Appendix: Future Gradient Descent for Adapting the Temporal Shifting Data Distribution in Online Recommendation Systems

¹The University of Texas at Austin.

²The University of Illinois at Urbana-Champaign.

³Meta.

Extra Notation We introduce several new notations for the appendix. We use $\langle \cdot, \cdot \rangle$ to denote the inner product between two vectors and use \circ to denote the entrywise product.

1 PROOF OF THEOREM 1

Proof. We start with a simple decomposition using the triangle inequality:

$$||u_{w,t}(\theta_t)|| \le ||u_{w,t}(\theta_t) - \bar{m}(\theta_t;t)|| + ||\bar{m}(\theta_t;t)||.$$

By the termination condition of Algorithm 2, we have $\|\bar{m}(\theta_t;t)\| \leq \delta$. Furthermore, it follows from (5) that

$$||u_{w,t}(\theta_t) - \bar{m}(\theta_t;t)|| = \frac{1}{w} ||\nabla r_t(\theta_t) - m(\theta_t;t)||.$$

Hence, we obtain

$$||u_{w,t}(\theta_t)||^2 \le \left(\delta + \frac{1}{w}||\nabla r_t(\theta_t) - m(\theta_t;t)||\right)^2 \le 2\delta^2 + \frac{2}{w^2}||\nabla r_t(\theta_t) - m(\theta_t;t)||^2.$$
(1)

This further implies that

$$\mathfrak{R}_w(T) = \frac{1}{T} \sum_{t=1}^T \|u_{w,t}(\theta_t)\|^2 \le \frac{2}{w^2 T} \sum_{t=1}^T \|\nabla r_t(\theta_t) - m(\theta_t; t)\|^2 + 2\delta^2, \tag{2}$$

and the main result follows from the fact that $\|\nabla r_t(\theta_t) - m(\theta_t;t)\|^2 \le \sup_{\theta} \|\nabla r_t(\theta) - m(\theta;t)\|^2$ for all $t \in [T]$. Furthermore, under the boundedness assumption, we have for all $t \in [T]$

$$\|\nabla r_t(\theta_t) - m(\theta_t; t)\|^2 \le (\|\nabla r_t(\theta_t)\| + \|m(\theta_t; t)\|)^2 \le 4M^2.$$
(3)

Hence, (2) also implies $\Re_w(T) \leq 8M^2/w^2 + 2\delta^2$, which leads to $\Re_w(T) = O(1/w^2)$ when $\delta = 1/w$.

2 DETAILS OF THE RESULT IN SECTION 4.4

Algorithm. Given θ_t , define $h_t(\phi) = \|\nabla r_t(\theta_t) - m(\theta_t; \phi, t)\|^2$ as a function of ϕ , where we view θ_t as a constant. Thus, if follows from that (2) that

$$\Re_w(T) \le \frac{2}{w^2 T} \sum_{t=1}^T h_t(\phi_t) + 2\delta^2.$$
 (4)

Algorithm 1 Generalized Future Gradient Descent for Smoothed Regret (simplified version for the theoretical study)

```
Input: The learning rate \eta, \eta_{\phi} for updating the model parameter \theta and \phi. Initialize \phi_1 = [1/b, ..., 1/b]. for t \in [T] do  \text{Deploy the prediction model } f_{\theta_t} \text{ with the parameter } \theta_t \text{ and collect the new dataset } D_t.  Construct the function h_t(\phi) = \|\nabla r_t(\theta_t) - m(\theta_t; \phi, t)\|^2  \phi_{t+1} = \frac{\phi_t \circ \exp(-\eta_{\phi} \nabla h_t(\phi_t))}{\|\phi_t \circ \exp(-\eta_{\phi} \nabla h_t(\phi_t))\|_1}.  \Rightarrow One step of Exponentiated gradient descent from \phi_t Initialize the model parameter \theta_{t+1}. while \|\bar{m}(\theta_{t+1}; \phi_{t+1}, t+1)\| \geq \delta do \theta_{t+1} = \theta_{t+1} - \eta \bar{m}(\theta_{t+1}; \phi_{t+1}, t+1). end while end for
```

Thus, our goal is to minimize $\sum_{t=1}^{T} h_t(\phi_t)$ in an *online* manner, since we can only access $h_t(\phi_t)$ after ϕ_t is chosen. To achieve this, we use the classic exponentiated gradient method to update ϕ_t . Specifically, for any $\phi = [a_1, \dots, a_b] \in S_b$, define the negative potential function $\psi(\phi) = \sum_{i=1}^{b} a_i \log a_i$ and its Bregman divergence

$$\mathcal{B}_{\psi}(\phi; \phi') = \psi(\phi) - \psi(\phi') - \langle \nabla \psi(\phi'), \phi - \phi' \rangle = \sum_{i=1}^{b} a_i \log \frac{a_i}{a_i'}.$$

Then ϕ_{t+1} is given by

$$\phi_{t+1} = \operatorname*{arg\,min}_{\phi \in S_b} \left(\langle \nabla h_t, \phi \rangle + \frac{1}{\eta_\phi} \mathcal{B}_\psi(\phi; \phi_t) \right) = \frac{\phi_t \circ \exp(-\eta_\phi \nabla h_t(\phi_t))}{\|\phi_t \circ \exp(-\eta_\phi \nabla h_t(\phi_t))\|_1},$$

where η_{ϕ} is the learning rate. See Section 6.6 in Orabona [2019] for the derivation of the last equality. Intuitively, $\frac{1}{\eta_{\phi}}\mathcal{B}_{\psi}(\phi;\phi_t)$ stabilizes the algorithm by ensuring that ϕ_{t+1} remains close to ϕ_t .

This simplified version of FGD is summarized in Algorithm 1. Note that when updating ϕ , we only use the last recommendation model θ_t .

Lemma 1. Suppose that we have $\|\nabla r_t(\theta)\| \leq M$ for all $\theta \in \Theta$ and t. Then $\|\nabla h_t(\phi)\|_{\infty} \leq 8M^2$ for all $\phi \in S_b$.

Proof. By definition, we have

$$h_t(\phi) = \|\nabla r_t(\theta_t) - \sum_{i=1}^b a_i \nabla r_{t-i}(\theta_t)\|^2 = \|\sum_{i=1}^b a_i (\nabla r_t(\theta_t) - \nabla r_{t-i}(\theta_t))\|^2,$$

where we used the fact that $\sum_{i=1}^{b} a_i = 1$. Direct computation shows that

$$\left| \frac{\partial h_t}{\partial a_i}(\phi) \right| = 2 \left| \left\langle \nabla r_t(\theta_t) - \nabla r_{t-i}(\theta_t), \sum_{j=1}^b a_j (\nabla r_t(\theta_t) - \nabla r_{t-j}(\theta_t)) \right\rangle \right|$$
 (5)

$$\leq 2\|\nabla r_t(\theta_t) - \nabla r_{t-i}(\theta_t)\| \left\| \sum_{j=1}^b a_j (\nabla r_t(\theta_t) - \nabla r_{t-j}(\theta_t)) \right\|$$
(6)

$$\leq 2(\|\nabla r_t(\theta_t)\| + \|\nabla r_{t-i}(\theta_t)\|) \left(\sum_{j=1}^b a_j(\|\nabla r_t(\theta_t)\| + \|\nabla r_{t-j}(\theta_t)\|)\right)$$
(7)

$$\leq 8M^2$$
, (8)

where we used Cauchy-Schwarz inequality in (6), the triangle inequality in (7) and the boundedness of the gradients in (8). Hence, we conclude that $\|\nabla h_t(\phi)\|_{\infty} \leq 8M^2$.

Proof of Theorem 2. Now we proceed to the proof of Theorem 2. This is a standard result in the online learning literature (see, e.g., Orabona [2019]). For completeness, we present the proof below.

Proof. As ψ is λ -strongly convex with $\lambda = 1$, we have

$$\mathcal{B}_{\psi}(\phi;\phi') \ge \frac{1}{2} \|\phi - \phi'\|_1^2.$$
 (9)

Throughout the proof, we slightly abuse the notation by writing $\eta_{\phi} = \eta$ and $\nabla h_t = \nabla h_t(\phi_t)$ for simplicity. Notice that by our update rule ϕ_{t+1} is given by

$$\phi_{t+1} = \underset{\phi \in S_b}{\operatorname{arg\,min}} \left(\eta \langle \nabla h_t, \phi \rangle + \mathcal{B}_{\psi}(\phi; \phi_t) \right).$$

From the first-order optimality condition, we get for any $\phi \in S_b$,

$$\langle \eta \nabla h_t + \nabla \psi(\phi_{t+1}) - \nabla \psi(\phi_t), \phi_{t+1} - \phi \rangle \leq 0$$

$$\Leftrightarrow \quad \eta \langle \nabla h_t, \phi_t - \phi \rangle \leq \eta \langle \nabla h_t, \phi_t - \phi_{t+1} \rangle + \langle \nabla \psi(\phi_{t+1}) - \nabla \psi(\phi_t), \phi - \phi_{t+1} \rangle$$

$$\Leftrightarrow \quad \eta \langle \nabla h_t, \phi_t - \phi \rangle \leq \eta \langle \nabla h_t, \phi_t - \phi_{t+1} \rangle - \mathcal{B}_{\psi}(\phi; \phi_{t+1}) + \mathcal{B}_{\psi}(\phi; \phi_t) - \mathcal{B}_{\psi}(\phi_{t+1}; \phi_t),$$

where we used the three-point equality [Chen and Teboulle, 1993] in the last inequality. Furthermore,

$$\eta \langle \nabla h_t, \phi_t - \phi_{t+1} \rangle - \mathcal{B}_{\psi}(\phi; \phi_{t+1}) \leq \eta \|\nabla h_t\|_{\infty} \|\phi_t - \phi_{t+1}\|_1 - \frac{1}{2} \|\phi_t - \phi_{t+1}\|_1^2
\leq \frac{\eta^2}{2} \|\nabla h_t\|_{\infty}^2 + \frac{1}{2} \|\phi_t - \phi_{t+1}\|_1^2 - \frac{1}{2} \|\phi_t - \phi_{t+1}\|_1^2
= \frac{\eta^2}{2} \|\nabla h_t\|_{\infty}^2.$$

Combining these two bounds, we have

$$\eta \langle \nabla h_t, \phi_t - \phi \rangle \leq \mathcal{B}_{\psi}(\phi; \phi_t) - \mathcal{B}_{\psi}(\phi; \phi_{t+1}) + \frac{\eta^2}{2} \|\nabla h_t\|_{\infty}^2.$$

Since $h_t(\phi)$ is convex in ϕ , we have $h_t(\phi_t) - h_t(\phi) \leq \langle \nabla h_t, \phi_t - \phi \rangle$ for any $\phi \in S_b$. By telescoping, we obtain

$$\begin{split} \sum_{t=1}^T (h_t(\phi_t) - h_t(\phi)) &\leq \sum_{t=1}^T \left\langle \nabla h_t, \phi_t - \phi \right\rangle \\ &\leq \frac{1}{\eta} \sum_{t=1}^T \left[\mathcal{B}_{\psi}(\phi; \phi_t) - \mathcal{B}_{\psi}(\phi; \phi_{t+1}) + \frac{\eta^2}{2} \|\nabla h_t\|_{\infty}^2 \right] \\ &= \frac{1}{\eta} (\mathcal{B}_{\psi}(\phi; \phi_1) - \mathcal{B}_{\psi}(\phi; \phi_{T+1})) + \frac{\eta}{2} \sum_{t=1}^T \|\nabla h_t\|_{\infty}^2 \\ &\leq \frac{1}{\eta} \log b + 32\eta M^4 T. \end{split}$$

where we used Lemma 8, $\mathcal{B}_{\psi}(\phi; \phi_{T+1}) \geq 0$ and $\mathcal{B}_{\psi}(\phi; \phi_1) = \psi(\phi) + \log b \leq \log b$ in the last inequality. Choosing $\eta = c\sqrt{(\log b)/(TM^4)}$ with some constant c > 0 leads to

$$\sum_{t=1}^{T} [h_t(\phi_t) - h_t(\phi)] \le O(M^2 \sqrt{T \log b}). \tag{10}$$

Algorithm 2 Generalized Future Gradient Descent for Smoothed Loss

```
Input: The learning rate \eta, \eta_{\phi} for updating the model parameter \theta and \phi. The initial trajectory buffer B.
for t \in [T] do
     Deploy the prediction model f_{\theta_t} with parameter \theta_t. Then collect the new dataset D_t.
                                                                                                            \triangleright Initialization of \phi_{t+1} is user-specific.
     Initialize the parameter of MFGG \phi_{t+1}.
     for Inner loop iteration k \in K do
                                                                                                                           ▶ Update the meta network.
          \textstyle \phi_{t+1} \leftarrow \hat{\phi}_{t+1} - \eta_{\phi} \sum_{\theta \in B} \nabla_{\phi} \|m(\theta; \phi_{t+1}, t) - \nabla r_t(\theta)\|^2.
                                                                                                      ⊳ May replace with the mini-batch version.
     end for
     Initialize the trajectory buffer B = \emptyset and model parameter \theta_{t+1}. \triangleright Initialization scheme of \theta_{t+1} is specified by user.
     while \|\bar{m}(\theta_{t+1}; \phi_{t+1}, t+1)\| \ge \delta do \triangleright Alternatively, we may run gradient descent with a fixed number of iterations.
          \theta_{t+1} \leftarrow \theta_{t+1} - \eta m(\theta_{t+1}; \phi_{t+1}, t+1).
                                                                                                       ▶ May replace with the mini-batch version.
                                                         \triangleright Alternatively, we may update the trajectory buffer B every a few iterations.
          B \leftarrow B \cup \{\theta_{t+1}\}
     end while
end for
```

Note that (10) holds for any $\phi \in S_b$. In particular, we can set $\phi = \phi^*$ defined by $\phi^* = \arg\min_{\phi \in S_b} \sum_{t=1}^T h_t(\phi)$. Therefore,

$$\begin{split} \sum_{t=1}^{T} h_{t}(\phi_{t}) &\leq \sum_{t=1}^{T} h_{t}(\phi^{*}) + O(M^{2}\sqrt{T\log b}) \\ &= \min_{\phi \in S_{b}} \sum_{t=1}^{T} \|\nabla r_{t}(\theta_{t}) - m(\theta_{t}; \phi, t)\|^{2} + O(M^{2}\sqrt{T\log b}) \\ &\leq \min_{\phi \in S_{b}} \sum_{t=1}^{T} \sup_{\theta} \|\nabla r_{t}(\theta) - m(\theta; \phi, t)\|^{2} + O(M^{2}\sqrt{T\log b}) = \min_{m \in \mathcal{M}} Q[T; m] + O(M^{2}\sqrt{T\log b}). \end{split}$$

We thus conclude from (4) that

$$\Re_w(T) \le \frac{2}{w^2 T} (\min_{m \in \mathcal{M}} Q[T; m] + O(M^2 \sqrt{T \log b})) + 2\delta^2.$$

3 A PRACTICAL GENERALIZED FGD ALGORITHM.

Compared with FGD in Algorithm 2, we use a smoothed version of MFGG \bar{m} for training, which is due to the consideration of minimizing a smoothed loss in (2). For completeness, we also summarize the practical algorithm of the generalized version of FGD in Algorithm 2.

References

Gong Chen and Marc Teboulle. Convergence analysis of a proximal-like minimization algorithm using bregman functions. *SIAM Journal on Optimization*, 1993.

Francesco Orabona. A modern introduction to online learning. arXiv:1912.13213, 2019.