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A THEORETICAL ANALYSIS

Theorem 1 [Dual of Equation (7)] The solution vt of Equation (7), if it exists, has a form of

vt = ∇F (θt) +

m∑
i=1

λi,t∇`i(θt),

with {λi,t}mi=1 the solution of the following dual problem

max
λ∈Rm+

−1

2

∥∥∥∥∥∇F (θt) +

m∑
i=1

λt∇`i(θt)

∥∥∥∥∥
2

+

m∑
i=1

λiφt,

where Rm+ is the set of nonnegative m-dimensional vectors, that is, Rm+ = {λ ∈ Rm : λi ≥ 0, ∀i ∈ [m]}.

Proof. By introducing Lagrange multipliers, the optimization in Equation (7) is equivalent to the following minimax
problem:

min
v∈Rn

max
λ∈Rm+

1

2
‖∇F (θt)− v‖2 +

m∑
i=1

λi
(
φt −∇`i(θt)>v

)
.

With strong duality of convex quadratic programming (assuming the primal problem is feasible), we can exchange the order
of min and max, yielding

max
λ∈Rm+

{
Φ(λ) := min

v∈Rn
1

2
‖∇F (θt)− v‖2 +

m∑
i=1

λi
(
φt −∇`i(θt)>v

)}
.

It is easy to see that the minimization w.r.t. v is achieved when v = ∇F (θt) +
∑m
i=1 λi∇`i(θt). Correspondingly, the Φ(λ)

has the following dual form:

max
λ∈Rm+

−1

2

∥∥∥∥∥∇F (θt) +

m∑
i=1

λi∇`i(θt)

∥∥∥∥∥
2

+

m∑
i=1

λiφt.

This concludes the proof.

Theorem 2 [Pareto Improvement on `] Under Assumption 1, assume θ0 6∈ Pe, and te is the first time when θte ∈ Pe,
then for any time t < te,

d

dt
`i(θt) ≤ −αtg(θt), min

s∈[0,t]
g(θt) ≤

mini∈[m](`i(θ0)− `∗i )∫ t
0
αsds

.
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Therefore, the update yields Pareto improvement on ` when θt 6∈ Pe and αtg(θt) > 0.
Further, if

∫ t
0
αsds = +∞, then for any ε > e, there exists a finite time tε ∈ R+ on which the solution enters Pε and stays

within Pε afterwards, that is, we have θtε ∈ Pε and θt ∈ Pε for any t ≥ tε.

Proof. i) When t < te, we have g(θt) > e and hence

d

dt
`i(θt) = −∇`i(θt)>vt ≤ −φt = −αtg(θt), (1)

where we used the constraint of∇`i(θt)>vt ≥ φt in Equation (7). Therefore, we yield strict decent on all the losses {`i}
when αtg(θt) > 0.

ii) Integrating both sides of Equation (1):

min
s∈[0,t]

g(θs) ≤
∫ t
0
αsg(θs)ds∫ t
0
αsds

≤ `i(θ0)− `i(θt)∫ t
0
αsds

≤ `i(θ0)− `∗∫ t
0
αsds

.

This yields the result since it holds for every i ∈ [m].

If
∫∞
0
αtdt = +∞, then we have mins∈[0,t] g(θs)→ 0 when t→ +∞. Assume there exists an ε > e, such that θt never

enters Pε at finite t. Then we have g(θt) ≥ ε for t ∈ R+, which contradicts with mins∈[0,t] g(θs)→ 0.

iii) Assume there exists a finite time t′ ∈ (tε,+∞) such that θt′ 6∈ Pε. Because ε > e and g is continuous, Pe is in the
interior of Pε ⊆ Pε. Therefore, the trajectory leading to θt′ 6∈ Pε must pass through Pε \ Pe at some point, that is, there
exists a point t′′ ∈ [tε, t

′), such that {θt : t ∈ [t′′, t′]} 6∈ Pe. But because the algorithm can not increase any objective `i
outside of Pe, we must have `(θt′) � `(θt′′), yielding that θt′ ∈ {θt′′} ⊆ Pε, where {θt′′} is the Pareto closure of {θt′′};
this contradicts with the assumption.

Theorem 3 Under Assumption 1, assume θt 6∈ Pe is a fixed point of the algorithm, that is, dθt
dt = −vt = 0, and F , ` are

convex in a neighborhood θt, then θt is a local minimum of F in the Pareto closure {θt}, that is, there exists a neighborhood
of θt in which there exists no point θ′ such that F (θ′) < F (θt) and `(θ′) � `(θt).

Proof. Note that minimizing F in {θt} can be framed into a constrained optimization problem:

min
θ
F (θ) s.t. `i(θ) ≤ `i(θt), ∀i ∈ [m].

In addition, by assumption, θ = θt satisfies vt = ∇F (θt) +
∑m
i=1 λi,t∇`i(θt) = 0, which is the KKT stationarity condition

of the constrained optimization. It is also obvious to check that θ = θt satisfies the feasibility and slack condition trivially.
Combining this with the local convexity assumption yields the result.

Theorem 4 [Optimization of F ] Let ε > e and assume gε := supθ{g(θ) : θ ∈ Pε} < +∞ and supt≥0 αt <∞. Under
Assumption 1, when we initialize from θ0 ∈ Pε, we have

min
s∈[0,t]

∥∥∥∥dθs
ds

∥∥∥∥2 ≤ F (θ0)− F ∗

t
+

1

t

∫ t

0

αs (αsgε + c
√
gε) ds.

In particular, if we have αt = α = const, then mins∈[0,t] ‖dθs/ds‖
2

= O
(
1/t+ α

√
gε
)
.

If
∫∞
0
αγt dt < +∞ for some γ ≥ 1, we have mins∈[0,t] ‖dθs/ds‖

2
= O(1/t+

√
gε/t

1/γ).

Proof. i) The slack condition of the constrained optimization in Equation (7) says that

λi,t
(
∇`i(θt)>vt − φt

)
= 0, ∀i ∈ [m]. (2)



This gives that

‖vt‖2 =

(
∇F (θt) +

m∑
i=1

λi,t∇`i(θt)

)>
vt

= ∇F (θt)
>vt +

m∑
i=1

λi,tφt //plugging Equation (2). (3)

If θt 6∈ Pe, we have φt = αtg(θt) and this gives

d

dt
F (θt) = −∇F (θt)

>vt = −‖vt‖2 +

m∑
i=1

λi,tφt = −
∥∥∥∥dθt

dt

∥∥∥∥2 +

m∑
i=1

λi,tαtg(θt)

If θt is in the interior of Pe, then we run typical gradient descent of F and hence has

d

dt
F (θt) = −‖vt‖2 = −

∥∥∥∥dθt
dt

∥∥∥∥2 .
If θt is on the boundary of Pe, then by the definition of differential inclusion, dθ/dt belongs to the convex hull of the
velocities that it receives from either side of the boundary, yielding that

d

dt
F (θt) = −

∥∥∥∥dθt
dt

∥∥∥∥2 + β

m∑
i=1

λi,tαtg(θt) ≤ −
∥∥∥∥dθt

dt

∥∥∥∥2 +

m∑
i=1

λi,tαtg(θt),

where β ∈ [0, 1]. Combining all the cases gives

d

dt
F (θt) ≤ −

∥∥∥∥dθt
dt

∥∥∥∥2 +

m∑
i=1

λi,tαtg(θt).

Integrating this yields

min
s∈[0,t]

∥∥∥∥dθs
ds

∥∥∥∥2 ≤ 1

t

∫ t

0

∥∥∥∥dθs
ds

∥∥∥∥2 ds ≤ F (θ0)− F ∗

t
+

1

t

∫ t

0

m∑
i=1

λi,sαsg(θs)ds

≤ F (θ0)− F ∗

t
+

1

t

∫ t

0

αs (αsgε + c
√
gε) ds,

where the last step used Lemma 1 with φt = αtg(θt):

m∑
i=1

λi,tαtg(θt) ≤ α2
t g(θt) + cαt

√
g(θt) ≤ α2

t gε + cαt
√
gε,

and here we used g(θt) ≤ gε because the trajectory is contained in Pε following Theorem 2.

The remaining results follow Lemma 3.

A.0.1 Technical Lemmas

Lemma 1. Assume Assumption 1 holds. Define g(θ) = minω∈Cm ‖
∑m
i=1 ωi∇`i(θ)‖

2, where Cm is the probability simplex
on [m]. Then for the vt and λi,t defined in Equation (7) and Equation (11), we have

m∑
i=1

λi,tg(θt) ≤ max
(
φt + c

√
g(θt), 0

)
.



Proof. The slack condition of the constrained optimization in Equation (7) says that

λi,t
(
∇`i(θ)>vt − φt

)
= 0, ∀i ∈ [m].

Sum the equation over i ∈ [m] and note that vt = ∇F (θt) +
∑m
i=1 λi,t∇`i(θt). We get∥∥∥∥∥

m∑
i=1

λi,t∇`i(θt)

∥∥∥∥∥
2

+

(
m∑
i=1

λi,t∇`i(θt)

)>
∇F (θ)−

m∑
i=1

λi,tφt = 0. (4)

Define

xt =

∥∥∥∥∥
m∑
i=1

λi,t∇`i(θt)

∥∥∥∥∥
2

, λ̄t =

m∑
i=1

λi,t, gt = g(θt) = min
ω∈Cm

∥∥∥∥∥
m∑
i=1

ωi∇`i(θt)

∥∥∥∥∥
2

.

Then it is easy to see that xt ≥ λ̄2t gt. Using Cauchy-Schwarz inequality,∣∣∣∣∣∣
(

m∑
i=1

λi,t∇`i(θ)

)>
∇F (θt)

∣∣∣∣∣∣ ≤ ‖∇F (θt)‖

∥∥∥∥∥
m∑
i=1

λi,t∇`i(θ)

∥∥∥∥∥ ≤ c√xt,
where we used ‖∇F (θt)‖ ≤ c by Assumption 1. Combining this with Equation (4), we have∣∣xt − λ̄tφt∣∣ ≤ c√xt.
Applying Lemma 2 yields the result.

Lemma 2. Assume φ ∈ R, and x, λ, c, g ∈ R+ are non-negative real numbers and they satisfy

|x− λφ| ≤ c
√
x, x ≥ λ2g.

Then we have λg ≤ max(0, φ+ c
√
g).

Proof. Square the first equation, we get
f(x) := (x− λφ)2 − c2x ≤ 0,

where f is a quadratic function. To ensure that f(x) ≤ 0 has a solution that satisfies x ≥ λ2g, we need to have f(λ2g) ≤ 0,
that is,

f(λ2g) = (λ2g − λφ)2 − c2λ2g ≤ 0.

This can hold under two cases:

Case 1: λ = 0;

Case 2: |λg − φ| ≤ c√g, and hence φ− c√g ≤ λg ≤ φ+ c
√
g.

Under both case, we have
λg ≤ max(0, φ+ c

√
g).

Lemma 3. Let {αt : t ∈ R+} ⊆ R+ be a non-negative sequence with A :=
(∫∞

0
αγt dt

)1/γ
< ∞, where γ ≥ 1, and

B = supt αt <∞. Then we have
1

t

∫ t

0

(
α2
s + αs

)
ds ≤ (B + 1)At−1/γ .

Proof. Let η = γ
γ−1 , so that 1/η + 1/γ = 1. We have by Holder’s inequality,∫ t

0

αsds ≤
(∫ t

0

αγsds

)1/γ (∫ t

0

1ηds

)1/η

≤ At1/η = At1−1/γ .

and hence
1

t

∫ t

0

(
α2
s + αs

)
ds ≤ B + 1

t

∫ t

0

αsds ≤ (B + 1)At−1/γ .
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Figure 1: Trajectories of solving OPT-in-Pareto with weighted distance and complex cosine as criterion using PNG. The
green dots are the final converged models. PNG is able to successfully locate the correct models in the Pareto set.

B PRACTICAL IMPLEMENTATION

Hyper-parameters Our algorithm introduces two hyperparameters {αt} and e over vanilla gradient descent. We use
constant sequence αt = α and we take α = 0.5 unless otherwise specified. We choose e by e = γe0, where e0 is
an exponentially discounted average of 1

m

∑m
i=1 ‖∇`i(θt)‖

2 over the trajectory so that it automatically scales with the
magnitude of the gradients of the problem at hand. In the experiments of this paper, we simply fix γ = 0.1 unless specified.

Solving the Dual Problem Our method requires to calculate {λi,t}mt=1 with the dual optimization problem in Equation (11),
which can be solved with any off-the-shelf convex quadratic programming tool. In this work, we use a very simple projected
gradient descent to approximately solve Equation (11). We initialize {λi,t}mt=1 with a zero vector and terminate when the
difference between the last two iterations is smaller than a threshold or the algorithm reaches the maximum number of
iterations (we use 100 in all experiments).

C EXPERIMENTS

C.1 FINDING PREFERRED PARETO MODELS

C.1.1 Ratio-based Criterion

The non-uniformity score from [Mahapatra and Rajan, 2020] that we use in Figure 1 is defined as

FNU(θ) =

m∑
t=1

ˆ̀
t(θ) log

(
ˆ̀
t(θ)

1/m

)
, ˆ̀

t(θ) =
rt`t(θ)∑

s∈[m] rs`s(θ)
. (5)

We fix the other experiment settings the same as Mahapatra and Rajan [2020] and use γ = 0.01 and α = 0.25 for this
experiment reported in the main text. We defer the ablation studies on the hyper-parameter α and γ to Section C.3.

C.1.2 ZDT2-Variant

We consider the ZDT2-Variant example used in Ma et al. [2020] with the same experiment setting, in which the Pareto set is a
cylindrical surface, making the problem more challenging. We consider the same criteria, e.g. weighted distance and complex
cosine used in the main context with different choices of r1 = [0.2, 0.4, 0.6, 0.8]. We use the default hyper-parameter set up,
choosing α = 0.5 and r = 0.1. For complex cosine, we use MGD updating for the first 150 iterations. Figure 1 shows the
trajectories, demonstrating that PNG works pretty well for the more challenging ZDT2-Variant tasks.
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Figure 2: The evolution of Criterion F and the norm of MGD gradient when trained using PNG on NYUv2 dataset with
MTAN network. PNG effectively decreases the criterion while ensuring the model is within the Pareto set, since the norm of
MGD gradient remains unchanged.

C.1.3 General Criteria: Three-task learning on the NYUv2 Dataset

We show that PNG is able to handle large-scale multitask learning problems by deploying it on a three-task learning problem
(segmentation, depth estimation, and surface normal prediction) on NYUv2 dataset [Silberman et al., 2012]. The main goal
of this experiment is to show that: 1. PNG is able to handle OPT-in-Pareto in a large-scale neural network; 2. With a proper
design of criteria, PNG enables to do targeted fine-tuning that pushes the model to move towards a certain direction. We
consider the same training protocol as Liu et al. [2019] and use the MTAN network architecture. Start with a model trained
with equally weighted linear scalarization and our goal is to further improve the model’s performance on segmentation and
surface normal estimation while allowing some sacrifice on depth estimation. This can be achieved by many different choices
of criterion and in this experiment, we consider the following design: F (θ) = (`seg(θ)×`surface(θ))/(0.001+`depth(θ)). Here
`seg, `surface and `depth are the loss functions for segmentation, surface normal prediction and depth estimation, respectively.
The constant 0.001 in the denominator is for numeric stability. We point out that our design of criterion is a simple heuristic
and might not be an optimal choice and the key question we study here is to verify the functionality of the proposed PNG.
As suggested by the open-source repository of Liu et al. [2019], we reproduce the result based on the provided configuration.
To show that PNG is able to move the model along the Pareto front, we show the evolution of the criterion function and the
norm of the MGD gradient during the training in Figure 2. As we can see, PNG effectively decreases the value of criterion
function while the norm of MGD gradient remains the same. This demonstrates that PNG is able to minimize the criterion
by searching the model in the Pareto set. Table 1 compares the performances on the three tasks using standard training and
PNG, showing that PNG is able to improve the model’s performance on segmentation and surface normal prediction tasks
while satisfying a bit of the performance in depth estimation based on the criterion.

C.2 FINDING DIVERSE PARETO MODELS

C.2.1 Experiment Details

We train the model for 100 epochs using Adam optimizer with batch size 256 and 0.001 learning rate. To encourage diversity
of the models, following the setting in Mahapatra and Rajan [2020], we use equally distributed preference vectors for
linear scalarization and EPO. Note that the stochasticity of using mini-batches is able to improve the performance of Pareto
approximation for free by also using the intermediate checkpoints to approximate P . To fully exploit this advantage, for all
the methods, we collect checkpoints every epoch to approximate P , starting from epoch 60.

C.2.2 Evaluation Metric Details

We introduce the definition of the used metric for evaluation. Given a set P̂ = {θ1, . . . , θN} that we use to approximate P ,
its IGD+ score is defined as:

IGD+(P̂) =

∫
P∗
q(θ, P̂)dµ(θ), q(θ, P̂) = min

θ̂∈P̂

∥∥∥∥(`(θ̂)− `(θ)
)
+

∥∥∥∥ ,



Algorithm
Segmentation Depth Surface Normal

(Higher Better) (Lower Better)
Angle Distance
(Lower Better) Within t◦

mIoU Pix Acc Abs Err Rel Err Mean Median 11.25 22.5 30
Standard 27.09 56.36 0.6143 0.2618 31.46 27.37 19.51 41.71 54.61

PNG 28.23 56.66 0.6161 0.2632 31.06 26.50 21.06 43.41 55.93

Table 1: Comparing the multitask performance of standard training using linear scalarization with equally weighted losses
and the targeted fine-tuning based on PNG.

Loss Acc
Hv↑ (10−2) IGD↓ (10−2) Hv↑ (10−2) IGD↓ (10−2)

γ = 0.1
α = 0.25 7.89± 0.11 0.041± 0.012 9.39± 0.038 0.0056± 0.002
α = 0.5 7.86± 0.12 0.043± 0.012 9.39± 0.038 0.0056± 0.002
α = 0.75 7.84± 0.11 0.045± 0.013 9.38± 0.037 0.0057± 0.002

α = 0.5
γ = 0.01 7.86± 0.12 0.042± 0.012 9.39± 0.038 0.0056± 0.002
γ = 0.1 7.86± 0.12 0.043± 0.012 9.39± 0.038 0.0056± 0.002
γ = 0.25 7.85± 0.11 0.042± 0.012 9.39± 0.036 0.0056± 0.002

Table 2: Ablation study based on Multi-Mnist dataset with different choice of α and γ.

where µ is some base measure that measures the importance of θ ∈ P and (t)+ := max(t, 0), applied on each element of a
vector. Intuitively, for each θ, we find a nearest θ̂ ∈ P̂ that approximates θ best. Here the (·)+ is applied as we only care the
tasks that θ̂ is worse than θ. In practice, a common choice of µ can be a uniform counting measure with uniformly sampled
(or selected) models from P . In our experiments, since we can not sample models from P , we approximate P by combining
P̂ from all the methods, i.e., P ≈ ∪m∈{Linear,MGD,EPO,PNG}P̂m, where P̂m is the approximation set produced by algorithm m.

This approximation might not be accurate but is sufficient to compare the different methods,

The Hypervolume score of P̂ , w.r.t. a reference point `r ∈ Rm+ , is defined as

HV(P̂) = µ
({

` = [`1, ..., `m] ∈ Rm | ∃θ ∈ P̂, s.t. `t(θ) ≤ `t ≤ `rt ∀t ∈ [m]
})

,

where µ is again some measure. We use `r = [0.6, 0.6] for calculating the Hypervolume based on loss and set µ to be the
common Lebesgue measure. Here we choose 0.6 as we observe that the losses of the two tasks are higher than 0.6 and 0.6 is
roughly the worst case. When calculating Hypervolume based on accuracy, we simply flip the sign.

C.2.3 Ablation Study

We conduct ablation study to understand the effect of α and γ using the Pareto approximation task on Multi-Mnist. We
compare PNG with α = 0.25, 0.5, 0.75 and γ = 0.01, 0.1, 0.25. Figure 2 summarizes the result. Overall, we observe that
PNG is not sensitive to the choice of hyper-parameter.

C.2.4 Comparing with the Second Order Approach

We give a discussion on comparing our approach with the second order approaches proposed by Ma et al. [2020]. In terms
of algorithm, Ma et al. [2020] is a local expansion approach. To apply Ma et al. [2020], in the first stage, we need to start
with several well distributed models (i.e., the ones obtained by linear scalarization with different preference weights) and
Ma et al. [2020] is only applied in the second stage to find the neighborhood of each model. The performance gain comes
from the local neighbor search of each model (i.e. the second stage).

In comparison, PNG with energy distance is a global search approach. It improves the well-distributedness of models in the
first stage (i.e. it’s a better approach than simply using linear scalarization with different weights). And thus the performance
gain comes from the first stage. Notice that we can also apply Ma et al. [2020] to PNG with energy distance to add extra
local search to further improve the approximation.
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Figure 3: Ablation study on OPT-in-Pareto with different ratio constraint of objectives. Upper row, from left to right: fixing
α = 0.25, γ = 0.1, 0.05, 0.01, 0.001; Lower row, from left to right: fixing γ = 0.01, α = 0.1, 0.25, 0.5, 0.75. By comparing
the figures in the first row, we find that choosing a too large γ make the final converged model be far away from the Pareto
set, which is as expected. By comparing the figures in the second row, we find that changing α make PNG give different
priority in making Pareto improvement or descent on F . When α is larger (the right figures), PNG will first move the model
to Pareto set and start to decrease F after that.

In terms of run time comparison. We compare the wall clock run time of each step of updating the 5 models using PNG
and the second order approach in Ma et al. [2020]. We calculate the run time based on the multi-MNIST dataset using the
average of 100 steps. PNG uses 0.3s for each step while Ma et al. [2020] uses 16.8s. PNG is 56x faster than the second
order approach. And we further argue that, based on time complexity theory, the gap will be even larger when the size of the
network increases.

C.3 TRAJECTORY VISUALIZATION WITH DIFFERENT HYPER-PARAMETERS

We give visualization on the PNG trajectory when using different hyper-parameters. We reuse synthetic example introduced
in Section 7.1 for studying the hyper-parameters α and γ. We fix α = 0.25 and vary γ = 0.1, 0.05, 0.01, 0.1; and fix
γ = 0.01 and vary α = 0.1, 0.25, 0.5, 0.75. Figure 3 plots the trajectories. As we can see, when γ is properly chosen, with
different α, PNG finds the correct models with different trajectories. Different α determines the algorithm’s behavior of
balancing the descent of task losses or criterion objectives. On the other hand, with too large γ, the algorithm fails to find a
model that is close to P∗, which is expected.

C.4 IMPROVING MULTITASK BASED DOMAIN GENERALIZATION

We argue that many other deep learning problems also have the structure of multitask learning when multiple losses presents
and thus optimization techniques in multitask learning can also be applied to those domains. In this paper we consider the
JiGen [Carlucci et al., 2019]. JiGen learns a model that can be generalized to unseen domain by minimizing a standard
cross-entropy loss `class for classification and an unsupervised loss `jig based on Jigsaw Puzzles:

`(θ) = (1− ω)`class(θ) + ω`jig(θ).

The ratio between two losses, i.e. ω, is important to the final performance of the model and requires a careful grid search.
Notice that JiGen is essentially searching for a model on the Pareto front using the linear scalarization. Instead of using a
fixed linear scalarization to learn a model, one natural questions is that whether it is possible to design a mechanism that
dynamically adjusts the ratio of the losses so that we can achieve to learn a better model.



Method Art paint Cartoon Sketches Photo Avg
AlexNet

TF 0.6268 0.6697 0.5751 0.8950 0.6921
CIDDG 0.6270 0.6973 0.6445 0.7865 0.6888
MLDG 0.6623 0.6688 0.5896 0.8800 0.7001
D-SAM 0.6387 0.7070 0.6466 0.8555 0.7120
DeepAll 0.6668 0.6941 0.6002 0.8998 0.7152

JiGen 0.6855± 0.004 0.6889± 0.0020.6889± 0.0020.6889± 0.002 0.6831± 0.0110.6831± 0.0110.6831± 0.011 0.8946± 0.008 0.7380± 0.002
JiGen + adv 0.6857± 0.004 0.6837± 0.003 0.6753± 0.008 0.8980± 0.001 0.7357± 0.003
Jigen + PNG 0.6914± 0.0050.6914± 0.0050.6914± 0.005 0.6903± 0.0020.6903± 0.0020.6903± 0.002 0.6855± 0.0070.6855± 0.0070.6855± 0.007 0.9044± 0.0030.9044± 0.0030.9044± 0.003 0.7429± 0.0020.7429± 0.0020.7429± 0.002

ResNet-18
D-SAM 0.7733 0.7243 0.7783 0.9530 0.8072
DeepAll 0.7785 0.7486 0.6774 0.9573 0.7905

JiGen 0.8009± 0.004 0.7363± 0.007 0.7046± 0.013 0.9629± 0.0020.9629± 0.0020.9629± 0.002 0.8012± 0.002
JiGen + adv 0.7923± 0.006 0.7402± 0.004 0.7188± 0.005 0.9617± 0.001 0.8033± 0.001

JiGen + PNG 0.8014± 0.0050.8014± 0.0050.8014± 0.005 0.7538± 0.0010.7538± 0.0010.7538± 0.001 0.7222± 0.0060.7222± 0.0060.7222± 0.006 0.9627± 0.0020.9627± 0.0020.9627± 0.002 0.8100± 0.0050.8100± 0.0050.8100± 0.005

Table 3: Comparing different algorithms for domain generalization using dataset PACS and two network architectures. The
setting is the same to that of Table 2.

We give a case study here. Motivated by the adversarial feature learning [Ganin et al., 2016], we propose to improve
JiGen such that the latent feature representations of the two tasks are well aligned. Specifically, suppose that Φclass(θ) =
{φclass(xi, θ)}ni=1 and Φjig(θ) = {φjig(xi, θ)}ni=1 is the distribution of latent feature representation of the two tasks, where
xi is the i-th training data. We consider FPD as some probability metric that measures the distance between two distributions,
we consider the following problem:

min
θ∈P∗

FPD[Φclass(θ),Φjig(θ)].

With PD as the criterion function, our algorithm automatically reweights the ratio of the two tasks such that their latent
space is well aligned.

Setup We fix all the experiment setting the same as Carlucci et al. [2019]. We use the Alexnet and Resnet-18 with multihead
pretrained on ImageNet as the multitask network. We evaluate the methods on PACS [Li et al., 2017], which covers 7 object
categories and 4 domains (Photo, Art Paintings, Cartoon and Sketches). Same to Carlucci et al. [2019], we trained our
model considering three domains as source datasets and the remaining one as target. We implement FPD that measures
the discrepancy of the feature space of the two tasks using the idea of Domain Adversarial Neural Networks [Ganin and
Lempitsky, 2015] by adding an extra prediction head on the shared feature space to predict the whether the input is for the
classification task or Jigsaw task. Specifically, we add an extra linear layer on the shared latent feature representations that is
trained to predict the task that the latent space belongs to, i.e.,

FPD(Φclass(θ),Φjig(θ)) = min
w,b

1

n

n∑
i=1

log(σ(w>φclass(xi, θ))) + log(1− σ(w>φclass(xi, θ))).

Notice that the optimal weight and bias for the linear layer depends on the model parameter θ, during the training, both w, b
and θ are jointly updated using stochastic gradient descent. We follow the default training protocol provided by the source
code of Carlucci et al. [2019].

Baselines Our main baselines are JiGen [Carlucci et al., 2019]; JiGen + adv, which adds an extra domain adversarial loss on
JiGen; and our PNG with domain adversarial loss as criterion function. In order to run statistical test for comparing the
methods, we run all the main baselines using 3 random trials. We use the released source code by Carlucci et al. [2019]
to obtained the performance of JiGen. For JiGen+adv, we use an extra run to tune the weight for the domain adversarial
loss. Besides the main baselines, we also includes TF [Li et al., 2017], CIDDG [Li et al., 2018b], MLDG [Li et al., 2018a]
, D-SAM [D’Innocente and Caputo, 2018] and DeepAll [Carlucci et al., 2019] as baselines with the author reported
performance for reference.

Result The result is summarized in Table 3 with bolded value indicating the statistical significant best methods with p-value
based on matched-pair t-test less than 0.1. Combining Jigen and PNG to dynamically reweight the task weights is able to
implicitly regularizes the latent space without adding an actual regularizer which might hurt the performance on the tasks
and thus improves the overall result.
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