Appendix: Future Gradient Descent for Adapting the Temporal Shifting Data
Distribution in Online Recommendation Systems

Mao Ye' Ruichen Jiang! Haoxiang Wang> Dhruv Choudhary® Xiaocong Du® Bhargav Bhushanam?
Aryan Mokhtari' Arun Kejariwal® Qiang Liu!

I'The University of Texas at Austin.
2The University of Illinois at Urbana-Champaign.
*Meta.

Extra Notation We introduce several new notations for the appendix. We use (-, -) to denote the inner product between
two vectors and use o to denote the entrywise product.

1 PROOF OF THEOREM

Proof. We start with a simple decomposition using the triangle inequality:
[t (O) | < [t (62) = m(O2; D) + [1m2(0;).

By the termination condition of Algorithm[2} we have ||m(6;;t)|| < 8. Furthermore, it follows from (3] that
s (60) = (00;)l == [V (60) — m(61:).

Hence, we obtain

1 2)
IMMMW§@+wWMMW%MOS%MUMWMMM%mﬁ (1)
This further implies that
1 & 2
_ 2 . 2 2
R(T) = T ; [t e (02)||* < T tz:; [IV7e(0:) — m(6s;0)||* + 267, 2)

and the main result follows from the fact that ||Vr.(6;) — m(6;;t)]|> < supy || Vre(8) — m(0;t)||? for all t € [T).
Furthermore, under the boundedness assumption, we have for all ¢ € [T]

IV7:(0) = m(@: t)II* < (V@) + [m (65)])* < 4M>. 3)

Hence, (2) also implies R, (T) < 8M?/w? + 252, which leads to R, (T) = O(1/w?) when § = 1/w. O

2 DETAILS OF THE RESULT IN SECTION

Algorithm. Given 0;, define hy(¢) = ||Vr(6;) — m(6;; ¢,t)||? as a function of ¢, where we view 6; as a constant. Thus,
if follows from that (2)) that

2 &)
wQT;ht((bt)—l—% .)

R,(T) <

Accepted for the 38" Conference on Uncertainty in Artificial Intelligence (UAI 2022).

mailto:<maoye21@utexas.edu>?Subject=Your UAI 2022 paper

Algorithm 1 Generalized Future Gradient Descent for Smoothed Regret (simplified version for the theoretical study)

Input: The learning rate 7, 774 for updating the model parameter 6 and ¢.
Initialize ¢y = [1/b, ..., 1/b].
fort € [T] do
Deploy the prediction model fy, with the parameter 6, and collect the new dataset D;.

Construct the function hy (@) = ||Vr(0;) — m(6; ¢, 1)
é _ __9+0exp(—ng Vhe(¢r))
t+1 = proexp(—ng Vhe (o)1
Initialize the model parameter 6; 1.
while ||m(0t+1, ¢t+17t + 1)” > 6 do
Orp1 = Ors1 — (0415 Grp1,t + 1)
end while
end for

> One step of Exponentiated gradient descent from ¢y

Thus, our goal is to minimize 23:1 h¢(¢¢) in an online manner, since we can only access h;(¢;) after ¢, is chosen. To
achieve this, we use the classic exponentiated gradient method to update ¢,. Specifically, for any ¢ = [a1,...,ap] € Sp,

define the negative potential function ¢ (¢) = Z?:1 a; log a; and its Bregman divergence

By(d5¢") = $() — ¢(¢') = (Vip(¢') Zaz log =

Then ¢4 is given by

b1 0 exp(—npVhi(d1))
[pe 0 exp(—npVhe(de)) |1’

Gi41 = arg min <<Vhtv o) + 771¢Bw(¢3 ¢>t)> =

$ESy

where 7 is the learning rate. See Section 6.6 in|Orabona|[2019] for the derivation of the last equality. Intuitively, %Bw (¢; d¢)
stabilizes the algorithm by ensuring that ¢, ; remains close to ¢;.

This simplified version of FGD is summarized in Algorithm [I| Note that when updating ¢, we only use the last recommen-
dation model 6;.

Lemma 1. Suppose that we have ||NVr(0)|| < M forall € © and t. Then ||Vhi(¢)|so < 8M? for all ¢ € Sy,

Proof. By definition, we have
h () = ||V7”t Ht ZaZVrt i Ot = || Zal V?"t Ht Vrt_i(Gt))HQ,

where we used the fact that Zle a; = 1. Direct computation shows that

b
‘gz: (¢)‘ = 2‘<VTt(9t) - vrtfi(et), Zaj(Vrt(Gt) — V7't7j(9t))>‘ (5)
b
< 2[[Vre(0:) — Vre—i(04)|| Zaj(Vrt(Ht) - Vrt_j(et))H 6)
” b
<L 2([|Vre (0] + 1 Vre—i(0:)1]) <Z a;([[Vr(0:)] + |V7’t_j(0t)||)> (7
< 8M%, ®)

where we used Cauchy-Schwarz inequality in (6)), the triangle inequality in (7)) and the boundedness of the gradients in (8).
Hence, we conclude that || VA (¢)| 0 < 8M?2. O

Proof of Theorem[2} Now we proceed to the proof of Theorem 2] This is a standard result in the online learning literature
(see, e.g.,|Orabonal[2019]). For completeness, we present the proof below.

Proof. As 1 is A-strongly convex with A = 1, we have
1
By(¢:¢') > 5llo - #'l11 ©)

Throughout the proof, we slightly abuse the notation by writing 74 = 1 and Vh; = Vh;(¢;) for simplicity. Notice that by
our update rule ¢, is given by

Gi+1 = argmin (n(Vhy, ¢) + By(¢; 61)) -
PESH

From the first-order optimality condition, we get for any ¢ € .Sp,

(NVhi + Vip(di11) — V(dt), b1 — ¢) <0
< N(Vhi, ¢¢ — &) <(Vhe, b — dei1) + (Vo(de1) — VYP(dr), ¢ — dir1)
< N(Vhe, ¢p — &) <n(Vhe, ¢r — drp1) — By(d; deg1) + By(d; 0r) — By (dig1; de),

where we used the three-point equality [Chen and Teboullel [1993] in the last inequality. Furthermore,

1
(Vhi, ¢ — dir1) — By(@; 0e41) <0l Vhilloolldr — devalls — §H¢t — ¢}
2
n 1 1
< §||Vht||§o + §H¢t — ¢ — §H¢t — ¢lf
2
_n 2
= L 7h2.
Combining these two bounds, we have
772 2
N {(Vhi, ¢r — @) < By(9; ¢1) — By (d; pr41) + ?HVhtHoo'

Since hi(¢) is convex in ¢, we have hi(p:) — hi(¢p) < (Vhe, ¢ — ¢) for any ¢ € Sp. By telescoping, we obtain

<Vht7 ¢t - ¢>

M=

T
> (helér) — hu(9)) <

t=1

~
Il

1

T 2
=< %Z [Bw (93 0¢) — By (93 dr11) + 772||Vht||go:|
t=1
= (B (:61) = By(dsors1) gz VRl
1 -

< ~logb + 32nM*T.
n

where we used Lemma By (¢; ¢r+1) > 0 and By (d;61) = ¥(d) + logb < logb in the last inequality. Choosing
1 = cy/(logd) /(T M*) with some constant ¢ > 0 leads to

T
> [hi(¢e) — hu(9)] < O(M?/Tlogh). (10)
t=1

Algorithm 2 Generalized Future Gradient Descent for Smoothed Loss

Input: The learning rate 7, 14 for updating the model parameter 6 and ¢. The initial trajectory buffer 5.
for¢t € [T] do
Deploy the prediction model fy, with parameter 6,. Then collect the new dataset D;.

Initialize the parameter of MFGG ¢y 1. > Initialization of ¢4 1 is user-specific.
for Inner loop iteration k € K do > Update the meta network.

Gr1 4 D1 — Mg 2ger Vollm(b; di1,t) — Vry(0)]12. > May replace with the mini-batch version.
end for

Initialize the trajectory buffer B = () and model parameter 6, 1. > Initialization scheme of 6,1 is specified by user.
while ||m(041; d¢11,t + 1)|| > 0 do > Alternatively, we may run gradient descent with a fixed number of iterations.

Orr1 + 01 — m(0p41; P, t + 1), > May replace with the mini-batch version.
B+ BU{0:41} > Alternatively, we may update the trajectory buffer B every a few iterations.
end while
end for

Note that (I0) holds for any ¢ € Sp. In particular, we can set ¢ = ¢* defined by ¢* = argmin g, Z;il hi(¢). Therefore,
T T
D hi(d) <D hi(67) + O(M?/Tlogb)
t=1 t=1
T
= min Y [|Vri(6:) — m(0s; ¢, 1)|1* + O(M>/T log b)
oS i
T
< min > sup [Vr(6) — m(0;,)]|* + O(M?\/Tlogb) = min Q[T;m] + O(M?\/Tlogh).
bim1 "

We thus conclude from (@) that

Ry (T) < 2 (Ini/I\l/l Q[T;m] + O(M?\/Tlogb)) + 26>

w2T “me

3 A PRACTICAL GENERALIZED FGD ALGORITHM.

Compared with FGD in Algorithm[2] we use a smoothed version of MFGG . for training, which is due to the consideration
of minimizing a smoothed loss in (Z). For completeness, we also summarize the practical algorithm of the generalized
version of FGD in Algorithm 2}

References

Gong Chen and Marc Teboulle. Convergence analysis of a proximal-like minimization algorithm using bregman functions.
SIAM Journal on Optimization, 1993.

Francesco Orabona. A modern introduction to online learning. arXiv:1912.13213, 2019.

	Proof of Theorem 1
	Details of the Result in Section 4.4
	A Practical Generalized FGD algorithm.

