

w

4µ2
+
G2

v

ρµ

)
.

Proof. Since RS satisfies µ-PL, by Lemma 13 and Theorem 3, we have

E[‖wT − π(wT )‖2] ≤
√
E[‖wT − π(wT )‖22] ≤

√
E[

1

2µ
(RS(wT )−R∗S)] ≤

√
εT
2µ
.

By Lemma 14, we have

E[‖wT −w′T ‖2] ≤
√
εT
2µ

+
1

n

√
G2

w

4µ2
+
G2

v

ρµ
.

By Part b) of Lemma 12, we have

E[R(wT )−RS(wT )] ≤ (1 +
L

ρ
)Gw

(√εT
2µ

+
1

n

√
G2

w

4µ2
+
G2

v

ρµ

)
.

The proof is complete.
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The next theorem establishes the generalization bound for the empirical maximizer of a strongly concave
objective, i.e. E[RS(w∗)−R(w∗)]. The proof follows from Shalev-Shwartz et al. [2009].

Theorem 5. Assume (A1) holds. Assume FS(w, ·) is ρ-strongly concave. Assume that for any w and S,
the function v 7→ FS(w,v) is ρ-strongly-concave. Then

E
[
RS(w∗)−R(w∗)

]
≤ 4G2

v

ρn
.

Proof. We decompose the term E[RS(w∗)−R(w∗)] as

E
[
RS(w∗)−R(w∗)

]
= E

[
FS(w∗, v̂∗S)−F (w∗,v∗)

]
= E

[
FS(w∗, v̂∗S)−F (w∗, v̂∗S)

]
+E
[
F (w∗, v̂∗S)−F (w∗,v∗)

]
,

where v̂∗S = arg maxv FS(w∗,v). The second term E
[
F (w∗, v̂∗S) − F (w∗,v∗)

]
≤ 0 since (w∗,v∗) is a

saddle point of F . Hence it suffices to bound E
[
FS(w∗, v̂∗S) − F (w∗, v̂∗S)

]
. Let S′ = {z′1, . . . , z′n} be

drawn independently from ρ. For any i ∈ [n], define S(i) = {z1, . . . , zi−1, z
′
i, zi+1, . . . , zn}. Denote v̂∗

S(i) =
arg maxv∈V FS(i)(w∗,v). Then

FS(w∗, v̂∗S)− FS(w∗, v̂∗S(i)) =
1

n

∑
j 6=i

(
f(w∗, v̂∗S ; zj)− f(w∗, v̂∗S(i) ; zj)

)
+

1

n

(
f(w∗, v̂∗S ; zi)− f(w∗, v̂∗S(i) ; zi)

)
=

1

n

(
f(w∗, v̂∗S(i) ; z

′
i)− f(w∗, v̂∗S ; z′i)

)
+

1

n

(
f(w∗, v̂∗S ; zi)− f(w∗, v̂∗S(i) ; zi)

)
+ FS(i)(w∗, v̂∗S)− FS(i)(w∗, v̂∗S(i))

≤ 1

n

(
f(w∗, v̂∗S(i) ; z

′
i)− f(w∗, v̂∗S ; z′i)

)
+

1

n

(
f(w∗, v̂∗S ; zi)− f(w∗, v̂∗S(i) ; zi)

)
≤2Gv

n

∥∥v̂∗S − v̂∗S(i)

∥∥
2
, (20)

where the first inequality follows from the fact that v̂∗
S(i) is the maximizer of FS(i)(w∗, ·) and the second

inequality follows the Lipschitz continuity. Since FS is strongly-concave and v̂∗S maximizes FS(w∗, ·), we
know

ρ

2

∥∥v̂∗S − v̂∗S(i)

∥∥2

2
≤ FS(w∗, v̂∗S)− FS(w∗, v̂∗S(i)).

Combining it with (20) we get
∥∥v̂∗S − v̂∗

S(i)

∥∥
2
≤ 4Gv/(ρn). By Lipschitz continuity, the following inequality

holds for any z ∣∣f(w∗, v̂∗S ; z)− f(w∗, v̂∗S(i) ; z)
∣∣ ≤ 4G2

v

ρn
.

Since zi and z′i are i.i.d., we have

E
[
F (w∗, v̂∗S)

]
= E

[
F (w∗, v̂∗S(i))

]
=

1

n

n∑
i=1

E
[
f(w∗, v̂∗S(i) ; zi)

]
,

where the last identity holds since zi is independent of v̂∗S(i) . Therefore

E
[
FS(w∗, v̂∗S)− F (w∗, v̂∗S)

]
=

1

n

n∑
i=1

E
[
f(w∗, v̂∗S ; zi)− f(w∗, v̂∗S(i) ; zi)

]
≤ 4G2

v

ρn
.

The proof is complete.

Theorem 6 (Theorem 4 restated). Assume the function f(w, ·; z) is ρ-strongly concave and FS(·,v) satisfies
µ-PL condition. Suppose (A1) and (A3) hold. If E[RS(wT+1)−R∗S ] ≤ εT , then

E[R(wT )−RS(wT )] ≤ (1 + κ)Gw

(√εT
2µ

+
1

n

√
G2

w

4µ2
+
G2

v

ρµ

)
,
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and

E[RS(w∗)−R(w∗)] ≤ 4G2
v

ρn
.

Proof. It follows directly from Theorem 4 and 5.

D.3 Proof of Theorem 5
Theorem 7 (Theorem 5 restated). Assume (A1), (A3) and (A4) hold. Assume FS(·,v) satisfies PL
condition with constant µ and f(w, ·; z) is ρ-strongly concave. For SGDA, if E[RS(wT )−R∗S ] = O(εT ), then
iterates {wt,vt} satisfies the following inequality

E[R(wT )−R∗] = O(εT + (1 +
L

ρ
)Gw

(√εT
2µ

+
1

n

√
G2

w

4µ2
+
G2

v

ρµ

)
+

4G2
v

ρn
).

Furthermore, if we choose T = O(n), ηw,t = O( 1
µt ) and ηv,t = O(

κ2 max{1,
√
κ/µ}

µt2/3
), then

E[R(wT )−R∗] = O
(κ2.75

µ1.75
(

1

n1/3
+

√
d log(1/δ)

n5/6ε
)
)
.

Proof. For any w∗ ∈ arg minw R(w), recall that we have the error decomposition (5), which is

E[R(wT )−R∗] =E[R(wT )−RS(wT )] + E[RS(wT )−R∗S ] + E[R∗S −RS(w∗)] + E[RS(w∗)−R(w∗)]

≤E[R(wT )−RS(wT )] + E[RS(wT )−R∗S ] + E[RS(w∗)−R(w∗)],

where the inequality is by R∗S −RS(w∗) ≤ 0. By Theorem 4, we have

E[R(wT )−RS(wT )] ≤ (1 +
L

ρ
)Gw

(√εT
2µ

+
1

n

√
G2

w

4µ2
+
G2

v

ρµ

)
.

And by Theorem 5, we have

E[RS(w∗)−R(w∗)] ≤ 4G2
v

ρn
.

We can plug the above two inequalities into (5), and get

E[R(wT )−R∗] = O(εT + (1 +
L

ρ
)Gw

(√εT
2µ

+
1

n

√
G2

w

4µ2
+
G2

v

ρµ

)
+

4G2
v

ρn
).

Now by the choice of ηw,t, ηv,t, and Theorem 3 , we have εT = O(κ
3.5

µ2.5

1/m+d(σ2
w+σ2

v)

T 2/3 ). Assume m is a
constant. Plugging εT into the preceding inequality and letting T = O(n) yields the second statement.

E Additional Experimental Details

E.1 Source Code
For the purpose of double-blind peer-review, the source code is accessible in the supplementary file.

E.2 Computing Infrastructure Description
All algorithms are implemented in Python 3.6 and trained and tested on an Intel(R) Xeon(R) CPU W5590
@3.33GHz with 48GB of RAM and an NVIDIA Quadro RTX 6000 GPU with 24GB memory. The PyTorch
version is 1.6.0.
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E.3 Description of Datasets
In experiments, we use three benchmark datasets. Specifically, ijcnn1 dataset from LIBSVM repsitory,
MNIST dataset and Fashion-MNIST dataset are from LeCun et al. [1998], and Xiao et al. [2017]. The
details of these datasets are shown in Table 3. For the ijcnn1 dataset, we normalize the features into [0,1].
For MNIST and Fashion-MNIST datasets, we first normalize the features of them into [0,1] then normalize
them according to the mean and standard deviation.

Dataset #Classes #Training Samples #Testing Samples #Features
ijcnn1 2 39,992 9,998 22
MNIST 10 60,000 10,000 784

Fashion-MNIST 10 60,000 10,000 784

Table 1: Statistical information of each dataset for AUC optimization.

E.4 Training Settings
The training settings for NSEG and DP-SGDA on all datasets are shown in Table 2.

Methods Datasets Batch Size
Learning Rate Epochs Projection Size
Ori DP Ori DP Ori DP

w v w v

NSEG
ijcnn1 64 300 300 350 350 1000 15 100 100
MNIST 64 11 11 5 5 100 15 2 2

Fashion-MNIST 64 11 11 5 5 100 15 3 3

DP-SGDA
(Linear)

ijcnn1 64 300 300 350 350 100 15 10 10
MNIST 64 11 11 5 5 100 15 2 2

Fashion-MNIST 64 11 11 5 5 100 15 3 3

DP-SGDA
(MLP)

ijcnn1 64 3000 3001 500 501 10 10 100 100
MNIST 64 900 1000 100 210 10 10 2 2

Fashion-MNIST 64 900 1000 100 210 10 10 2 2

Table 2: Training settings for each model and each dataset.

E.5 DP-SGDA for AUC Maximization
In this section, we provide details of using DP-SGDA to learn AUC maximization problem. AUC maximiza-
tion with square loss can be reformulated as

F (θ, a, b,v) = Ez[(1− p)(h(θ;x)− a)2I[y = 1] + p(h(θ;x)− b)2I[y = −1]

+ 2(1 + v)(ph(θ;x)I[y = −1]− (1− p)h(θ;x)I[y = 1])]− p(1− p)v2]

where z = (x, y) and p = P[y = 1]. The empirical risk formulation is given as

FS(θ, a, b,v) =
1

n

n∑
i=1

{ 1

n+
(h(θ;xi)− a)2I[yi = 1] +

1

n−
(h(θ;xi)− b)2I[yi = −1]

+ 2(1 + v)
( 1

n−
h(θ;xi)I[yi = −1]− 1

n+
h(θ;xi)I[yi = 1]

)
− 1

n
v2
}
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Algorithm 1 DP-SGDA for AUC Maximization

1: Inputs: Private dataset S = {zi : i ∈ [n]}, privacy budget ε, δ, number of iterations T , learning rates
{γt, λt}Tt=1, initial points (θ0, a0, b0,v0)

2: Compute n+ =
∑n
i=1 I[yi = 1] and n− =

∑n
i=1 I[yi = −1]

3: Compute noise parameters σ1 and σ2 based on Eq. (3)
4: for t = 1 to T do
5: Randomly select a batch St
6: For each j ∈ It, compute gradient ∇θf(θt, at, bt,vt; zj),∇af(θt, at, bt,vt; zj),∇bf(θt, at, bt,vt; zj) and

∇cf(θt, at, bt,vt; zj) based on Eq. (21)
7: Sample independent noises ξt ∼ N (0, σ2

1Id+2) and ζt ∼ N (0, σ2
2)

8: Update θt+1

at+1

bt+1

 =Π

{θtat
bt

− γt( 1

m

∑
j∈It

∇θf(θt, at, bt,vt; zj)
∇af(θt, at, bt,vt; zj)
∇bf(θt, at, bt,vt; zj)

+ ξt

)}

vt+1 =Π
{
vt + λt(

1

m

∑
j∈It

∇vf(θt, at, bt,vt; zj) + ζt)
}

9: end for
10: Outputs: (θT , aT , bT ,vT ) or (θ̄T , āT , b̄T , v̄T )

For any subset St of size m, let It denote the set of indices in St, the gradients of any j ∈ It are given by

∇θf(θ, a, b,v; zj) =
2

n+
(h(θ;xj)− a)∇h(θ;xj)I[yj = 1] +

2

n−
(h(θ;xj)− b)∇h(θ;xj)I[yj = −1]

+ 2(1 + v)
( 1

n−
∇h(θ;xj)I[yj = −1]− 1

n+
∇h(θ;xj)I[yj = 1]

)
∇af(θ, a, b,v; zj) =

2

n+
(a− h(θ;xj))I[yj = 1], ∇bf(θ, a, b,v; zj) =

2

n−
(b− h(θ;xj))I[yj = −1]

∇vf(θ, a, b,v; zj) =2
( 1

n−
h(θ;xj)I[yj = −1]− 1

n+
h(θ;xj)I[yj = 1]

)
− 2

n
v (21)

The pseudo-code can be found in Algorithm 1.

F Additional Experimental Results
We show the details of NSEG and DP-SGDA (Linear and MLP settings) performance with using five different
ε ∈ {0.1, 0.5, 1, 5, 10} and three different δ ∈ {1e−4, 1e−5, 1e−6} in Table 3. From Table 3, we can find that
the performance will be decreased when decrease the value of δ in the same ε settings. The reason is that
the small δ is corresponding to a large value of σ based on Theorem 1. A large σ means a large noise will
be added to the gradients during the training updates. Therefore, the AUC performance will be decreased
as δ decreasing. On the other hand, we can find that our DP-SGDA(Linear) outperforms NSEG under the
same settings. This is because the NSEG method will add a larger noise than DP-SGDA into the gradients
in the training and we have discussed this detail in the Section 4.2.
We also compare the σ values from NSEG and DP-SGDA methods on all datasets in Figure 1 (a) with
setting δ=1e-5 and (b) δ=1e-4. From the figure, it is clear that the σ from NSEG is larger than ours in all
ε settings. This implies the noise generated from NSEG is also larger than ours.
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