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1 PROOFS

We provide proofs to the lemmas and theorems in the paper
in this subsection.

1.1 LEMMA 1.1 AND ITS PROOF

Lemma 1.1. (Subspace detection property holds for noise-
less ℓ0-SSC under the deterministic model) It can be verified
that the following statement is true. Under the deterministic
model, suppose data is noiseless, nk ≥ dk + 1, Y(k) is in
general position. If all the data points in Y(k) are away from
the external subspaces for any 1 ≤ k ≤ K, then the sub-
space detection property for ℓ0-SSC holds with an optimal
solution Z∗ to (3).

Proof. Let xi ∈ Sk. Note that Z∗i is an optimal solution to
the following ℓ0 sparse representation problem

min
Zi

∥Zi∥0 s.t. xi = [X(k) \ xi X(−k)]Zi, Zii = 0,

where X(−k) denotes the data that lie in all subspaces except

Sk. Let Z∗i =

[
α
β

]
where α and β are sparse codes

corresponding to X(k) \ xi and X(−k) respectively.

Suppose β ̸= 0, then xi belongs to a subspace S ′
= HXZ∗i

spanned by the projected data points corresponding to
nonzero elements of Z∗i, and S ′ ̸= Sk, dim[S ′

] ≤ dk.
To see this, if S ′

= Sk, then the data corresponding to
nonzero elements of β belong to Sk, which is contrary to
the definition of X(−k). Also, if dim[S ′

] > dk, then any dk
points in X(k) can be used to linearly represent xi by the
condition of general position, contradicting with the opti-
mality of Z∗i. Since the data points (or columns) in XZ∗i

are linearly independent, it follows that xi lies in an external
subspace HXZ∗i spanned by linearly independent points in
XZ∗i , and dim[HXZ∗i ] = dim[S ′

] ≤ dk. This contradicts
with the assumption that xi is away from the external sub-
spaces. Therefore, β = 0. Perform the above analysis for

all 1 ≤ i ≤ n, we can prove that the subspace detection
property holds for all 1 ≤ i ≤ n.

1.2 PROOF OF THEOREM 3.1

Before proving this theorem, we introduce the following
perturbation bound for the distance between a data point
and the subspaces spanned by noisy and noiseless data,
which is useful to establish the conditions when the subspace
detection property holds for noisy ℓ0-SSC.

Lemma 1.2. Let β ∈ Rn and Yβ has full column rank.
Suppose δ < σ̄Y,r where r = ∥β∥0, then Xβ is a full
column rank matrix, and

|d(xi,HXβ
)− d(xi,HYβ

)| ≤ δ

σ̄Y,r − δ
(1)

for any 1 ≤ i ≤ n.

Lemma 1.3 shows that an optimal solution to the noisy ℓ0-
SSC problem (5) is also that to a ℓ0-minimization problem
with tolerance to noise.

Lemma 1.3. Let nonzero vector β∗ be an optimal solution
to the noisy ℓ0-SSC problem (5) for point xi with ∥β∗∥0 =
r∗ > 1. If λ > τ0 where τ0 is defined as

τ0 :=
2δ
√
r∗

σ∗
X

+ τ1,

where

τ1 :=
δ

σ̄∗
Y − δ

, σ∗
X := σmin(Xβ∗),

with δ < σ̄∗
Y, and σ̄∗

Y is defined as

σ̄∗
Y := min

r∈[r∗]
σ̄Y,r,
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then β∗ is an optimal solution to the following sparse ap-
proximation problem with the uncorrupted data as the dic-
tionary:

min
β

∥β∥0 s.t. ∥xi −Yβ∥2 ≤ c∗ +
2δ
√
r∗

σ∗
X

, βi = 0,

(2)

where c∗ := ∥xi −Xβ∗∥2.

Now we are ready to prove Theorem 3.1.

Proof of Theorem 3.1. We first show that d(xi,Sk) ≤
c∗ + 2δ

√
r∗

σ∗
X

. To see this, σ∗
X = σmin(Xβ∗) ≤ 1 as the

columns of X have unit ℓ2-norm. It follows that

c∗ +
2δ
√
r∗

σ∗
X

≥ 2δ
√
r∗ ≥ 2δ > ∥xi − yi∥ ≥ d(xi,Sk).

By Lemma 1.3, it can be verified that β∗ is an optimal
solution to the following problem

min
β

∥β∥0 s.t. ∥xi −Yβ∥2 ≤ c∗ +
2δ
√
r∗

σ∗
X

, βi = 0.

(3)

Let x′ be the projection of xi onto H
Y(i) , and let the

columns of Y(i) have column indices I in Y(k), that is,
Y

(k)
I = Y(i). Then there exists β′ ∈ Rn and β′

j = 0
for all j /∈ I such that x′ = Yβ′ and ∥β′∥0 ≤ r∗.
It is clear that β′ is a feasible solution to (3) because
d(xi,HY(i)) = ∥xi −Yβ′∥2 ≤ c∗+ 2δ

√
r∗

σ∗
X

and it satisfies
SDP for xi.

Suppose that there is an optimal solution β′′ to (3) which
does not satisfy SDP for xi, then ∥β′′∥0 ≤ r∗. Then
the subspace spanned by Yβ′′ , HYβ′′ , is an external sub-
space of yi and HYβ′′ ∈ Hyi,r∗ , and it follows that

d(xi,HYβ′′ ) > c∗+ 2δ
√
r∗

σ∗
X

. However, since β′′ is a feasible

solution, d(xi,HYβ′′ ) ≤ c∗ + 2δ
√
r∗

σ∗
X

. This contradiction
shows that every optimal solution to the noisy ℓ0-SSC prob-
lem (5) satisfies SDP for xi.

1.3 PROOF OF LEMMA 1.2

The following lemma is used for proving Lemma 1.2.

Lemma 1.4. (Perturbation of distance to subspaces) Let
A, B ∈ Rm×n are two matrices and rank(A) = r,
rank(B) = s. Also, E = A − B and ∥E∥2 ≤ C, where
∥·∥2 indicates the spectral norm. Then for any point x ∈ Rm,
the difference of the distance of x to the column space of A
and B, i.e. |d(x,HA)− d(x,HB)|, is bounded by

|d(x,HA)− d(x,HB)| ≤
C∥x∥2

min{σr(A), σs(B)}
.

Proof. Note that the projection of x onto the subspace HA

is AA+x where A+ is the Moore-Penrose pseudo-inverse
of the matrix A, so d(x,HA) equals to the distance between
x and its projection, namely d(x,HA) = ∥x −AA+x∥2.
Similarly, d(x,HB) = ∥x−BB+x∥2.

It follows that

|d(x,HA)− d(x,HB)| = |∥x−AA+x∥2 − ∥x−BB+x∥2|
≤ ∥AA+x−BB+x∥2 ≤ ∥AA+ −BB+∥2∥x∥2. (4)

According to the perturbation bound on the orthogonal pro-
jection in Chen et al. [2016], Stewart [1977],

∥AA+ −BB+∥2 ≤ max{∥EA+∥2, ∥EB+∥2}. (5)

Since ∥EA+∥2 ≤ ∥E∥2∥A+∥2 ≤ C
σr(A) , ∥EB+∥2 ≤

∥E∥2∥B+∥2 ≤ C
σs(B) , combining (4) and (5), we have

|d(x,HA)− d(x,HB)| ≤ max{ C

σr(A)
,

C

σs(B)
}∥x∥2

=
C∥x∥2

min{σr(A), σs(B)}
.

So that (1) is proved.

Proof of Lemma 1.2. We have yi = xi − ni, and
σmin(Y

⊤
βYβ) =

(
σmin(Yβ)

)2 ≥ σ2
Y,r.

By Weyl [Weyl, 1912], |σi(Yβ) − σi(Xβ)| ≤ ∥Nβ∥2 ≤
∥Nβ∥F ≤

√
rδ. Since

√
rδ < σY,r ≤ σmin(Yβ) ≤

σi(Yβ), σi(Xβ) ≥ σi(Yβ) −
√
rδ ≥ σY,r −

√
rδ > 0

for 1 ≤ i ≤ min{d, r}. It follows that σmin(Xβ) ≥
σY,r −

√
rδ > 0 and Xβ has full column rank.

Also, ∥Xβ −Yβ∥2 ≤ ∥Xβ −Yβ∥F ≤
√
rδ. According

to Lemma 1.4,

|d(xi,HXβ
)− d(xi,HYβ

)|

≤
√
rδ

min{σmin(Xβ), σmin(Yβ)}

≤
√
rδ

σY,r −
√
rδ

=
δ

σ̄Y,r − δ
.

1.4 PROOF OF LEMMA 1.3

Proof of Lemma 1.3. We have

∥xi −Xβ∗∥22 + λ∥β∗∥0 ≤ ∥xi −X0∥22 + λ∥0∥0 = 1

⇒ c∗ = ∥xi −Xβ∗∥2 ≤
√
1− λr∗ < 1.



We first prove that β∗ is an optimal solution to the sparse
approximation problem

min
β

∥β∥0 s.t. ∥xi −Xβ∥2 ≤ c∗, βi = 0. (6)

To see this, if r∗ = 1, then β∗ must be an optimal solution
to (6). If r∗ > 1, suppose there is a vector β′ such that
∥xi − Xβ′∥2 ≤ c∗ and ∥β′∥0 < ∥β∗∥0, then L(β′) <
c∗ + λ∥β∗∥0 = L(β∗), contradicting the fact that β∗ is an
optimal solution to (5).

Note that Xβ∗ is a full column rank matrix, otherwise a
sparser solution to (5) can be obtained as vector whose
support corresponds to the maximal linear independent set
of columns of Xβ∗ .

Also, the distance between xi and the subspace spanned
by columns of Xβ∗ equals to c∗, i.e. d(xi,HXβ∗ ) = c∗.
To see this, it is clear that d(xi,HXβ∗ ) ≤ c∗. If there is a
vector y = Xβ̃ in HXβ∗ with supp(β̃) ⊆ supp(β∗), and
∥xi − y∥2 < c∗, then L(β̃) < L(β∗) which contradicts
the optimality of β∗. Therefore, d(xi,HXβ∗ ) ≥ c∗, and it
follows that d(xi,HXβ∗ ) = c∗.

Since ∥xi −Xβ∗∥2 ≤ 1, ∥Xβ∗∥2 ≤ 2. Also,

σmin(X
⊤
β∗Xβ∗)∥β∗∥22 ≤ ∥Xβ∗∥22 ≤ 4,

it follows that ∥β∗∥22 ≤ 4
σ∗
X

2 . By Cauchy-Schwarz inequal-

ity, ∥β∗∥1 ≤ 2
√
r∗

σ∗
X

and ∥Nβ∗∥2 ≤ ∥β∗∥1δ ≤ 2δ
√
r∗

σ∗
X

.
Therefore,

∥xi −Yβ∗∥2 = ∥xi −Xβ∗ +Nβ∗∥2

≤ ∥xi −Xβ∗∥2 + ∥Nβ∗∥2 ≤ c∗ +
2δ
√
r∗

σ∗
X

,

so that β∗ is a feasible for problem (2).

To prove that β∗ is an optimal solution to (2), we first note
that β∗ must be an optimal solution to (2) if r∗ = 1. This is
because c∗ ≤

√
1− λr∗ ≤ 1 − λ and λ > τ0 > 2δ

√
r∗

σ∗
X

so

that c∗ + 2δ
√
r∗

σ∗
X

< 1, and it follows that 0 is not feasible to
(2).

If r∗ > 1 and suppose β∗ is not an optimal solution to
(2), then an optimal solution to (2) is a vector β′ such that
∥xi − Yβ′∥2 ≤ c∗ + 2δ

√
r∗

σ∗
X

and ∥β′∥0 = r < r∗. Yβ′

is a full column rank matrix, otherwise a sparser solution
can be obtained as vector whose support corresponds to the
maximal linear independent set of columns of Yβ′ . We have

d(xi,HYβ′ ) ≤ ∥xi −Yβ′∥2 ≤ c∗ +
2δ
√
r∗

σ∗
X

.

According to Lemma 1.2, we have

|d(xi,HXβ′ )− d(xi,HYβ′ )| ≤
√
rδ

σY,r −
√
rδ

=
δ

σ̄Y,r − δ
≤ δ

σ̄∗
Y − δ

⇒ d(xi,HXβ′ ) ≤ c∗ +
2δ
√
r∗

σ∗
X

+
δ

σ̄∗
Y − δ

= c∗ + τ0.

(7)

However, according to the optimality of β∗ in the noisy
ℓ0-SSC problem (5), we have

d(xi,HXβ′ )− c∗ = d(xi,HXβ′ )− d(xi,HXβ∗ )

1⃝
≥ (r∗ − r)λ > τ0. (8)

To see 1⃝ holds, let β′′ ∈ Rd, supp (β′′) ⊆ supp (β′) such
that ∥xi −Xβ′′∥2 = d(xi,HXβ′ ). Then by the optimality
of β∗,

∥xi −Xβ′′∥2 ≥ d(xi,HXβ∗ ) + λr∗ − λ |supp (β′′)|
≥ d(xi,HXβ∗ ) + (r∗ − r)λ.

The contradiction between (7) and (8) shows that β∗ is an
optimal solution to (2).

1.5 PROOF OF THEOREM 3.3

Proof of Theorem 3.3. This theorem can be proved by
checking that the conditions in Theorem 3.1 are satis-
fied.

1.6 PROOF OF THEOREM 3.6

In order to prove this theorem, the following lemma is pre-
sented and it provides the geometric concentration inequal-
ity for the distance between a point y ∈ Y(k) and any of its
external subspaces. It renders a lower bound for Mi, namely
the minimum distance between yi ∈ Sk and its external
subspaces.

Lemma 1.5. Under semi-random model, given 1 ≤ k ≤ K
and y ∈ Y(k), suppose H ∈ Hyi,dk

is any external sub-
space of y. Moreover, assume that for any external subspace
H′ of y, Tr(U⊤

HU(k)U(k)⊤UH) ≤ dk − 1 where UH is
an orthonormal basis of H. Then for any t > 0,

Pr[d(y,H) ≥ 1

dk
− 2t

√
1− 1

dk
− t2] ≥ 1− 8 exp(−dkt

2

2
).

(9)



Proof of Lemma 1.5. Let H be a fixed subspace of dimen-
sion de ≤ dk, and y /∈ H. Since y ∈ Sk and y /∈ H. Let
y = U(k)ỹ and E

[
ỹỹ⊤] = Idk

.

Then the projection of y onto H is PH(y) = UHU⊤
Hy, and

we have

E[∥PH(y)∥22] = E[y⊤UHU⊤
HUHU⊤

Hy]

= E[Tr(y⊤UHU⊤
Hy)]

= E[Tr(U⊤
Hyy⊤UH)]

= Tr(U⊤
HE[yy⊤]UH)

= Tr(U⊤
HU(k)E[ỹỹ⊤]U(k)⊤UH)

=
1

dk
Tr(U⊤

HU(k)U(k)⊤UH) ≤ dk − 1

dk
= 1− 1

dk
. (10)

According to the concentration inequality in section 5.2
of [Aubrun and Szarek, 2017], for any t > 0,

Pr[|∥PH(y)∥2 − E [∥PH(y)∥2]| ≥ t] ≤ 8 exp(−dkt
2

2
),

(11)

and by (10) E [∥PH(y)∥2] ≤
√
1− 1

dk
.

Now let H be spanned by data from Y, i.e. H = H{yij
}de
j=1

,

where {yij}
de
j=1 are any de linearly independent points that

does not contain y. For any fixed points
{
yij

}de

j=1
, (11)

holds. Let A be the event that |PH(y)− E [∥PH(y)∥2]| ≥ t,
we aim to integrate the indicator function 1IA with respect
to the random vectors, i.e. y and {yij}

de
j=1, to obtain the

probability that A happens over these random vectors. Let
y = yi, using Fubini theorem, we have

Pr[A] =

∫
⊗n

j=1S(j)

1IA⊗n
j=1dµ

(j)

=

∫
⊗j ̸=iS(j)

Pr[A|{yj}j ̸=i]⊗j ̸=idµ
(j)

≤
∫
⊗j ̸=iS(j)

8 exp(−dkt
2

2
)⊗j ̸=idµ

(j) = 8 exp(−dkt
2

2
),

(12)

where S(j) ∈ {Sk}Kk=1 is the subspace that yj lies in, and
µ(j) is the probabilistic measure of the distribution in S(j).
The last inequality is due to (11).

Note that for any y’s external subspace H = H{yij
}de
j=1

,

d(y,H) =
√
∥y∥22 − ∥PH(y)∥22 =

√
1− ∥PH(y)∥22. Ac-

cording to (12), we have

Pr[d(y,H) ≥ 1

dk
− 2t

√
1− 1

dk
− t2] ≥ 1− 8 exp(−dkt

2

2
).

The following lemma shows the lower bound for any sub-
matrix of Y(k).

Lemma 1.6. ([Laurent and Massart, 2000, Lemma 1]) Let
{Xi}ki=1 be i.i.d. standard Gaussian random variables and

X =
k∑

i=1

X2
i , then

Pr
[
X − k ≥ 2

√
kx+ 2x

]
≥ exp (−x) ,

Pr
[
k −X ≥ 2

√
kx

]
≥ exp (−x) .

Lemma 1.7. (Spectrum bound for Gaussian random matrix,
[Davidson and Szarek, 2001, Theorem II.13]) Suppose A ∈
Rm×n (m ≥ n) is a random matrix whose entries are i.i.d.
samples generated from the standard Gaussian distribution
N (0, 1

m ). Then

1−
√

n

m
≤ E[σn(A)] ≤ E[σ1(A)] ≤ 1 +

√
n

m
.

Also, for any t > 0,

Pr[σn(A) ≤ 1−
√

n

m
− t] < exp

(
−mt2

2

)
, (13)

Pr[σ1(A) ≥ 1 +

√
n

m
+ t] < exp

(
−mt2

2

)
.

Lemma 1.8. Let Y ∈ Rd×r be any submatrix of Y(k)

with rank(Y) = r and r ≤ r0 ≤ ⌊ 1
λ⌋ ≤ dk, k ∈ [K].

Suppose c1 > 0 is an arbitrary small constant, ε0, ε1 > 0 be
small constants, and dk is large enough such that 2d−0.05

k +

2d−0.1
k ≤ ε0 and

√
1

λdk
+

√
2

λdk
log enk

r0
≤ ε1. Then with

probability at least 1 − exp(−c1dk) − 2nk exp
(
−d0.9k

)
,

σmin(Y) ≥ σ′
min, where σ′

min is defined by (17).

Proof. Let Y = U(k)αS be a submatrix of size
dk × r of Y(k). α ∈ Rdk×r and elements of α are
i.i.d. standard Gaussians, that is, αij ∼ N (0, 1), i ∈
[dk], j ∈ [r]. S ∈ Rr×r is a diagonal matrix with
Sii =

∥∥αi
∥∥
2

for i ∈ [r]. Define C := αS. By the
concentration property of χ2-distribution (Lemma 1.6),
with probability at least 1 − 2nk exp

(
−d0.9k

)
, Sii ∈

[
√

dk − 2d0.95k ,
√

dk + 2d0.95k + 2d0.9k ] for all i ∈ [r] and
any submatrix Y of Y(k).

Now we estimate an lower bound for the least singular value
of α. By (13) of Lemma 1.7, for a particular submatrix Y
of Y(k) and the corresponding α and any t > 0, we have

Pr
[
σmin(α) ≥

√
dk −

√
r −

√
dkt
]
≥ 1− exp

(
−dkt

2

2

)
.

(14)

Now there are
(
nk

r

)
ways of chooing the submatrix Y , and(

nk

r

)
≤

(
enk

r

)r
. Applying the union bound to (14), we have

Pr
[
σmin(α) ≥

√
dk −

√
r −

√
dkt
]
≥ 1−

(
nk

r

)
exp

(
−dkt

2

2

)



≥ 1− exp

(
r log

enk

r
− dkt

2

2

)
≥ 1− exp

(
r0 log

enk

r0
− dkt

2

2

)
(15)

for any submatrix Y ∈ Rdk×r of Y(k). Let c1 > 0 and

t =

√
2r0 log

enk
r0√

dk
+

√
c1 in (15), then with probability

at least 1 − exp
(
− c1dk

2

)
, σmin(α) ≥

√
dk(1 − √

c1) −
√
r−

√
2r0 log

enk

r0
. Combined with the bounds for Sii, we

conclude that with probability at least 1 − exp(−c1dk) −
2nk exp

(
−d0.9k

)
,

σmin(Y) = σmin(αS) ≥

√
dk(1−

√
c1)−

√
r −

√
2r0 log

enk
r0√

dk + 2d0.95k + 2d0.9k

≥ 1

1 + 2d−0.05
k + 2d−0.1

k

(
1−

√
c1 −

√
r

dk
−
√

2r0
dk

log
enk

r0

)

≥ 1

1 + ε0
(1−

√
c1 − ε1) = σ′

min.

Proof of Theorem 3.6. Let Yβ for any β ∈ Rn with
∥β∥0 = r0. Noting that Yβ have columns from at most
r0 subspaces, let β =

∑r0
r=1 β

(r),
{
β(r)

}r0

r=1
have non-

coverlapping support, each Yβ(r) is a submatrix of Yβ and
columns of Yβ(r) are from the same subspace. For any
u ∈ Rr0 with ∥u∥2 = 1, we can write u as u =

∑r0
r=1 u

(r)

where
{
u(r)

}r0

r=1
have non-overlapping support and u(r)

corresponds to Yβ(r) for r ∈ [r0]. With dmin sufficiently
large as specified in the conditions of this theorem, by
Lemma 1.8, σmin(Yβ(r)) ≥ σ′

min for r ∈ [r0], where σ′
min

is defined by (17). Furthermore, define

affmax := max
t1,t2∈[K] : t1 ̸=t2

aff (St1 ,St2) .

We then have

∥Yβu∥22

=

r0∑
r=1

∥∥∥Yβ(r)u(r)
∥∥∥2
2
+ 2

∑
s,t∈[r0] : s<t

u(s)⊤Y⊤
β(s)Yβ(t)u(t)

≥ σ′2
min∥u∥

2
2 − 2

∑
s,t∈[r0] : s<t

∥∥∥u(s)
∥∥∥
2

∥∥∥u(t)
∥∥∥
2
affmax

≥
(
σ′2
min − (r0 − 1)affmax

)
∥u∥22

= σ′2
min − (r0 − 1)affmax. (16)

It follows that σmin(Yβ) ≥ σ′2
min−(r0−1)aff(St1 ,St2). By

Weyl [Weyl, 1912], |σmin(Xβ)− σmin(Yβ)| ≤ ∥Nβ∥2 ≤
δ
√
r0. Therefore, it follows by (16) that

σmin(Xβ) ≥ σ′2
min − (r0 − 1)aff(St1 ,St2)− δ

√
r0 > 0,

if δ <
σ′2
min−(r0−1)aff(St1

,St2
)√

r0
= c. It can be verified that

(20), (21) and (22) guarantee (12), (13) and (14) in Theo-
rem 3.3 respectively, therefore, the conclusion holds.

1.7 PROOF OF THEOREM 4.1

We need the following lemmas before presenting the proof
of Theorem 4.1. Lemma 1.9 shows that the low rank approx-
imation X̄ is close to X in terms of the spectral norm [Halko
et al., 2011]. Lemma 1.10 presents a perturbation bound for
the distance between a data point and a subspace before and
after the projection P.

Lemma 1.9. (Corollary 10.9 in Halko et al. [2011]) Let
p0 ≥ 2 be an integer and p′ = p − p0 ≥ 4, then with
probability at least 1− 6e−p, the spectral norm of X− X̂
is bounded by

∥X− X̂∥2 ≤ Cp,p0
,

where

Cp,p0
:=

(
1 + 17

√
1 +

p0
p′
)
σp0+1 +

8
√
p

p′ + 1
(
∑
j>p0

σ2
j )

1
2

and σ1 ≥ σ2 ≥ . . . are the singular values of X.

Lemma 1.10. Let β ∈ Rn, ỹi = Pyi, HYβ
is an external

subspace of yi, Ỹβ = P(Yβ) and Ỹβ has full column
rank. Then

|d(yi,HYβ
)− d(ỹi,HỸβ

)|

≤ Cp,p0
(1 +

1

min1≤r≤d̃k
σY,r − Cp,p0

− 2δ
√

d̃k
)

for any 1 ≤ i ≤ n and yi ∈ Sk.

Proof. This lemma can be proved by applying Lemma 1.4.

Proof of Theorem 4.1. For any matrix A ∈ Rp×q , we first
show that multiplying Q to the left of A would not change
its spectrum. To see this, let the singular value decompo-
sition of A be A = UAΣV⊤

A where UA and VA have
orthonormal columns with U⊤

AUA = V⊤
AVA = I. Then

QA = UQAΣVQA is the singular value decomposition of
QA with UQA = QUA and VQA = VA. This is because
the columns of UQA are orthonormal since the columns Q
are orthonormal: U⊤

QAUQA = U⊤
AQ⊤QUA = I, and Σ

is a diagonal matrix with nonnegative diagonal elements. It
follows that σmin(QA) = σmin(A) for any A ∈ Rp×q .

For a point xi = yi + ni, after projection via P, we have
the projected noise ñi = Pni. Because

∥ñi∥2 = ∥Pni∥2 = ∥Q⊤ni∥2 ≤ ∥Q∥2∥ni∥2 ≤ ∥ni∥2 ≤ δ,

the magnitude of the noise in the projected data is also
bounded by δ. Also,

∥x̃i∥2 = ∥Q⊤xi∥2 ≤ ∥xi∥2 ≤ 1.



Let β ∈ Rn, Ỹβ = PYβ with ∥β∥0 = r. Since
σmin(QỸβ) = σmin(Ỹβ)), we have

|σmin(Ỹβ)− σmin(Yβ)| = |σmin(QỸβ)− σmin(Yβ)|
≤ ∥QỸβ −Yβ∥2
= ∥QQ⊤Yβ −Yβ∥2
= ∥QQ⊤Xβ −Xβ +Nβ −QQ⊤Nβ∥2
≤ Cp,p0 + ∥Nβ∥F + ∥QQ⊤Nβ∥F
≤ Cp,p0

+ 2δ
√
r. (17)

It follows from (17) that if

Cp,p0 + 2δ

√
d̃max < min

k=1,...,K
σ
(k)
Y ,

then Ỹ is also in general position.

In addition, since r0 ≤ ⌊ 1
λ⌋ and λ∥β̃∗∥0 ≤ L(0) ≤ 1, we

have
∥∥∥β̃∗

∥∥∥
0
≤ r0 ≤ ⌊ 1

λ⌋.

Based on (17) we have

|σ̄Ỹ,r − σ̄Y,r| ≤ Cp,p0
+ 2δ

√
r0, (18)

and it follows by (18) that δ < min1≤r<r0 σ̄Ỹ,r because
δ < min1≤r<r0 σ̄Y,r − Cp,p0 − 2δ

√
r0.

Again, for β ∈ Rn with ∥β∥0 = r ≤ r0, we have

|σmin(X̃β)− σmin(Xβ)| = |σmin(QX̃β)− σmin(Xβ)|

≤ ∥QX̃β −Xβ∥2
= ∥QQ⊤Xβ −Xβ∥2 = ∥X̂−Xβ∥2
≤ Cp,p0 . (19)

It can be verified by (19) that

|σX̃,r − σX,r| ≤ Cp,p0
. (20)

Combining (20), Lemma 1.10, and the known condition that

Mi − Cp,p0(1 +
1

min1≤r≤d̃k
σY,r − Cp,p0 − 2δ

√
d̃k

)

> δ +
2δ

σX,r0 − Cp,p0

,

we have

M̃i,δ := M̃i − δ >
2δ

σ̃X̃,r0

,

where yi ∈ Sk.

Based on (18) and (20), we have

µ̃r0 < 1− 2δ

σX̃,r0

,

because

δ

min1≤r<r0 σ̄Y,r0 − Cp,p0
− 2δ

√
r0 − δ

< 1− 2δ

σX,r0 − Cp,p0

.

1.8 PROOF OF THEOREM 4.2

Proof of Theorem 4.2. It can be verified that M̃i ≥ Mi

1+ε .
Let β ∈ Rn, Ỹβ = PYβ with ∥β∥0 = r and rank(Yβ) =

r, then for any u ∈ Rr, ∥Ỹβu∥2 = ∥PYβu∥2 ≥
(1 − ε)∥Yβu∥2 ≥ (1 − ε)σmin(Yβ)∥u∥2. It follows
that σmin(Ỹβ) ≥ (1 − ε)σmin(Yβ), and σ̄Ỹ,r ≥ (1 −
ε)σ̄Y,r. Similarly, σmin(X̃β) ≥ (1 − ε)σmin(Xβ) for
β ∈ Rn, ∥β∥0 = r and rank(Xβ) = r. It follows that
σX̃,r ≥ (1 − ε)σX,r. Since (31)-(34) hold, the conditions
(12)-(16) required by Theorem 3.3 on the projected data (Ỹ
and X̃) also hold. Therefore, the subspace detection prop-
erty holds with β̃∗ for x̃i with probability at least 1−Kδ

by the union bound when p ≥ d2+d
δ′(2ε−ε2)2 .

2 BOUND FOR SUBOPTIMAL AND
GLOBALLY OPTIMAL SOLUTIONS
FOR NOISY ℓ0-SSC AND
NOISY-DR-ℓ0-SSC

While our theoretical analysis for noisy ℓ0-SSC and Noisy-
DR-ℓ0-SSC is based on optimal solution to the ℓ0 regular-
ized problem (5), in this subsection we prove that the bound
for the suboptimal solution β̂ obtained by Algorithm 1 is
in fact close to an optimal solution to (5), justifying the
theoretical findings of noisy ℓ0-SSC and Noisy-DR-ℓ0-SSC.

We further present the bound for the gap between β̂ and β∗,
∥β̂−β∗∥2, based on Theorem 5 in Yang and Yu [2019]. Let
g(β) = ∥xi−Xβ∥22 and β∗ be the globally optimal solution
to (5), S∗ = supp(β∗), β̂ be the suboptimal solution to (5)
obtained by PGD, Ŝ = supp(β̂). The following theorem
presents the bound for ∥β̂ − β∗∥2.

Theorem 2.1. (Theorem 5 in Yang and Yu [2019]) Suppose
XS∪S∗ has full column rank with κ0 := σmin(XS∪S∗) > 0
where S is the support of the initialization for PGD on
problem (5). Let κ > 0 such that 2κ2

0 > κ and b is chosen
according to (21) as below:

0 < b < min{min
j∈Ŝ

|β̂j |,
λ

maxj /∈Ŝ | ∂g
∂βj

|β=β̂|
,

min
j∈S∗

|β∗
j |,

λ

maxj /∈S∗ | ∂g
∂βj

|β=β∗ |
}. (21)



Let F = (Ŝ \ S∗) ∪ (S∗ \ Ŝ) be the symmetric difference
between Ŝ and S∗, then

∥β̂ − β∗∥2 ≤ 1

2κ2
0 − κ

( ∑
j∈F∩Ŝ

(max{0, λ
b
− κ|β̂j − b|})2+

∑
j∈F\Ŝ

(max{0, λ
b
− κb})2

) 1
2 .

Remark 2.2. It is observed that the gap ∥β̂−β∗∥2 is small
when λ

b−κ|β̂j−b| for j ∈ F∩Ŝ and λ
b−κb are small. Based

on this observation, Theorem 2.3 establishes the conditions
under which β̂ is also an optimal solution to (5), i.e. β̂ =
β∗.

Define S∗ = supp(β∗), H∗ =
max1≤j≤n dist(β,HXS∗\{j}), µ = max{H∗ +

∥βi − Xβ∗∥2, 2∥xi − Xβ̂∥2, 2∥xi − Xβ∗∥2},
κ0 = σmin(XS∪S∗) > 0 where S = supp(β(0)).
The following theorem demonstrates that β̂ = β∗ if λ is
two-side bounded and β̂min = mint:β̂t ̸=0 |β̂t| is sufficiently
large.

Theorem 2.3. (Conditions that the suboptimal solution by
PGD is also globally optimal) If

β̂min ≥ µ

κ2
0

(22)

and

µ2

2κ2
0

≤ λ ≤ (β̂min − µ

2κ2
0

)µ, (23)

then β̂ = β∗.

Sketch of Proof. It can be verified that max{0, λ
b −κ|β̂j −

b|} = 0 and max{0, λ
b − κb} = 0 under the conditions (22)

and (23), therefore, β̂ = β∗ by applying Theorem 2.1.

3 TIME COMPLEXITY OF NOISY ℓ0-SSC,
NOISY-DR-ℓ0-SSC-LR,
NOISY-DR-ℓ0-SSC-CSP

The time complexity of running PGD by Algorithm 1 for
noisy ℓ0-SSC is O(Tnd), where T is the maximum iteration
number. The time complexity of running Algorithm 1 for
Noisy-DR-ℓ0-SSC-LR is comprised of two parts. The first
part is the time complexity of steps 1-3 with matrix multi-
plication and QR decomposition, which is O(dp2 + pdn).
The second part is the time complexity of step 4, which is
O(Tnp). The overall time complexity of Noisy-DR-ℓ0-SSC
is O(dp2+pdn+Tnp). In practice, p is much smaller than
min {d, n, T}, so Noisy-DR-ℓ0-SSC-LR is more efficient

than noisy ℓ0-SSC. Noisy-DR-ℓ0-SSC-CSP is even more
efficient than both noisy ℓ0-SSC and Noisy-DR-ℓ0-SSC,
whose time complexity is O(pdn+ Tnp). This is because
the linear transformation P obtained by CSP does require
QR decomposition.

4 PROXIMAL GRADIENT DESCENT
(PGD) FOR NOISY ℓ0-SSC

Algorithm 1 describes how to perform Noisy-DR-ℓ0-SSC-
LR for data clustering. Note that Noisy-DR-ℓ0-SSC per-
forms noisy ℓ0-SSC on the dimensionality reduced data X̃.
Proximal Gradient Descent (PGD) is employed to optimize
the objective function of noisy ℓ0-SSC for every data point
xi, which is desribed in Algorithm 1. In the k-th iteration of
PGD for problem (5), the variable β is updated according to

β(k+1) = T√
2λs(β

(k) − s∇g(β(k))),

where s is a positive step size, g(β) = ∥xi −Xβ∥22, Tθ is
an element-wise hard thresholding operator:

[Tθ(u)]j =

{
0 : |uj | ≤ θ

uj : otherwise
, 1 ≤ j ≤ n.

It is proved in Yang et al. [2017] that the sequence {β(k)}
generated by PGD converges to a critical point of (5).

Algorithm 1 Proximal Gradient Descent (PGD) for noisy
ℓ0-SSC problem (5)
Input:

The initialization β(0), step size s > 0, parameter λ, maxi-
mum iteration number T , stopping threshold ε.

1: for 1 ≤ i ≤ n do
2: β̃(t) = β(t−1) − s∇g(β(t−1))
3: β(t) = T√

2λs(β̃
(t))

4: if |L(β(t))− L(β(t−1))| < ε then
5: break
6: end if
7: end for

Output: β̂ which is the suboptimal solution to (5)

5 ADDITIONAL EXPERIMENTAL
RESULTS

We present more results of Noisy-DR-ℓ0-SSC-LR and
Noisy-DR-ℓ0-SSC-CSP in Table 1 with different projec-
tion dimension p. Figure 1 show how the accuracy and NMI
varies with respect to λ on the Extended Yale-B data set.

Figure 2a to Figure 2f illustrate SDP violation with respect
to λ for different noise levels, justifying our theoretical
finding that a large λ tends to preserve the subspace detec-
tion property for noisy ℓ0-SSC, Noisy-DR-ℓ0-SSC-LR and
Noisy-DR-ℓ0-CSP.



Table 1: Clustering results on various data sets, with different values of p for the linear transformation P and the best two results in bold

Data Set Measure Noisy ℓ0-SSC Noisy-DR-ℓ0-SSC-LR Noisy-DR-ℓ0-SSC-CSP
p p = min{d, n}/5 p = min{d, n}/10 p = min{d, n}/15 p = min{d, n}/5 p = min{d, n}/10 p = min{d, n}/15

COIL-20 AC 0.8472 0.8479 0.8479 0.8479 0.8486 0.8472 0.8472
NMI 0.9428 0.9433 0.9433 0.9433 0.9439 0.9428 0.9428

COIL-100 AC 0.7683 0.6992 0.7276 0.7043 0.5404 0.7046 0.7233
NMI 0.9182 0.8626 0.8919 0.8636 0.7819 0.8708 0.8726

Yale-B AC 0.8480 0.8219 0.8231 0.8289 0.8500 0.8318 0.8277
NMI 0.8612 0.8519 0.8527 0.8534 0.8538 0.8593 0.8594
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Figure 1: Accuracy (left) and NMI (right) with respect to different values of λ on the Extended Yale-B data set
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Figure 2: The SDP violation rate with respect to λ for noisy ℓ0-SSC, Noisy-DR-ℓ0-SSC and Noisy-DR-ℓ0-SSC-CSP. The
SDP violation rate for Noisy-DR-ℓ0-SSC and that for Noisy-DR-ℓ0-SSC-CSP are the same, so their curves overlap each
other.
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