
Self-Supervised Representations for Multi-View Reinforcement Learning
(Supplementary Material)

Huanhuan Yang1 Dianxi Shi *2,3,1 Guojun Xie4 Yingxuan Peng1 Yi Zhang2 Yantai Yang3 Shaowu Yang1

1College of Computer, National University of Defense Technology, Changsha, China
2Artificial Intelligence Research Center, Defense Innovation Institute, Beijing, China

3Tianjin Artificial Intelligence Innovation Center, Tianjin, China
4College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China

A DERIVATION OF THE TWO-VIEW CEB LOSS

As mentioned in the main text, the two-view CEB objective is defined as:

obj : min
Z,Z1,Z2

β1I(X1;Z1|Y1) + β2I(X2;Z2|Y2)− I(Z;Y)

= min
z,z1,z2

β1I(s1; z1|z′1, r, a) + β2I(s2; z2|z′2, r, a)− I(z; z′, r|a)
s.t. : Z = fθ(Z1, Z2)⇒ z = fθ(z1, z2)

(15)

Considering I(X1;Z1|Y1) = I(X1;Z1)− I(Z1;Y1), I(X2;Z2|Y2) = I(X2;Z2)− I(Z2;Y2), the original two-view CEB
objective can be rewritten as:

obj : min
Z,Z1,Z2

β1[I(X1;Z1)− I(Z1;Y1)] + β2[I(X2;Z2)− I(Z2;Y2)]− I(Z;Y)

= min
z,z1,z2

β1(I(s1; z1)− I(z1; z′1, r|a)) + β2(I(s2; z2)− I(z2; z′2, r|a))− I(z; z′, r|a)
s.t. : Z = fθ(Z1, Z2)⇒ z = fθ(z1, z2)

(16)

To begin with, we give the joint probability density function of variables s1, s2, z1, z2, z, z′1, z′2, z′, r and a. Since z1 is
learned from s1, z2 is learned from s2, z is fused by z1 and z2, thus, based on the Bayes’ rule, this joint probability density
function can be expressed as:

p(s1, s2, z1, z2, z, z
′
1, z
′
2, z
′, r, a) = p(z|s1, s2, z1, z2, z′1, z′2, z′, r, a) · p(z1|s1, s2, z2, z′1, z′2, z′, r, a) ·

p(z2|s1, s2, z′1, z′2, z′, r, a) · p(s1, s2, z′1, z′2, z′, r, a)
= p(z|z1, z2) · p(z1|s1) · p(z2|s2) · p(s1, s2, z′1, z′2, z′, r, a)

(17)

Then, we analysis the first term I(s1; z1) in Eq. (16), according to the standard definition of the mutual information, the
mutual information between s1 and z1 is:

I(s1; z1) =

∫
ds1dz1 p(s1, z1) log

p(z1|s1)
p(z1)

(18)

Due to the intractable of p(z1), we use the variational distribution q1(z1) to approximate it. Considering the non-negative
property of the Kullback-Leibler divergence (KL-divergence), we can infer that:

KL(p(z1)||q1(z1)) ≥ 0 =⇒
∫
dz1 p(z1) log p(z1) ≥

∫
dz1 p(z1) log q1(z1) (19)

*Corresponding author (dxshi@nudt.edu.cn).

Accepted for the 38th Conference on Uncertainty in Artificial Intelligence (UAI 2022).

Substituting Eq. (19) into Eq. (18), we have:

I(s1; z1) ≤
∫
ds1dz1 p(s1, z1) log

p(z1|s1)
q1(z1)

=

∫
ds1ds2dz′1dz′2dz′drdadz1 p(s1, s2, z

′
1, z
′
2, z
′, r, a, z1) log

p(z1|s1)
q1(z1)

(20)

Considering variable z1 only depends on variable s1, we get the following variational bound for term I(s1; z1):

I(s1; z1) ≤
∫
ds1ds2dz′1dz′2dz′drda p(s1, s2, z

′
1, z
′
2, z
′, r, a)

∫
dz1 p(z1|s1) log

p(z1|s1)
q1(z1)

(21)

Similarly, for the third term I(s2; z2) in Eq. (16), its variational bound is:

I(s2; z2) ≤
∫
ds1ds2dz′1dz′2dz′drda p(s1, s2, z

′
1, z
′
2, z
′, r, a)

∫
dz2 p(z2|s2) log

p(z2|s2)
q2(z2)

(22)

Next, we focus on the second term I(z1; z
′
1, r|a) in Eq. (16). According to the definition, the conditional multual information

of variables z1, z′1 and r given a is:

I(z1; z
′
1, r|a) =

∫
dz1dz′1drda p(z1, z

′
1, r, a) log

p(z′1, r|z1, a)
p(z′1, r|a)

(23)

Since it is difficult to compute p(z′1, r|z1, a), we use distribution gω1(z
′
1, r|z1, a) learned form a neural network to approxi-

mate it. Since the KL-divergence between distributions p(z′1, r|z1, a) and gω1
(z′1, r|z1, a) is always non-negative, we have:

KL(p(z′1, r|z1, a)||gω1(z
′
1, r|z1, a)) ≥ 0 =⇒

∫
dz1dz′1drda p(z1, z

′
1, r, a) log p(z

′
1, r|z1, a) ≥∫

dz1dz′1drda p(z1, z
′
1, r, a) log gω1

(z′1, r|z1, a)
(24)

Substituting Eq. (24) into Eq. (23), I(z1; z′1, r|a) is reshaped as:

I(z1; z
′
1, r|a) ≥

∫
dz1dz′1drda p(z1, z

′
1, r, a) log

gω1
(z′1, r|z1, a)
p(z′1, r|a)

=

∫
dz1dz′1drda p(z1, z

′
1, r, a) log gω1

(z′1, r|z1, a)−
∫
dz′1drda p(z

′
1, r, a) log p(z

′
1, r|a)︸ ︷︷ ︸

dropped

(25)

Notice that the
∫
dz′1drda p(z

′
1, r, a) log p(z

′
1, r|a) term in Eq. (25) is independent of the optimization of the S2R model, so

we can directly drop it. Then, Eq. (25) is equivalent to:

I(z1; z
′
1, r|a) ≥

∫
dz1dz′1drda p(z1, z

′
1, r, a) log gω1

(z′1, r|z1, a)

=

∫
ds1ds2dz′1dz′2dz′drdadz1 p(s1, s2, z

′
1, z
′
2, z
′, r, a, z1) log gω1

(z′1, r|z1, a)
(26)

Considering variable z1 only depends on variable s1, we get the following variational bound for term I(z1; z
′
1, r|a):

I(z1; z
′
1, r|a) ≥

∫
ds1ds2dz′1dz′2dz′drda p(s1, s2, z

′
1, z
′
2, z
′, r, a)

∫
dz1 p(z1|s1) log gω1

(z′1, r|z1, a) (27)

Similarly, for the fourth term I(z2; z
′
2, r|a) in Eq. (16), its variational bound is:

I(z2; z
′
2, r|a) ≥

∫
ds1ds2dz′1dz′2dz′drda p(s1, s2, z

′
1, z
′
2, z
′, r, a)

∫
dz2 p(z2|s2) log gω2

(z′2, r|z2, a) (28)

Finally, we derive the variational bound for the last term I(z; z′, r|a) in Eq. (16). According to the definition, the conditional
multual information of variables z, z′ and r given a is:

I(z; z′, r|a) =
∫
dzdz′drda p(z, z

′, r, a) log
p(z′, r|z, a)
p(z′, r|a)

(29)

Since p(z′, r|z, a) is intractable, we use distribution gω12(z
′, r|z, a) learned from a nueral network to approximate it.

Considering the non-negative of the KL-divergence between distributions p(z′, r|z, a) and gω12(z
′, r|z, a), we have:

KL(p(z′, r|z, a)||gω12
(z′, r|z, a)) ≥ 0 =⇒

∫
dzdz′drda p(z, z

′, r, a) log p(z′, r|z, a) ≥∫
dzdz′drda p(z, z

′, r, a) log gω12
(z′, r|z, a)

(30)

Therefore, I(z; z′, r|a) is bounded by:

I(z; z′, r|a) ≥
∫
dzdz′drda p(z, z

′, r, a) log
gω12

(z′, r|z, a)
p(z′, r|a)

=

∫
dzdz′drda p(z, z

′, r, a) log gω12
(z′, r|z, a)−

∫
dz′drda p(z

′, r, a) log p(z′, r|a)︸ ︷︷ ︸
dropped

(31)

In Eq. (31), the
∫
dz′drda p(z

′, r, a) log p(z′, r|a) term can be ignored, then, we have:

I(z; z′, r|a) ≥
∫
dzdz′drda p(z, z

′, r, a) log gω12
(z′, r|z, a)

=

∫
ds1ds2dz′1dz′2dz′drdadz1dz2dz p(s1, s2, z

′
1, z
′
2, z
′, r, a, z1, z2, z) log gω12

(z′, r|z, a)
(32)

By using the joint probability density function in Eq. (17), the variational bound for term I(z; z′, r|a) is:

I(z; z′, r|a) ≥
∫
ds1ds2dz′1dz′2dz′drda p(s1, s2, z

′
1, z
′
2, z
′, r, a) ·∫

dz1dz2dz p(z1|s1)p(z2|s2)p(z|z1, z2) log gω12(z
′, r|z, a)

(33)

With the variational bounds listed in Eq. (21), Eq. (22), Eq. (27), Eq. (28) and Eq. (33), the final variational upper bound of
the two-view CEB objective in Eq. (15) is summarized as:

β1I(s1; z1|z′1, r, a) + β2I(s2; z2|z′2, r, a)− I(z; z′, r|a) ≤∫
ds1ds2dz′1dz′2dz′drda p(s1, s2, z

′
1, z
′
2, z
′, r, a)

(
β1

∫
dz1 p(z1|s1)

[
log

p(z1|s1)
q1(z1)

− log gω1
(z′1, r|z1, a)

]
+ β2∫

dz2 p(z2|s2)
[
log

p(z2|s2)
q2(z2)

− log gω2
(z′2, r|z2, a)

]
−
∫
dz1dz2dz p(z1|s1)p(z2|s2)p(z|z1, z2) log gω12

(z′, r|z, a)
)

(34)

In the actual implementation, we use the Monte Carlo sampling to sample empirical data to approximate s1, s2, z′1, z′2, z′, r
and a, then, Eq. (34) is simplified as:

β1I(s1; z1|z′1, r, a) + β2I(s2; z2|z′2, r, a)− I(z; z′, r|a) ≤

1

M

M∑(
β1
[
DKL (p(z1|s1)||q1(z1)) − Ez1∼p(z1|s1) log gω1

(z′1, r|z1, a)
]
+

β2
[
DKL (p(z2|s2)||q2(z2)) − Ez2∼p(z2|s2) log gω2

(z′2, r|z2, a)
]
−

Ez1∼p(z1|s1)Ez2∼p(z2|s2)Ez∼p(z|z1,z2) [log gω12
(z′, r|z, a)]

)
(35)

Where M is the size of the sampled data.

B IMPLEMENTATION DETAILS

In our implementation, both actor and critic are parameterized by a 3-layer fully connected network of 256 units with the
ReLU activations. For the encoder and target encoder, both of them consist of four convolutional layers followed by the

ReLU activations. The kernel size of the convolutional layer is 3× 3. We use stride 2 for the first layer and stride 1 for the
rest layers. The output of the last convolutional layer is fed into a fully-connected layer to project into a 50-dimension feature
vector and further passed a Layer Normalization. For feature fusion module and MLPs, we use the same architecture for
them and implement them as three dense layers of 256 units with the ReLU activations. For view-specific predictor and
multi-view predictor, we implement them as one network, i.e., three dense layers of 256 units with the ReLU activations.
In Table 2, we show a full list of hyper-parameters used for our experiments.

Table 2: Full list of hyper-parameters used for the DMControl suite.

Hyperparameter Value
Augmentation Crop
Image states 100× 100
Cropped image states 84× 84
Replay buffer capacity 105

Initial steps 1000
Total trainning steps 500000
Stacked frames 3

Action repeat
2 finger spin; walker walk
4 cheetah run; ball-in-cup catch; reacher easy; walker run
8 cartpole swingup

Evaluation episodes 10
Optimizer Adam
Learning rate (encoder/policy/Q Function) 2e− 4 cheetah run; 1e− 3 otherwise
Learning rate (α) 1e− 4
Batch size (M) 512
View number (N) 2
Q Function EMA τϕi

, i = 1, 2 0.01
Encoder EMA τρ 0.05
Critic/encoder target update freq 2
MCEB βj (default setting), j ∈ [1, N] 1e− 4→ 1e− 3 cheetah run; 1e− 3→ 1e− 2 otherwise
MCEB βj (random image setting), j ∈ [1, N] 1e− 4→ 1e− 2
MCEB βj (natural video setting), j ∈ [1, N] 1e− 4→ 1e− 2
Convolutional layers 4
Number of filters 32
Non-linearity ReLU
Encoder feature dimension 50
Discount factor γ 0.99
Initial temperature 0.1

C ADDITIONAL DMCONTROL RESULTS

For the image distractor setting and natural video setting, Fig. 9 and Fig. 10 show the performance of S2R + SAC, RAD,
and DBC on 6 DMControl tasks. In both settings, S2R + SAC performs comparably or better than RAD, and substantially
outperforms DBC, showing its ability to learn efficient and robust representations. As expected, the MCEB objective urges
the S2R + SAC agent to pay attention to the robot control task itself, ignore task-independent details in the environment
background, and thus be more robust to the visual noise in the environment.

For ablation studies, we choose the cheetah run and walker walk tasks and compare the performance of S2R with its variants
in Fig. 11, including the regularization factors, predictive data (Y1, Y2, and Y), optimization objectives, and the number
of views included in the MCEB objective. Results confirm the correctness of the value of MCEB βj given in Table 2, the
rationality of learning representations based on the latent transition function and reward function, and the efficiency of
integrating multi-view data with CEB in the MCEB objective. These all are significant factors for the design and success of
S2R. Besides, the MCEB objective in S2R can take advantage of the multi-view data to learn robust representations.

Figure 9: Performance of S2R + SAC over five seeds with mean and one standard error in the image distractor DMControl
setting. We benchmark it with RAD and DBC. S2R + SAC performs comparably or better than RAD and significantly
improves the performance of DBC, on all 6 pixel-based control tasks.

Figure 10: Performance of S2R + SAC over five seeds with mean and one standard error in the natural video DMControl
setting. We benchmark it with RAD and DBC. S2R + SAC again performs comparably or better than RAD and DBC, on all
6 pixel-based control tasks.

(a) MCEB regularization factors (b) MCEB regularization factors (c) MCEB predictive data

(d) MCEB predictive data (e) MCEB optimization objectives (f) MCEB optimization objectives

(g) Number of views (h) Number of views

Figure 11: Performance of S2R + SAC over five seeds with mean and one standard error in the default DMControl setting for
ablation studies. We compare the performance of S2R with its variants, i.e., regularization factors in (a) and (b), predictive
data (Y1, Y2, and Y) in (c) and (d), optimization objectives in (e) and (f), and the number of views N in (g) and (h). Results
show that choosing suitable values for the regularization factors, and simultaneously predicting the latent transition function
and reward function, together with the MCEB objective, is significant for the success of S2R. Besides, the increase of N
generally improves (comparably or better than the two-view case) the performance of the S2R method.

	Derivation of the Two-view CEB Loss
	Implementation Details
	Additional DMControl Results

