Noisy ℓ^0 -Sparse Subspace Clustering on Dimensionality Reduced Data Supplementary Material

Yingzhen Yang

School of Computing and Augmented Intelligence Arizona State University 699 S Mill Ave. Tempe, AZ 85281, USA yingzhen.yang@asu.edu

1 PROOFS

We provide proofs to the lemmas and theorems in the paper in this subsection.

1.1 LEMMA 1.1 AND ITS PROOF

Lemma 1.1. (Subspace detection property holds for noiseless ℓ^0 -SSC under the deterministic model) It can be verified that the following statement is true. Under the deterministic model, suppose data is noiseless, $n_k \ge d_k + 1$, $\mathbf{Y}^{(k)}$ is in general position. If all the data points in $\mathbf{Y}^{(k)}$ are away from the external subspaces for any $1 \le k \le K$, then the subspace detection property for ℓ^0 -SSC holds with an optimal solution \mathbf{Z}^* to (3).

Proof. Let $\mathbf{x}_i \in \mathcal{S}_k$. Note that \mathbf{Z}^{*i} is an optimal solution to the following ℓ^0 sparse representation problem

$$\min_{\mathbf{Z}^i} \|\mathbf{Z}^i\|_0 \quad s.t. \ \mathbf{x}_i = [\mathbf{X}^{(k)} \setminus \mathbf{x}_i \quad \mathbf{X}^{(-k)}] \mathbf{Z}^i, \ \mathbf{Z}_{ii} = 0,$$

where $\mathbf{X}^{(-k)}$ denotes the data that lie in all subspaces except S_k . Let $\mathbf{Z}^{*i} = \begin{bmatrix} \alpha \\ \beta \end{bmatrix}$ where α and β are sparse codes corresponding to $\mathbf{X}^{(k)} \setminus \mathbf{x}_i$ and $\mathbf{X}^{(-k)}$ respectively.

Suppose $\beta \neq 0$, then \mathbf{x}_i belongs to a subspace $\mathcal{S}' = \mathbf{H}_{\mathbf{X}_{\mathbf{Z}^{*i}}}$ spanned by the projected data points corresponding to nonzero elements of \mathbf{Z}^{*i} , and $\mathcal{S}' \neq \mathcal{S}_k$, dim $[\mathcal{S}'] \leq d_k$. To see this, if $\mathcal{S}' = \mathcal{S}_k$, then the data corresponding to nonzero elements of β belong to \mathcal{S}_k , which is contrary to the definition of $\mathbf{X}^{(-k)}$. Also, if dim $[\mathcal{S}'] > d_k$, then any d_k points in $\mathbf{X}^{(k)}$ can be used to linearly represent \mathbf{x}_i by the condition of general position, contradicting with the optimality of \mathbf{Z}^{*i} . Since the data points (or columns) in $\mathbf{X}_{\mathbf{Z}^{*i}}$ are linearly independent, it follows that \mathbf{x}_i lies in an external subspace $\mathbf{H}_{\mathbf{X}_{\mathbf{Z}^{*i}}}$ spanned by linearly independent points in $\mathbf{X}_{\mathbf{Z}^{*i}}$, and dim $[\mathbf{H}_{\mathbf{X}_{\mathbf{Z}^{*i}}}] = \dim[\mathcal{S}'] \leq d_k$. This contradicts with the assumption that \mathbf{x}_i is away from the external subspaces. Therefore, $\beta = \mathbf{0}$. Perform the above analysis for Ping Li

Cognitive Computing Lab Baidu Research 10900 NE 8th ST. Bellevue, WA 98004, USA pingli98@gmail.com

all $1 \le i \le n$, we can prove that the subspace detection property holds for all $1 \le i \le n$.

1.2 PROOF OF THEOREM 3.1

Before proving this theorem, we introduce the following perturbation bound for the distance between a data point and the subspaces spanned by noisy and noiseless data, which is useful to establish the conditions when the subspace detection property holds for noisy ℓ^0 -SSC.

Lemma 1.2. Let $\beta \in \mathbb{R}^n$ and \mathbf{Y}_{β} has full column rank. Suppose $\delta < \bar{\sigma}_{\mathbf{Y},r}$ where $r = \|\beta\|_0$, then \mathbf{X}_{β} is a full column rank matrix, and

$$|d(\mathbf{x}_i, \mathbf{H}_{\mathbf{X}_{\beta}}) - d(\mathbf{x}_i, \mathbf{H}_{\mathbf{Y}_{\beta}})| \le \frac{\delta}{\bar{\sigma}_{\mathbf{Y}, r} - \delta}$$
(1)

for any $1 \leq i \leq n$.

Lemma 1.3 shows that an optimal solution to the noisy ℓ^0 -SSC problem (5) is also that to a ℓ^0 -minimization problem with tolerance to noise.

Lemma 1.3. Let nonzero vector β^* be an optimal solution to the noisy ℓ^0 -SSC problem (5) for point \mathbf{x}_i with $\|\beta^*\|_0 = r^* > 1$. If $\lambda > \tau_0$ where τ_0 is defined as

$$\tau_0 \coloneqq \frac{2\delta\sqrt{r^*}}{\sigma_{\mathbf{X}}^*} + \tau_1,$$

where

$$\tau_1 \coloneqq \frac{\delta}{\bar{\sigma}_{\mathbf{X}}^* - \delta}, \quad \sigma_{\mathbf{X}}^* \coloneqq \sigma_{\min}(\mathbf{X}_{\boldsymbol{\beta}^*}),$$

with $\delta < \bar{\sigma}^*_{\mathbf{Y}}$, and $\bar{\sigma}^*_{\mathbf{Y}}$ is defined as

$$\bar{\sigma}_{\mathbf{Y}}^* \coloneqq \min_{r \in [r^*]} \bar{\sigma}_{\mathbf{Y},r}$$

Accepted for the 38th Conference on Uncertainty in Artificial Intelligence (UAI 2022).

then β^* is an optimal solution to the following sparse approximation problem with the uncorrupted data as the dictionary:

$$\min_{\boldsymbol{\beta}} \|\boldsymbol{\beta}\|_{0} \quad s.t. \|\mathbf{x}_{i} - \mathbf{Y}\boldsymbol{\beta}\|_{2} \le c^{*} + \frac{2\delta\sqrt{r^{*}}}{\sigma_{\mathbf{X}}^{*}}, \ \boldsymbol{\beta}_{i} = 0,$$
(2)

where $c^* \coloneqq \|\mathbf{x}_i - \mathbf{X}\boldsymbol{\beta}^*\|_2$.

Now we are ready to prove Theorem 3.1.

Proof of Theorem 3.1. We first show that $d(\mathbf{x}_i, S_k) \leq c^* + \frac{2\delta\sqrt{r^*}}{\sigma_{\mathbf{X}}^*}$. To see this, $\sigma_{\mathbf{X}}^* = \sigma_{\min}(\mathbf{X}_{\beta^*}) \leq 1$ as the columns of **X** have unit ℓ^2 -norm. It follows that

$$c^* + \frac{2\delta\sqrt{r^*}}{\sigma_{\mathbf{X}}^*} \ge 2\delta\sqrt{r^*} \ge 2\delta > \|\mathbf{x}_i - \mathbf{y}_i\| \ge d(\mathbf{x}_i, \mathcal{S}_k).$$

By Lemma 1.3, it can be verified that β^* is an optimal solution to the following problem

$$\min_{\boldsymbol{\beta}} \|\boldsymbol{\beta}\|_{0} \quad s.t. \|\mathbf{x}_{i} - \mathbf{Y}\boldsymbol{\beta}\|_{2} \le c^{*} + \frac{2\delta\sqrt{r^{*}}}{\sigma_{\mathbf{X}}^{*}}, \ \boldsymbol{\beta}_{i} = 0.$$
(3)

Let \mathbf{x}' be the projection of \mathbf{x}_i onto $\mathbf{H}_{\overline{\mathbf{Y}^{(i)}}}$, and let the columns of $\overline{\mathbf{Y}^{(i)}}$ have column indices \mathbf{I} in $\mathbf{Y}^{(k)}$, that is, $\mathbf{Y}_{\mathbf{I}}^{(k)} = \overline{\mathbf{Y}^{(i)}}$. Then there exists $\beta' \in \mathbb{R}^n$ and $\beta'_j = 0$ for all $j \notin \mathbf{I}$ such that $\mathbf{x}' = \mathbf{Y}\beta'$ and $\|\beta'\|_0 \leq r^*$. It is clear that β' is a feasible solution to (3) because $d(\mathbf{x}_i, \mathbf{H}_{\overline{\mathbf{Y}^{(i)}}}) = \|\mathbf{x}_i - \mathbf{Y}\beta'\|_2 \leq c^* + \frac{2\delta\sqrt{r^*}}{\sigma_{\mathbf{x}}^*}$ and it satisfies SDP for \mathbf{x}_i .

Suppose that there is an optimal solution β'' to (3) which does not satisfy SDP for \mathbf{x}_i , then $\|\beta''\|_0 \leq r^*$. Then the subspace spanned by $\mathbf{Y}_{\beta''}$, $\mathbf{H}_{\mathbf{Y}_{\beta''}}$, is an external subspace of \mathbf{y}_i and $\mathbf{H}_{\mathbf{Y}_{\beta''}} \in \mathcal{H}_{\mathbf{y}_i,r^*}$, and it follows that $d(\mathbf{x}_i, \mathbf{H}_{\mathbf{Y}_{\beta''}}) > c^* + \frac{2\delta\sqrt{r^*}}{\sigma_{\mathbf{x}}^*}$. However, since β'' is a feasible solution, $d(\mathbf{x}_i, \mathbf{H}_{\mathbf{Y}_{\beta''}}) \leq c^* + \frac{2\delta\sqrt{r^*}}{\sigma_{\mathbf{x}}^*}$. This contradiction shows that every optimal solution to the noisy ℓ^0 -SSC problem (5) satisfies SDP for \mathbf{x}_i .

1.3 PROOF OF LEMMA 1.2

The following lemma is used for proving Lemma 1.2.

Lemma 1.4. (Perturbation of distance to subspaces) Let **A**, **B** $\in \mathbb{R}^{m \times n}$ are two matrices and rank(**A**) = r, rank(**B**) = s. Also, **E** = **A** - **B** and $||\mathbf{E}||_2 \leq C$, where $||\cdot||_2$ indicates the spectral norm. Then for any point $\mathbf{x} \in \mathbb{R}^m$, the difference of the distance of \mathbf{x} to the column space of **A** and **B**, i.e. $|d(\mathbf{x}, \mathbf{H}_{\mathbf{A}}) - d(\mathbf{x}, \mathbf{H}_{\mathbf{B}})|$, is bounded by

$$|d(\mathbf{x}, \mathbf{H}_{\mathbf{A}}) - d(\mathbf{x}, \mathbf{H}_{\mathbf{B}})| \le \frac{C \|\mathbf{x}\|_2}{\min\{\sigma_r(\mathbf{A}), \sigma_s(\mathbf{B})\}}$$

Proof. Note that the projection of x onto the subspace $\mathbf{H}_{\mathbf{A}}$ is $\mathbf{A}\mathbf{A}^+\mathbf{x}$ where \mathbf{A}^+ is the Moore-Penrose pseudo-inverse of the matrix \mathbf{A} , so $d(\mathbf{x}, \mathbf{H}_{\mathbf{A}})$ equals to the distance between x and its projection, namely $d(\mathbf{x}, \mathbf{H}_{\mathbf{A}}) = \|\mathbf{x} - \mathbf{A}\mathbf{A}^+\mathbf{x}\|_2$. Similarly, $d(\mathbf{x}, \mathbf{H}_{\mathbf{B}}) = \|\mathbf{x} - \mathbf{B}\mathbf{B}^+\mathbf{x}\|_2$.

It follows that

$$|d(\mathbf{x}, \mathbf{H}_{\mathbf{A}}) - d(\mathbf{x}, \mathbf{H}_{\mathbf{B}})| = |||\mathbf{x} - \mathbf{A}\mathbf{A}^{+}\mathbf{x}||_{2} - ||\mathbf{x} - \mathbf{B}\mathbf{B}^{+}\mathbf{x}||_{2}$$

$$\leq ||\mathbf{A}\mathbf{A}^{+}\mathbf{x} - \mathbf{B}\mathbf{B}^{+}\mathbf{x}||_{2} \leq ||\mathbf{A}\mathbf{A}^{+} - \mathbf{B}\mathbf{B}^{+}||_{2}||\mathbf{x}||_{2}.$$
(4)

According to the perturbation bound on the orthogonal projection in Chen et al. [2016], Stewart [1977],

$$\|\mathbf{A}\mathbf{A}^{+} - \mathbf{B}\mathbf{B}^{+}\|_{2} \le \max\{\|\mathbf{E}\mathbf{A}^{+}\|_{2}, \|\mathbf{E}\mathbf{B}^{+}\|_{2}\}.$$
 (5)

Since $\|\mathbf{E}\mathbf{A}^+\|_2 \leq \|\mathbf{E}\|_2 \|\mathbf{A}^+\|_2 \leq \frac{C}{\sigma_r(\mathbf{A})}, \|\mathbf{E}\mathbf{B}^+\|_2 \leq \|\mathbf{E}\|_2 \|\mathbf{B}^+\|_2 \leq \frac{C}{\sigma_s(\mathbf{B})}$, combining (4) and (5), we have

$$\begin{aligned} |d(\mathbf{x}, \mathbf{H}_{\mathbf{A}}) - d(\mathbf{x}, \mathbf{H}_{\mathbf{B}})| &\leq \max\{\frac{C}{\sigma_r(\mathbf{A})}, \frac{C}{\sigma_s(\mathbf{B})}\} \|\mathbf{x}\|_2 \\ &= \frac{C \|\mathbf{x}\|_2}{\min\{\sigma_r(\mathbf{A}), \sigma_s(\mathbf{B})\}}. \end{aligned}$$

So that (1) is proved.

Proof of Lemma 1.2. We have $\mathbf{y}_i = \mathbf{x}_i - \mathbf{n}_i$, and $\sigma_{\min}(\mathbf{Y}_{\boldsymbol{\beta}}^{\top}\mathbf{Y}_{\boldsymbol{\beta}}) = (\sigma_{\min}(\mathbf{Y}_{\boldsymbol{\beta}}))^2 \ge \sigma_{\mathbf{Y},r}^2$.

By Weyl [Weyl, 1912], $|\sigma_i(\mathbf{Y}_{\boldsymbol{\beta}}) - \sigma_i(\mathbf{X}_{\boldsymbol{\beta}})| \leq ||\mathbf{N}_{\boldsymbol{\beta}}||_2 \leq ||\mathbf{N}_{\boldsymbol{\beta}}||_F \leq \sqrt{r}\delta$. Since $\sqrt{r}\delta < \sigma_{\mathbf{Y},r} \leq \sigma_{\min}(\mathbf{Y}_{\boldsymbol{\beta}}) \leq \sigma_i(\mathbf{Y}_{\boldsymbol{\beta}}), \sigma_i(\mathbf{X}_{\boldsymbol{\beta}}) \geq \sigma_i(\mathbf{Y}_{\boldsymbol{\beta}}) - \sqrt{r}\delta \geq \sigma_{\mathbf{Y},r} - \sqrt{r}\delta > 0$ for $1 \leq i \leq \min\{d, r\}$. It follows that $\sigma_{\min}(\mathbf{X}_{\boldsymbol{\beta}}) \geq \sigma_{\mathbf{Y},r} - \sqrt{r}\delta > 0$ and $\mathbf{X}_{\boldsymbol{\beta}}$ has full column rank.

Also, $\|\mathbf{X}_{\beta} - \mathbf{Y}_{\beta}\|_{2} \le \|\mathbf{X}_{\beta} - \mathbf{Y}_{\beta}\|_{F} \le \sqrt{r}\delta$. According to Lemma 1.4,

$$|d(\mathbf{x}_{i}, \mathbf{H}_{\mathbf{X}_{\beta}}) - d(\mathbf{x}_{i}, \mathbf{H}_{\mathbf{Y}_{\beta}})| \\ \leq \frac{\sqrt{r\delta}}{\min\{\sigma_{\min}(\mathbf{X}_{\beta}), \sigma_{\min}(\mathbf{Y}_{\beta})\}} \\ \leq \frac{\sqrt{r\delta}}{\sigma_{\mathbf{Y}, r} - \sqrt{r\delta}} = \frac{\delta}{\bar{\sigma}_{\mathbf{Y}, r} - \delta}.$$

1.4 PROOF OF LEMMA 1.3

Proof of Lemma 1.3. We have

$$\begin{aligned} \|\mathbf{x}_i - \mathbf{X}\boldsymbol{\beta}^*\|_2^2 + \lambda \|\boldsymbol{\beta}^*\|_0 &\leq \|\mathbf{x}_i - \mathbf{X}\mathbf{0}\|_2^2 + \lambda \|\mathbf{0}\|_0 = 1\\ \Rightarrow c^* &= \|\mathbf{x}_i - \mathbf{X}\boldsymbol{\beta}^*\|_2 \leq \sqrt{1 - \lambda r^*} < 1. \end{aligned}$$

We first prove that β^* is an optimal solution to the sparse approximation problem

$$\min_{\boldsymbol{\beta}} \|\boldsymbol{\beta}\|_0 \quad s.t. \|\mathbf{x}_i - \mathbf{X}\boldsymbol{\beta}\|_2 \le c^*, \ \boldsymbol{\beta}_i = 0.$$
(6)

To see this, if $r^* = 1$, then β^* must be an optimal solution to (6). If $r^* > 1$, suppose there is a vector β' such that $\|\mathbf{x}_i - \mathbf{X}\beta'\|_2 \le c^*$ and $\|\beta'\|_0 < \|\beta^*\|_0$, then $L(\beta') < c^* + \lambda \|\beta^*\|_0 = L(\beta^*)$, contradicting the fact that β^* is an optimal solution to (5).

Note that X_{β^*} is a full column rank matrix, otherwise a sparser solution to (5) can be obtained as vector whose support corresponds to the maximal linear independent set of columns of X_{β^*} .

Also, the distance between \mathbf{x}_i and the subspace spanned by columns of \mathbf{X}_{β^*} equals to c^* , i.e. $d(\mathbf{x}_i, \mathbf{H}_{\mathbf{X}_{\beta^*}}) = c^*$. To see this, it is clear that $d(\mathbf{x}_i, \mathbf{H}_{\mathbf{X}_{\beta^*}}) \leq c^*$. If there is a vector $\mathbf{y} = \mathbf{X}\tilde{\beta}$ in $\mathbf{H}_{\mathbf{X}_{\beta^*}}$ with $\operatorname{supp}(\tilde{\beta}) \subseteq \operatorname{supp}(\beta^*)$, and $\|\mathbf{x}_i - \mathbf{y}\|_2 < c^*$, then $L(\tilde{\beta}) < L(\beta^*)$ which contradicts the optimality of β^* . Therefore, $d(\mathbf{x}_i, \mathbf{H}_{\mathbf{X}_{\beta^*}}) \geq c^*$, and it follows that $d(\mathbf{x}_i, \mathbf{H}_{\mathbf{X}_{\beta^*}}) = c^*$.

Since $\|\mathbf{x}_i - \mathbf{X}\boldsymbol{\beta}^*\|_2 \le 1$, $\|\mathbf{X}\boldsymbol{\beta}^*\|_2 \le 2$. Also, $\sigma_{\min}(\mathbf{X}_{\boldsymbol{\beta}^*}^\top \mathbf{X}_{\boldsymbol{\beta}^*})\|\boldsymbol{\beta}^*\|_2^2 \le \|\mathbf{X}\boldsymbol{\beta}^*\|_2^2 \le 4$,

it follows that $\|\boldsymbol{\beta}^*\|_2^2 \leq \frac{4}{\sigma_{\mathbf{x}}^{*2}}$. By Cauchy-Schwarz inequality, $\|\boldsymbol{\beta}^*\|_1 \leq \frac{2\sqrt{r^*}}{\sigma_{\mathbf{x}}^*}$ and $\|\mathbf{N}\boldsymbol{\beta}^*\|_2 \leq \|\boldsymbol{\beta}^*\|_1 \delta \leq \frac{2\delta\sqrt{r^*}}{\sigma_{\mathbf{x}}^*}$. Therefore,

$$\begin{split} \|\mathbf{x}_i - \mathbf{Y}\boldsymbol{\beta}^*\|_2 &= \|\mathbf{x}_i - \mathbf{X}\boldsymbol{\beta}^* + \mathbf{N}\boldsymbol{\beta}^*\|_2 \\ &\leq \|\mathbf{x}_i - \mathbf{X}\boldsymbol{\beta}^*\|_2 + \|\mathbf{N}\boldsymbol{\beta}^*\|_2 \leq c^* + \frac{2\delta\sqrt{r^*}}{\sigma_{\mathbf{X}}^*}, \end{split}$$

so that β^* is a feasible for problem (2).

To prove that β^* is an optimal solution to (2), we first note that β^* must be an optimal solution to (2) if $r^* = 1$. This is because $c^* \leq \sqrt{1 - \lambda r^*} \leq 1 - \lambda$ and $\lambda > \tau_0 > \frac{2\delta\sqrt{r^*}}{\sigma_X^*}$ so that $c^* + \frac{2\delta\sqrt{r^*}}{\sigma_X^*} < 1$, and it follows that **0** is not feasible to (2).

If $r^* > 1$ and suppose β^* is not an optimal solution to (2), then an optimal solution to (2) is a vector β' such that $\|\mathbf{x}_i - \mathbf{Y}\beta'\|_2 \le c^* + \frac{2\delta\sqrt{r^*}}{\sigma_{\mathbf{X}}^*}$ and $\|\beta'\|_0 = r < r^*$. $\mathbf{Y}_{\beta'}$ is a full column rank matrix, otherwise a sparser solution can be obtained as vector whose support corresponds to the maximal linear independent set of columns of $\mathbf{Y}_{\beta'}$. We have

$$d(\mathbf{x}_i, \mathbf{H}_{\mathbf{Y}_{\boldsymbol{\beta}'}}) \leq \|\mathbf{x}_i - \mathbf{Y}\boldsymbol{\beta}'\|_2 \leq c^* + \frac{2\delta\sqrt{r^*}}{\sigma_{\mathbf{X}}^*}.$$

According to Lemma 1.2, we have

$$\begin{aligned} |d(\mathbf{x}_{i}, \mathbf{H}_{\mathbf{X}_{\beta'}}) - d(\mathbf{x}_{i}, \mathbf{H}_{\mathbf{Y}_{\beta'}})| &\leq \frac{\sqrt{r\delta}}{\sigma_{\mathbf{Y}, r} - \sqrt{r\delta}} \\ &= \frac{\delta}{\bar{\sigma}_{\mathbf{Y}, r} - \delta} \leq \frac{\delta}{\bar{\sigma}_{\mathbf{Y}}^{*} - \delta} \\ &\Rightarrow d(\mathbf{x}_{i}, \mathbf{H}_{\mathbf{X}_{\beta'}}) \leq c^{*} + \frac{2\delta\sqrt{r^{*}}}{\sigma_{\mathbf{X}}^{*}} + \frac{\delta}{\bar{\sigma}_{\mathbf{Y}}^{*} - \delta} = c^{*} + \tau_{0}. \end{aligned}$$

$$(7)$$

However, according to the optimality of β^* in the noisy ℓ^0 -SSC problem (5), we have

$$d(\mathbf{x}_{i}, \mathbf{H}_{\mathbf{X}_{\beta'}}) - c^{*} = d(\mathbf{x}_{i}, \mathbf{H}_{\mathbf{X}_{\beta'}}) - d(\mathbf{x}_{i}, \mathbf{H}_{\mathbf{X}_{\beta^{*}}})$$

$$\stackrel{\textcircled{1}}{\geq} (r^{*} - r)\lambda > \tau_{0}.$$
(8)

To see ① holds, let $\beta'' \in \mathbb{R}^d$, supp $(\beta'') \subseteq$ supp (β') such that $\|\mathbf{x}_i - \mathbf{X}\beta''\|_2 = d(\mathbf{x}_i, \mathbf{H}_{\mathbf{X}_{\beta'}})$. Then by the optimality of β^* ,

$$\begin{aligned} \|\mathbf{x}_{i} - \mathbf{X}\boldsymbol{\beta}''\|_{2} &\geq d(\mathbf{x}_{i}, \mathbf{H}_{\mathbf{X}\boldsymbol{\beta}^{*}}) + \lambda r^{*} - \lambda |\operatorname{supp} \left(\boldsymbol{\beta}''\right)| \\ &\geq d(\mathbf{x}_{i}, \mathbf{H}_{\mathbf{X}\boldsymbol{\beta}^{*}}) + (r^{*} - r)\lambda. \end{aligned}$$

The contradiction between (7) and (8) shows that β^* is an optimal solution to (2).

1.5 PROOF OF THEOREM 3.3

Proof of Theorem 3.3. This theorem can be proved by checking that the conditions in Theorem 3.1 are satisfied. \Box

1.6 PROOF OF THEOREM 3.6

In order to prove this theorem, the following lemma is presented and it provides the geometric concentration inequality for the distance between a point $\mathbf{y} \in \mathbf{Y}^{(k)}$ and any of its external subspaces. It renders a lower bound for M_i , namely the minimum distance between $\mathbf{y}_i \in S_k$ and its external subspaces.

Lemma 1.5. Under semi-random model, given $1 \le k \le K$ and $\mathbf{y} \in \mathbf{Y}^{(k)}$, suppose $\mathbf{H} \in \mathcal{H}_{\mathbf{y}_i,d_k}$ is any external subspace of \mathbf{y} . Moreover, assume that for any external subspace \mathbf{H}' of \mathbf{y} , $\operatorname{Tr}(\mathbf{U}_{\mathbf{H}}^{\top}\mathbf{U}^{(k)}\mathbf{U}^{(k)}^{\top}\mathbf{U}_{\mathbf{H}}) \le d_k - 1$ where $\mathbf{U}_{\mathbf{H}}$ is an orthonormal basis of \mathbf{H} . Then for any t > 0,

$$\Pr[d(\mathbf{y}, \mathbf{H}) \ge \frac{1}{d_k} - 2t\sqrt{1 - \frac{1}{d_k}} - t^2] \ge 1 - 8\exp(-\frac{d_k t^2}{2})$$
(9)

Proof of Lemma 1.5. Let **H** be a fixed subspace of dimension $d_e \leq d_k$, and $\mathbf{y} \notin \mathbf{H}$. Since $\mathbf{y} \in S_k$ and $\mathbf{y} \notin \mathbf{H}$. Let $\mathbf{y} = \mathbf{U}^{(k)} \tilde{\mathbf{y}}$ and $\mathbb{E} \left[\tilde{\mathbf{y}} \tilde{\mathbf{y}}^{\top} \right] = \mathbf{I}_{d_k}$.

Then the projection of ${\bf y}$ onto ${\bf H}$ is $\mathbb{P}_{{\bf H}}({\bf y})={\bf U}_{{\bf H}}{\bf U}_{{\bf H}}^\top{\bf y},$ and we have

$$\mathbb{E}[\|\mathbb{P}_{\mathbf{H}}(\mathbf{y})\|_{2}^{2}] = \mathbb{E}[\mathbf{y}^{\top}\mathbf{U}_{\mathbf{H}}\mathbf{U}_{\mathbf{H}}^{\top}\mathbf{U}_{\mathbf{H}}\mathbf{U}_{\mathbf{H}}^{\top}\mathbf{y}]
= \mathbb{E}[\mathrm{Tr}(\mathbf{y}^{\top}\mathbf{U}_{\mathbf{H}}\mathbf{U}_{\mathbf{H}}^{\top}\mathbf{y})]
= \mathbb{E}[\mathrm{Tr}(\mathbf{U}_{\mathbf{H}}^{\top}\mathbf{y}\mathbf{y}^{\top}\mathbf{U}_{\mathbf{H}})]
= \mathrm{Tr}(\mathbf{U}_{\mathbf{H}}^{\top}\mathbb{E}[\mathbf{y}\mathbf{y}^{\top}]\mathbf{U}_{\mathbf{H}})
= \mathrm{Tr}(\mathbf{U}_{\mathbf{H}}^{\top}\mathbf{U}^{(k)}\mathbb{E}[\tilde{\mathbf{y}}\tilde{\mathbf{y}}^{\top}]\mathbf{U}^{(k)}^{\top}\mathbf{U}_{\mathbf{H}})
= \frac{1}{d_{k}}\mathrm{Tr}(\mathbf{U}_{\mathbf{H}}^{\top}\mathbf{U}^{(k)}\mathbf{U}^{(k)}^{\top}\mathbf{U}_{\mathbf{H}}) \le \frac{d_{k}-1}{d_{k}} = 1 - \frac{1}{d_{k}}. \quad (10)$$

According to the concentration inequality in section 5.2 of [Aubrun and Szarek, 2017], for any t > 0,

$$\Pr[\left|\left|\left|\mathbb{P}_{\mathbf{H}}(\mathbf{y})\right|\right|_{2} - \mathbb{E}\left[\left|\left|\mathbb{P}_{\mathbf{H}}(\mathbf{y})\right|\right|_{2}\right]\right| \ge t\right] \le 8\exp(-\frac{d_{k}t^{2}}{2}),$$
(11)

and by (10) $\mathbb{E}\left[\left\|\mathbb{P}_{\mathbf{H}}(\mathbf{y})\right\|_{2}\right] \leq \sqrt{1 - \frac{1}{d_{k}}}.$

Now let **H** be spanned by data from **Y**, i.e. $\mathbf{H} = \mathbf{H}_{\{\mathbf{y}_{i_j}\}_{j=1}^{d_e}}$, where $\{\mathbf{y}_{i_j}\}_{j=1}^{d_e}$ are any d_e linearly independent points that does not contain **y**. For any fixed points $\{\mathbf{y}_{i_j}\}_{j=1}^{d_e}$, (11) holds. Let *A* be the event that $|\mathbb{P}_{\mathbf{H}}(\mathbf{y}) - \mathbb{E}[||\mathbb{P}_{\mathbf{H}}(\mathbf{y})||_2]| \ge t$, we aim to integrate the indicator function \mathbb{I}_A with respect to the random vectors, i.e. **y** and $\{\mathbf{y}_{i_j}\}_{j=1}^{d_e}$, to obtain the probability that *A* happens over these random vectors. Let $\mathbf{y} = \mathbf{y}_i$, using Fubini theorem, we have

$$\begin{aligned} \Pr[A] &= \int_{\bigotimes_{j=1}^{n} \mathcal{S}^{(j)}} \mathbb{I}_A \bigotimes_{j=1}^{n} d\mu^{(j)} \\ &= \int_{\bigotimes_{j\neq i} \mathcal{S}^{(j)}} \Pr[A|\{\mathbf{y}_j\}_{j\neq i}] \bigotimes_{j\neq i} d\mu^{(j)} \\ &\leq \int_{\bigotimes_{j\neq i} \mathcal{S}^{(j)}} 8 \exp(-\frac{d_k t^2}{2}) \bigotimes_{j\neq i} d\mu^{(j)} = 8 \exp(-\frac{d_k t^2}{2}), \end{aligned}$$
(12)

where $S^{(j)} \in \{S_k\}_{k=1}^K$ is the subspace that \mathbf{y}_j lies in, and $\mu^{(j)}$ is the probabilistic measure of the distribution in $S^{(j)}$. The last inequality is due to (11).

Note that for any **y**'s external subspace $\mathbf{H} = \mathbf{H}_{\{\mathbf{y}_{i_j}\}_{j=1}^{d_e}}$, $d(\mathbf{y}, \mathbf{H}) = \sqrt{\|\mathbf{y}\|_2^2 - \|\mathbb{P}_{\mathbf{H}}(\mathbf{y})\|_2^2} = \sqrt{1 - \|\mathbb{P}_{\mathbf{H}}(\mathbf{y})\|_2^2}$. According to (12), we have

$$\Pr[d(\mathbf{y}, \mathbf{H}) \ge \frac{1}{d_k} - 2t\sqrt{1 - \frac{1}{d_k}} - t^2] \ge 1 - 8\exp(-\frac{d_k t^2}{2})$$

The following lemma shows the lower bound for any submatrix of $\mathbf{Y}^{(k)}$. **Lemma 1.6.** ([Laurent and Massart, 2000, Lemma 1]) Let $\{X_i\}_{i=1}^k$ be i.i.d. standard Gaussian random variables and $X = \sum_{i=1}^k X_i^2$, then $\Pr\left[X - k \ge 2\sqrt{kx} + 2x\right] \ge \exp(-x)$,

$$\Pr\left[k - X \ge 2\sqrt{kx}\right] \ge \exp\left(-x\right).$$

Lemma 1.7. (Spectrum bound for Gaussian random matrix, [Davidson and Szarek, 2001, Theorem II.13]) Suppose $\mathbf{A} \in \mathbb{R}^{m \times n}$ $(m \ge n)$ is a random matrix whose entries are i.i.d. samples generated from the standard Gaussian distribution $\mathcal{N}(0, \frac{1}{m})$. Then

$$1 - \sqrt{\frac{n}{m}} \le \mathbb{E}[\sigma_n(\mathbf{A})] \le \mathbb{E}[\sigma_1(\mathbf{A})] \le 1 + \sqrt{\frac{n}{m}}$$

Also, for any t > 0,

$$\Pr[\sigma_n(\mathbf{A}) \le 1 - \sqrt{\frac{n}{m}} - t] < \exp\left(-\frac{mt^2}{2}\right), \quad (13)$$
$$\Pr[\sigma_1(\mathbf{A}) \ge 1 + \sqrt{\frac{n}{m}} + t] < \exp\left(-\frac{mt^2}{2}\right).$$

Lemma 1.8. Let $\mathbf{Y} \in \mathbb{R}^{d \times r}$ be any submatrix of $\mathbf{Y}^{(k)}$ with rank $(\mathbf{Y}) = r$ and $r \leq r_0 \leq \lfloor \frac{1}{\lambda} \rfloor \leq d_k, k \in [K]$. Suppose $c_1 > 0$ is an arbitrary small constant, $\varepsilon_0, \varepsilon_1 > 0$ be small constants, and d_k is large enough such that $2d_k^{-0.05} + 2d_k^{-0.1} \leq \varepsilon_0$ and $\sqrt{\frac{1}{\lambda d_k}} + \sqrt{\frac{2}{\lambda d_k} \log \frac{en_k}{r_0}} \leq \varepsilon_1$. Then with probability at least $1 - \exp(-c_1d_k) - 2n_k \exp(-d_k^{0.9})$, $\sigma_{\min}(\mathbf{Y}) \geq \sigma'_{\min}$, where σ'_{\min} is defined by (17).

Proof. Let $\mathbf{Y} = \mathbf{U}^{(k)} \boldsymbol{\alpha} \mathbf{S}$ be a submatrix of size $d_k \times r$ of $\mathbf{Y}^{(k)}$. $\boldsymbol{\alpha} \in \mathbb{R}^{d_k \times r}$ and elements of $\boldsymbol{\alpha}$ are i.i.d. standard Gaussians, that is, $\boldsymbol{\alpha}_{ij} \sim \mathcal{N}(0,1), i \in [d_k], j \in [r]$. $\mathbf{S} \in \mathbb{R}^{r \times r}$ is a diagonal matrix with $\mathbf{S}_{ii} = \|\boldsymbol{\alpha}^i\|_2$ for $i \in [r]$. Define $\mathbf{C} \coloneqq \boldsymbol{\alpha} \mathbf{S}$. By the concentration property of χ^2 -distribution (Lemma 1.6), with probability at least $1 - 2n_k \exp\left(-d_k^{0.9}\right), \mathbf{S}_{ii} \in [\sqrt{d_k - 2d_k^{0.95}}, \sqrt{d_k + 2d_k^{0.95} + 2d_k^{0.9}}]$ for all $i \in [r]$ and any submatrix \mathbf{Y} of $\mathbf{Y}^{(k)}$.

Now we estimate an lower bound for the least singular value of α . By (13) of Lemma 1.7, for a particular submatrix Y of $\mathbf{Y}^{(k)}$ and the corresponding α and any t > 0, we have

$$\Pr\left[\sigma_{\min}(\boldsymbol{\alpha}) \ge \sqrt{d_k} - \sqrt{r} - \sqrt{d_k}t\right] \ge 1 - \exp\left(-\frac{d_k t^2}{2}\right).$$
(14)

Now there are $\binom{n_k}{r}$ ways of chooing the submatrix Y, and $\binom{n_k}{r} \leq \left(\frac{en_k}{r}\right)^r$. Applying the union bound to (14), we have

$$\Pr\left[\sigma_{\min}(\boldsymbol{\alpha}) \ge \sqrt{d_k} - \sqrt{r} - \sqrt{d_k}t\right] \ge 1 - \binom{n_k}{r} \exp\left(-\frac{d_k t^2}{2}\right)$$

$$\geq 1 - \exp\left(r\log\frac{en_k}{r} - \frac{d_kt^2}{2}\right) \geq 1 - \exp\left(r_0\log\frac{en_k}{r_0} - \frac{d_kt^2}{2}\right) \mathbf{1.7}$$
(15) We

for any submatrix $Y \in \mathbb{R}^{d_k \times r}$ of $\mathbf{Y}^{(k)}$. Let $c_1 > 0$ and $t = \frac{\sqrt{2r_0 \log \frac{en_k}{r_0}}}{\sqrt{d_k}} + \sqrt{c_1}$ in (15), then with probability at least $1 - \exp\left(-\frac{c_1 d_k}{2}\right)$, $\sigma_{\min}(\boldsymbol{\alpha}) \geq \sqrt{d_k}(1 - \sqrt{c_1}) - \sqrt{r} - \sqrt{2r_0 \log \frac{en_k}{r_0}}$. Combined with the bounds for \mathbf{S}_{ii} , we conclude that with probability at least $1 - \exp(-c_1 d_k) - 2n_k \exp\left(-d_k^{0.9}\right)$,

$$\begin{aligned} \sigma_{\min}(\mathbf{Y}) &= \sigma_{\min}(\alpha \mathbf{S}) \ge \frac{\sqrt{d_k}(1 - \sqrt{c_1}) - \sqrt{r} - \sqrt{2r_0 \log \frac{en_k}{r_0}}}{\sqrt{d_k + 2d_k^{0.95} + 2d_k^{0.9}}} \\ &\ge \frac{1}{1 + 2d_k^{-0.05} + 2d_k^{-0.1}} \left(1 - \sqrt{c_1} - \sqrt{\frac{r}{d_k}} - \sqrt{\frac{2r_0}{d_k} \log \frac{en_k}{r_0}} \right) \\ &\ge \frac{1}{1 + \varepsilon_0} \left(1 - \sqrt{c_1} - \varepsilon_1 \right) = \sigma_{\min}'. \end{aligned}$$

Proof of Theorem 3.6. Let \mathbf{Y}_{β} for any $\beta \in \mathbb{R}^n$ with $\|\beta\|_0 = r_0$. Noting that \mathbf{Y}_{β} have columns from at most r_0 subspaces, let $\beta = \sum_{r=1}^{r_0} \beta^{(r)}$, $\{\beta^{(r)}\}_{r=1}^{r_0}$ have non-coverlapping support, each $\mathbf{Y}_{\beta^{(r)}}$ is a submatrix of \mathbf{Y}_{β} and columns of $\mathbf{Y}_{\beta^{(r)}}$ are from the same subspace. For any $\mathbf{u} \in \mathbb{R}^{r_0}$ with $\|\mathbf{u}\|_2 = 1$, we can write \mathbf{u} as $\mathbf{u} = \sum_{r=1}^{r_0} \mathbf{u}^{(r)}$ where $\{\mathbf{u}^{(r)}\}_{r=1}^{r_0}$ have non-overlapping support and $\mathbf{u}^{(r)}$ corresponds to $\mathbf{Y}_{\beta^{(r)}}$ for $r \in [r_0]$. With d_{\min} sufficiently large as specified in the conditions of this theorem, by Lemma 1.8, $\sigma_{\min}(\mathbf{Y}_{\beta^{(r)}}) \geq \sigma'_{\min}$ for $r \in [r_0]$, where σ'_{\min} is defined by (17). Furthermore, define

$$\operatorname{aff}_{\max} \coloneqq \max_{t_1, t_2 \in [K]: t_1 \neq t_2} \operatorname{aff} \left(\mathcal{S}_{t_1}, \mathcal{S}_{t_2} \right).$$

We then have

$$\begin{aligned} \|\mathbf{Y}_{\beta}\mathbf{u}\|_{2}^{2} \\ &= \sum_{r=1}^{r_{0}} \left\|\mathbf{Y}_{\beta^{(r)}}\mathbf{u}^{(r)}\right\|_{2}^{2} + 2\sum_{s,t\in[r_{0}]:\ s(16)$$

It follows that $\sigma_{\min}(\mathbf{Y}_{\beta}) \geq \sigma_{\min}^{\prime 2} - (r_0 - 1) \operatorname{aff}(\mathcal{S}_{t_1}, \mathcal{S}_{t_2})$. By Weyl [Weyl, 1912], $|\sigma_{\min}(\mathbf{X}_{\beta}) - \sigma_{\min}(\mathbf{Y}_{\beta})| \leq ||\mathbf{N}_{\beta}||_2 \leq \delta \sqrt{r_0}$. Therefore, it follows by (16) that

$$\sigma_{\min}(\mathbf{X}_{\boldsymbol{\beta}}) \geq \sigma_{\min}^{\prime 2} - (r_0 - 1) \operatorname{aff}(\mathcal{S}_{t_1}, \mathcal{S}_{t_2}) - \delta \sqrt{r_0} > 0,$$

if $\delta < \frac{\sigma_{\min}'^2 - (r_0 - 1) \operatorname{aff}(S_{t_1}, S_{t_2})}{\sqrt{r_0}} = c$. It can be verified that (20), (21) and (22) guarantee (12), (13) and (14) in Theorem 3.3 respectively, therefore, the conclusion holds.

.7 PROOF OF THEOREM 4.1

We need the following lemmas before presenting the proof of Theorem 4.1. Lemma 1.9 shows that the low rank approximation $\bar{\mathbf{X}}$ is close to \mathbf{X} in terms of the spectral norm [Halko et al., 2011]. Lemma 1.10 presents a perturbation bound for the distance between a data point and a subspace before and after the projection \mathbf{P} .

Lemma 1.9. (Corollary 10.9 in Halko et al. [2011]) Let $p_0 \ge 2$ be an integer and $p' = p - p_0 \ge 4$, then with probability at least $1 - 6e^{-p}$, the spectral norm of $\mathbf{X} - \hat{\mathbf{X}}$ is bounded by

$$\|\mathbf{X} - \mathbf{X}\|_2 \le C_{p, p_0}$$

where

$$C_{p,p_0} \coloneqq \left(1 + 17\sqrt{1 + \frac{p_0}{p'}}\right)\sigma_{p_0+1} + \frac{8\sqrt{p}}{p'+1}\left(\sum_{j>p_0}\sigma_j^2\right)^{\frac{1}{2}}$$

and $\sigma_1 \geq \sigma_2 \geq \ldots$ are the singular values of **X**.

Lemma 1.10. Let $\beta \in \mathbb{R}^n$, $\tilde{\mathbf{y}}_i = \mathbf{P}\mathbf{y}_i$, $\mathbf{H}_{\mathbf{Y}_{\beta}}$ is an external subspace of \mathbf{y}_i , $\tilde{\mathbf{Y}}_{\beta} = \mathbf{P}(\mathbf{Y}_{\beta})$ and $\tilde{\mathbf{Y}}_{\beta}$ has full column rank. Then

$$\begin{aligned} |d(\mathbf{y}_i, \mathbf{H}_{\mathbf{Y}_{\boldsymbol{\beta}}}) - d(\tilde{\mathbf{y}}_i, \mathbf{H}_{\tilde{\mathbf{Y}}_{\boldsymbol{\beta}}})| \\ &\leq C_{p, p_0} (1 + \frac{1}{\min_{1 \leq r \leq \tilde{d}_k} \sigma_{\mathbf{Y}, r} - C_{p, p_0} - 2\delta \sqrt{\tilde{d}_k}}) \end{aligned}$$

for any $1 \leq i \leq n$ and $\mathbf{y}_i \in \mathcal{S}_k$.

Proof. This lemma can be proved by applying Lemma 1.4. \Box

Proof of Theorem 4.1. For any matrix $\mathbf{A} \in \mathbb{R}^{p \times q}$, we first show that multiplying \mathbf{Q} to the left of \mathbf{A} would not change its spectrum. To see this, let the singular value decomposition of \mathbf{A} be $\mathbf{A} = \mathbf{U}_{\mathbf{A}} \Sigma \mathbf{V}_{\mathbf{A}}^{\top}$ where $\mathbf{U}_{\mathbf{A}}$ and $\mathbf{V}_{\mathbf{A}}$ have orthonormal columns with $\mathbf{U}_{\mathbf{A}}^{\top} \mathbf{U}_{\mathbf{A}} = \mathbf{V}_{\mathbf{A}}^{\top} \mathbf{V}_{\mathbf{A}} = \mathbf{I}$. Then $\mathbf{Q}\mathbf{A} = \mathbf{U}_{\mathbf{Q}\mathbf{A}} \Sigma \mathbf{V}_{\mathbf{Q}\mathbf{A}}$ is the singular value decomposition of $\mathbf{Q}\mathbf{A}$ with $\mathbf{U}_{\mathbf{Q}\mathbf{A}} = \mathbf{Q}\mathbf{U}_{\mathbf{A}}$ and $\mathbf{V}_{\mathbf{Q}\mathbf{A}} = \mathbf{V}_{\mathbf{A}}$. This is because the columns of $\mathbf{U}_{\mathbf{Q}\mathbf{A}}$ are orthonormal since the columns \mathbf{Q} are orthonormal: $\mathbf{U}_{\mathbf{Q}\mathbf{A}}^{\top}\mathbf{U}_{\mathbf{Q}\mathbf{A}} = \mathbf{U}_{\mathbf{A}}^{\top}\mathbf{Q}^{\top}\mathbf{Q}\mathbf{U}_{\mathbf{A}} = \mathbf{I}$, and Σ is a diagonal matrix with nonnegative diagonal elements. It follows that $\sigma_{\min}(\mathbf{Q}\mathbf{A}) = \sigma_{\min}(\mathbf{A})$ for any $\mathbf{A} \in \mathbb{R}^{p \times q}$.

For a point $\mathbf{x}_i = \mathbf{y}_i + \mathbf{n}_i$, after projection via **P**, we have the projected noise $\tilde{\mathbf{n}}_i = \mathbf{P}\mathbf{n}_i$. Because

$$\|\tilde{\mathbf{n}}_i\|_2 = \|\mathbf{P}\mathbf{n}_i\|_2 = \|\mathbf{Q}^{\top}\mathbf{n}_i\|_2 \le \|\mathbf{Q}\|_2\|\mathbf{n}_i\|_2 \le \|\mathbf{n}_i\|_2 \le \delta$$

the magnitude of the noise in the projected data is also bounded by δ . Also,

$$\|\tilde{\mathbf{x}}_i\|_2 = \|\mathbf{Q}^\top \mathbf{x}_i\|_2 \le \|\mathbf{x}_i\|_2 \le 1.$$

Let $\beta \in \mathbb{R}^n$, $\tilde{\mathbf{Y}}_{\beta} = \mathbf{P}\mathbf{Y}_{\beta}$ with $\|\beta\|_0 = r$. Since $\sigma_{\min}(\mathbf{Q}\tilde{\mathbf{Y}}_{\beta}) = \sigma_{\min}(\tilde{\mathbf{Y}}_{\beta})$, we have

$$\begin{aligned} |\sigma_{\min}(\mathbf{Y}_{\boldsymbol{\beta}}) - \sigma_{\min}(\mathbf{Y}_{\boldsymbol{\beta}})| &= |\sigma_{\min}(\mathbf{Q}\mathbf{Y}_{\boldsymbol{\beta}}) - \sigma_{\min}(\mathbf{Y}_{\boldsymbol{\beta}})| \\ &\leq \|\mathbf{Q}\tilde{\mathbf{Y}}_{\boldsymbol{\beta}} - \mathbf{Y}_{\boldsymbol{\beta}}\|_{2} \\ &= \|\mathbf{Q}\mathbf{Q}^{\top}\mathbf{Y}_{\boldsymbol{\beta}} - \mathbf{Y}_{\boldsymbol{\beta}}\|_{2} \\ &= \|\mathbf{Q}\mathbf{Q}^{\top}\mathbf{X}_{\boldsymbol{\beta}} - \mathbf{X}_{\boldsymbol{\beta}} + \mathbf{N}_{\boldsymbol{\beta}} - \mathbf{Q}\mathbf{Q}^{\top}\mathbf{N}_{\boldsymbol{\beta}}\|_{2} \\ &\leq C_{p,p_{0}} + \|\mathbf{N}_{\boldsymbol{\beta}}\|_{F} + \|\mathbf{Q}\mathbf{Q}^{\top}\mathbf{N}_{\boldsymbol{\beta}}\|_{F} \\ &\leq C_{p,p_{0}} + 2\delta\sqrt{r}. \end{aligned}$$
(17)

It follows from (17) that if

$$C_{p,p_0} + 2\delta\sqrt{\tilde{d}_{\max}} < \min_{k=1,\dots,K} \sigma_{\mathbf{Y}}^{(k)},$$

then $\tilde{\mathbf{Y}}$ is also in general position.

In addition, since $r_0 \leq \lfloor \frac{1}{\lambda} \rfloor$ and $\lambda \| \tilde{\beta}^* \|_0 \leq L(\mathbf{0}) \leq 1$, we have $\| \tilde{\beta}^* \|_0 \leq r_0 \leq \lfloor \frac{1}{\lambda} \rfloor$.

Based on (17) we have

$$\left|\bar{\sigma}_{\tilde{\mathbf{Y}},r} - \bar{\sigma}_{\mathbf{Y},r}\right| \le C_{p,p_0} + 2\delta\sqrt{r_0},\tag{18}$$

and it follows by (18) that $\delta < \min_{1 \le r < r_0} \bar{\sigma}_{\tilde{\mathbf{Y}},r}$ because $\delta < \min_{1 \le r < r_0} \bar{\sigma}_{\mathbf{Y},r} - C_{p,p_0} - 2\delta \sqrt{r_0}$.

Again, for $\beta \in \mathbb{R}^n$ with $\|\beta\|_0 = r \leq r_0$, we have

$$\begin{aligned} |\sigma_{\min}(\mathbf{X}_{\boldsymbol{\beta}}) - \sigma_{\min}(\mathbf{X}_{\boldsymbol{\beta}})| &= |\sigma_{\min}(\mathbf{Q}\mathbf{X}_{\boldsymbol{\beta}}) - \sigma_{\min}(\mathbf{X}_{\boldsymbol{\beta}})| \\ &\leq \|\mathbf{Q}\tilde{\mathbf{X}}_{\boldsymbol{\beta}} - \mathbf{X}_{\boldsymbol{\beta}}\|_{2} \\ &= \|\mathbf{Q}\mathbf{Q}^{\top}\mathbf{X}_{\boldsymbol{\beta}} - \mathbf{X}_{\boldsymbol{\beta}}\|_{2} = \|\widehat{\mathbf{X}} - \mathbf{X}_{\boldsymbol{\beta}}\|_{2} \\ &\leq C_{p,p_{0}}. \end{aligned}$$
(19)

It can be verified by (19) that

$$\left|\sigma_{\tilde{\mathbf{X}},r} - \sigma_{\mathbf{X},r}\right| \le C_{p,p_0}.\tag{20}$$

Combining (20), Lemma 1.10, and the known condition that

$$M_i - C_{p,p_0} \left(1 + \frac{1}{\min_{1 \le r \le \tilde{d}_k} \sigma_{\mathbf{Y},r} - C_{p,p_0} - 2\delta\sqrt{\tilde{d}_k}}\right)$$
$$> \delta + \frac{2\delta}{\sigma_{\mathbf{X},r_0} - C_{p,p_0}},$$

we have

$$\tilde{M}_{i,\delta} \coloneqq \tilde{M}_i - \delta > \frac{2\delta}{\tilde{\sigma}_{\tilde{\mathbf{X}}, r_0}}$$

where $\mathbf{y}_i \in \mathcal{S}_k$.

Based on (18) and (20), we have

$$\tilde{\mu}_{r_0} < 1 - \frac{2\delta}{\sigma_{\tilde{\mathbf{X}}, r_0}},$$

because

$$\frac{\delta}{\min_{1 \le r < r_0} \bar{\sigma}_{\mathbf{Y}, r_0} - C_{p, p_0} - 2\delta\sqrt{r_0} - \delta} < 1 - \frac{2\delta}{\sigma_{\mathbf{X}, r_0} - C_{p, p_0}}.$$

1.8 PROOF OF THEOREM 4.2

Proof of Theorem 4.2. It can be verified that $\tilde{M}_i \geq \frac{M_i}{1+\varepsilon}$. Let $\beta \in \mathbb{R}^n$, $\tilde{\mathbf{Y}}_{\beta} = \mathbf{P}\mathbf{Y}_{\beta}$ with $\|\beta\|_0 = r$ and rank $(\mathbf{Y}_{\beta}) = r$, then for any $\mathbf{u} \in \mathbb{R}^r$, $\|\tilde{\mathbf{Y}}_{\beta}\mathbf{u}\|_2 = \|\mathbf{P}\mathbf{Y}_{\beta}\mathbf{u}\|_2 \geq (1-\varepsilon)\|\mathbf{Y}_{\beta}\mathbf{u}\|_2 \geq (1-\varepsilon)\sigma_{\min}(\mathbf{Y}_{\beta})\|\mathbf{u}\|_2$. It follows that $\sigma_{\min}(\tilde{\mathbf{Y}}_{\beta}) \geq (1-\varepsilon)\sigma_{\min}(\mathbf{Y}_{\beta})$, and $\bar{\sigma}_{\tilde{\mathbf{Y}},r} \geq (1-\varepsilon)\bar{\sigma}_{\mathbf{Y},r}$. Similarly, $\sigma_{\min}(\tilde{\mathbf{X}}_{\beta}) \geq (1-\varepsilon)\sigma_{\min}(\mathbf{X}_{\beta})$ for $\beta \in \mathbb{R}^n, \|\beta\|_0 = r$ and rank $(\mathbf{X}_{\beta}) = r$. It follows that $\sigma_{\tilde{\mathbf{X}},r} \geq (1-\varepsilon)\sigma_{\mathbf{X},r}$. Since (31)-(34) hold, the conditions (12)-(16) required by Theorem 3.3 on the projected data ($\tilde{\mathbf{Y}}$ and $\tilde{\mathbf{X}}$) also hold. Therefore, the subspace detection property holds with $\tilde{\beta}^*$ for $\tilde{\mathbf{x}}_i$ with probability at least $1 - K\delta$ by the union bound when $p \geq \frac{d^2+d}{\delta t/(2\varepsilon-\varepsilon^2)^2}$.

2 BOUND FOR SUBOPTIMAL AND GLOBALLY OPTIMAL SOLUTIONS FOR NOISY l⁰-SSC AND NOISY-DR-l⁰-SSC

While our theoretical analysis for noisy ℓ^0 -SSC and Noisy-DR- ℓ^0 -SSC is based on optimal solution to the ℓ^0 regularized problem (5), in this subsection we prove that the bound for the suboptimal solution $\hat{\beta}$ obtained by Algorithm 1 is in fact close to an optimal solution to (5), justifying the theoretical findings of noisy ℓ^0 -SSC and Noisy-DR- ℓ^0 -SSC.

We further present the bound for the gap between $\hat{\beta}$ and β^* , $\|\hat{\beta} - \beta^*\|_2$, based on Theorem 5 in Yang and Yu [2019]. Let $g(\beta) = \|\mathbf{x}_i - \mathbf{X}\beta\|_2^2$ and β^* be the globally optimal solution to (5), $\mathbf{S}^* = \operatorname{supp}(\beta^*)$, $\hat{\beta}$ be the suboptimal solution to (5) obtained by PGD, $\hat{\mathbf{S}} = \operatorname{supp}(\hat{\beta})$. The following theorem presents the bound for $\|\hat{\beta} - \beta^*\|_2$.

Theorem 2.1. (Theorem 5 in Yang and Yu [2019]) Suppose $\mathbf{X}_{\mathbf{S}\cup\mathbf{S}^*}$ has full column rank with $\kappa_0 \coloneqq \sigma_{\min}(\mathbf{X}_{\mathbf{S}\cup\mathbf{S}^*}) > 0$ where **S** is the support of the initialization for PGD on problem (5). Let $\kappa > 0$ such that $2\kappa_0^2 > \kappa$ and *b* is chosen according to (21) as below:

$$0 < b < \min\{\min_{j \in \widehat{\mathbf{S}}} |\widehat{\boldsymbol{\beta}}_{j}|, \frac{\lambda}{\max_{j \notin \widehat{\mathbf{S}}} |\frac{\partial g}{\partial \boldsymbol{\beta}_{j}}|_{\boldsymbol{\beta} = \widehat{\boldsymbol{\beta}}}|}, \\ \min_{j \in \mathbf{S}^{*}} |\beta_{j}^{*}|, \frac{\lambda}{\max_{j \notin \mathbf{S}^{*}} |\frac{\partial g}{\partial \boldsymbol{\beta}_{j}}|_{\boldsymbol{\beta} = \boldsymbol{\beta}^{*}}|}\}.$$
(21)

Let $\mathbf{F}=(\widehat{\mathbf{S}}\setminus\mathbf{S}^*)\cup(\mathbf{S}^*\setminus\widehat{\mathbf{S}})$ be the symmetric difference between $\widehat{\mathbf{S}}$ and \mathbf{S}^* , then

$$\begin{split} \|\widehat{\boldsymbol{\beta}} - \boldsymbol{\beta}^*\|_2 &\leq \frac{1}{2\kappa_0^2 - \kappa} \Big(\sum_{j \in \mathbf{F} \cap \widehat{\mathbf{S}}} (\max\{0, \frac{\lambda}{b} - \kappa | \widehat{\boldsymbol{\beta}}_j - b | \})^2 + \\ &\sum_{j \in \mathbf{F} \setminus \widehat{\mathbf{S}}} (\max\{0, \frac{\lambda}{b} - \kappa b \})^2 \Big)^{\frac{1}{2}}. \end{split}$$

Remark 2.2. It is observed that the gap $\|\widehat{\beta} - \beta^*\|_2$ is small when $\frac{\lambda}{b} - \kappa |\widehat{\beta}_j - b|$ for $j \in \mathbf{F} \cap \widehat{\mathbf{S}}$ and $\frac{\lambda}{b} - \kappa b$ are small. Based on this observation, Theorem 2.3 establishes the conditions under which $\widehat{\beta}$ is also an optimal solution to (5), i.e. $\widehat{\beta} = \beta^*$.

Define $\mathbf{S}^* = \sup(\boldsymbol{\beta}^*), \quad H^* = \max_{1 \le j \le n} \operatorname{dist}(\boldsymbol{\beta}, \mathbf{H}_{\mathbf{X}_{\mathbf{S}^* \setminus \{j\}}}), \quad \mu = \max\{H^* + \|\boldsymbol{\beta}_i - \mathbf{X}\boldsymbol{\beta}^*\|_2, 2\|\mathbf{x}_i - \mathbf{X}\boldsymbol{\hat{\beta}}\|_2, 2\|\mathbf{x}_i - \mathbf{X}\boldsymbol{\beta}^*\|_2\}, \\ \kappa_0 = \sigma_{\min}(\mathbf{X}_{\mathbf{S} \cup \mathbf{S}^*}) > 0 \text{ where } \mathbf{S} = \sup(\boldsymbol{\beta}^{(0)}).$ The following theorem demonstrates that $\boldsymbol{\hat{\beta}} = \boldsymbol{\beta}^*$ if λ is two-side bounded and $\boldsymbol{\hat{\beta}}_{\min} = \min_{t:\boldsymbol{\hat{\beta}}_t \ne 0} |\boldsymbol{\hat{\beta}}_t|$ is sufficiently large.

Theorem 2.3. (Conditions that the suboptimal solution by PGD is also globally optimal) If

$$\widehat{\beta}_{\min} \ge \frac{\mu}{\kappa_0^2} \tag{22}$$

and

$$\frac{\mu^2}{2\kappa_0^2} \le \lambda \le (\widehat{\boldsymbol{\beta}}_{\min} - \frac{\mu}{2\kappa_0^2})\mu, \tag{23}$$

then $\widehat{\boldsymbol{\beta}} = \boldsymbol{\beta}^*$.

Sketch of Proof. It can be verified that $\max\{0, \frac{\lambda}{b} - \kappa | \hat{\beta}_j - b|\} = 0$ and $\max\{0, \frac{\lambda}{b} - \kappa b\} = 0$ under the conditions (22) and (23), therefore, $\hat{\beta} = \beta^*$ by applying Theorem 2.1. \Box

3 TIME COMPLEXITY OF NOISY ℓ^0 -SSC, NOISY-DR- ℓ^0 -SSC-LR, NOISY-DR- ℓ^0 -SSC-CSP

The time complexity of running PGD by Algorithm 1 for noisy ℓ^0 -SSC is $\mathcal{O}(Tnd)$, where T is the maximum iteration number. The time complexity of running Algorithm 1 for Noisy-DR- ℓ^0 -SSC-LR is comprised of two parts. The first part is the time complexity of steps 1-3 with matrix multiplication and QR decomposition, which is $\mathcal{O}(dp^2 + pdn)$. The second part is the time complexity of step 4, which is $\mathcal{O}(Tnp)$. The overall time complexity of Noisy-DR- ℓ^0 -SSC is $\mathcal{O}(dp^2 + pdn + Tnp)$. In practice, p is much smaller than min $\{d, n, T\}$, so Noisy-DR- ℓ^0 -SSC-LR is more efficient than noisy ℓ^0 -SSC. Noisy-DR- ℓ^0 -SSC-CSP is even more efficient than both noisy ℓ^0 -SSC and Noisy-DR- ℓ^0 -SSC, whose time complexity is $\mathcal{O}(pdn + Tnp)$. This is because the linear transformation **P** obtained by CSP does require QR decomposition.

4 PROXIMAL GRADIENT DESCENT (PGD) FOR NOISY ℓ^0 -SSC

Algorithm 1 describes how to perform Noisy-DR- ℓ^0 -SSC-LR for data clustering. Note that Noisy-DR- ℓ^0 -SSC performs noisy ℓ^0 -SSC on the dimensionality reduced data $\tilde{\mathbf{X}}$. Proximal Gradient Descent (PGD) is employed to optimize the objective function of noisy ℓ^0 -SSC for every data point \mathbf{x}_i , which is desribed in Algorithm 1. In the *k*-th iteration of PGD for problem (5), the variable $\boldsymbol{\beta}$ is updated according to

$$\boldsymbol{\beta}^{(k+1)} = T_{\sqrt{2\lambda s}}(\boldsymbol{\beta}^{(k)} - s\nabla g(\boldsymbol{\beta}^{(k)})),$$

where s is a positive step size, $g(\beta) = ||\mathbf{x}_i - \mathbf{X}\beta||_2^2$, T_{θ} is an element-wise hard thresholding operator:

$$[T_{\theta}(\mathbf{u})]_j = \begin{cases} 0 & : & |\mathbf{u}_j| \le \theta \\ \mathbf{u}_j & : & \text{otherwise} \end{cases}, \quad 1 \le j \le n.$$

It is proved in Yang et al. [2017] that the sequence $\{\beta^{(k)}\}\$ generated by PGD converges to a critical point of (5).

Algorithm 1 Proximal Gradient Descent (PGD) for noisy ℓ^0 -SSC problem (5)

Input:

The initialization $\beta^{(0)}$, step size s > 0, parameter λ , maximum iteration number T, stopping threshold ε .

1: for
$$1 \leq i \leq n$$
 do
2: $\tilde{\boldsymbol{\beta}}^{(t)} = \boldsymbol{\beta}^{(t-1)} - s \nabla \boldsymbol{\alpha} (\boldsymbol{\beta}^{(t-1)})$

$$\vec{A}^{(t)} = T - (\tilde{\vec{A}}^{(t)})$$

4: **if** $|L(\boldsymbol{\beta}^{(t)}) - L(\boldsymbol{\beta}^{(t-1)})| < \varepsilon$ then

5: break

6: end if

7: end for

Output: $\hat{\beta}$ which is the suboptimal solution to (5)

5 ADDITIONAL EXPERIMENTAL RESULTS

We present more results of Noisy-DR- ℓ^0 -SSC-LR and Noisy-DR- ℓ^0 -SSC-CSP in Table 1 with different projection dimension *p*. Figure 1 show how the accuracy and NMI varies with respect to λ on the Extended Yale-B data set.

Figure 2a to Figure 2f illustrate SDP violation with respect to λ for different noise levels, justifying our theoretical finding that a large λ tends to preserve the subspace detection property for noisy ℓ^0 -SSC, Noisy-DR- ℓ^0 -SSC-LR and Noisy-DR- ℓ^0 -CSP.

Data Set	Measure	Noisy l ⁰ -SSC	Noisy-DR- ℓ^0 -SSC-LR			Noisy-DR-ℓ ⁰ -SSC-CSP		
p			$p = \min\{d, n\}/5$	$p = \min\{d, n\}/10$	$p = \min\{d, n\}/15$	$p = \min\{d, n\}/5$	$p = \min\{d, n\}/10$	$p = \min\{d, n\}/15$
COIL-20	AC	0.8472	0.8479	0.8479	0.8479	0.8486	0.8472	0.8472
	NMI	0.9428	0.9433	0.9433	0.9433	0.9439	0.9428	0.9428
COIL-100	AC	0.7683	0.6992	0.7276	0.7043	0.5404	0.7046	0.7233
	NMI	0.9182	0.8626	0.8919	0.8636	0.7819	0.8708	0.8726
Yale-B	AC	0.8480	0.8219	0.8231	0.8289	0.8500	0.8318	0.8277
	NMI	0.8612	0.8519	0.8527	0.8534	0.8538	0.8593	0.8594

Table 1: Clustering results on various data sets, with different values of p for the linear transformation \mathbf{P} and the best two results in bold

Figure 1: Accuracy (left) and NMI (right) with respect to different values of λ on the Extended Yale-B data set

Figure 2: The SDP violation rate with respect to λ for noisy ℓ^0 -SSC, Noisy-DR- ℓ^0 -SSC and Noisy-DR- ℓ^0 -SSC-CSP. The SDP violation rate for Noisy-DR- ℓ^0 -SSC and that for Noisy-DR- ℓ^0 -SSC-CSP are the same, so their curves overlap each other.

REFERENCES

- G. Aubrun and S.J. Szarek. *Alice and Bob Meet Banach: The Interface of Asymptotic Geometric Analysis and Quantum Information Theory*. Mathematical Surveys and Monographs. American Mathematical Society, 2017.
- Yanmei Chen, Xiao Shan Chen, and Wen Li. On perturbation bounds for orthogonal projections. *Numer. Algorithms*, 73(2):433–444, 2016.
- K. Davidson and S. Szarek. Local operator theory, random matrices and Banach spaces. In Lindenstrauss, editor, *Handbook on the Geometry of Banach spaces*, volume 1, pages 317–366. Elsevier Science, 2001.
- N. Halko, P. G. Martinsson, and J. A. Tropp. Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions. *SIAM Rev.*, 53(2):217–288, May 2011. ISSN 0036-1445.
- B. Laurent and P. Massart. Adaptive estimation of a

quadratic functional by model selection. *The Annals* of *Statistics*, 28(5):1302 – 1338, 2000.

- G. W. Stewart. On the perturbation of pseudo-inverses, projections and linear least squares problems. *SIAM Rev.*, 19(4):634–662, 1977.
- H. Weyl. Das asymptotische verteilungsgesetz der eigenwerte linearer partieller differentialgleichungen (mit einer anwendung auf die theorie der hohlraumstrahlung). *Mathematische Annalen*, 71:441–479, 1912.
- Yingzhen Yang and Jiahui Yu. Fast proximal gradient descent for A class of non-convex and non-smooth sparse learning problems. In *Proceedings of the Thirty-Fifth Conference on Uncertainty in Artificial Intelligence (UAI)*, pages 1253–1262, Tel Aviv, Israel, 2019.
- Yingzhen Yang, Jiashi Feng, Nebojsa Jojic, Jianchao Yang, and Thomas S Huang. On the suboptimality of proximal gradient descent for ℓ^0 sparse approximation. *arXiv* preprint arXiv:1709.01230, 2017.