
Accelerating Training of Batch Normalization: A Manifold Perspective

Abstract

Batch normalization (BN) has become a critical
component across diverse deep neural networks.
The network with BN is invariant to positively lin-
ear re-scaling of weights, which makes there exist
infinite functionally equivalent networks with dif-
ferent scales of weights. However, optimizing these
equivalent networks with the first-order method
such as stochastic gradient descent will converge
to different local optima owing to different gradi-
ents across training. To alleviate this, we propose
a quotient manifold PSI manifold, in which all the
equivalent weights of the network with BN are re-
garded as the same one element. We then construct
gradient descent and stochastic gradient descent
on the proposed PSI manifold. The two algorithms
guarantee that every group of equivalent weights
(caused by positively re-scaling) converge to the
equivalent optima. Besides that, we characterize
the convergence rate of the proposed algorithms
on PSI manifold and justify that they accelerate
training compared with the algorithms on the Eu-
clidean weight space. Empirical results show that
our algorithms can consistently achieve better per-
formances in the sense of both convergence rate
and generalization ability over various experimen-
tal settings.

1 INTRODUCTION

Batch normalization (BN) [Ioffe and Szegedy, 2015] is one
of the most critical innovations in deep learning, which ap-
pears to help optimization as well as generalization [Ioffe
and Szegedy, 2015, Santurkar et al., 2018]. Despite the
success of BN, there is one adverse effect in terms of op-
timization due to the positively scale-invariant (PSI) prop-
erty brought by it. The PSI property is explained as the

weights in each layer with BN are invariant to positively
linear re-scaling. Due to this, there can be an infinite number
of networks functionally equivalent to each other but with
various scales of weights. These networks can converge to
different local optima owing to different gradients [Cho and
Lee, 2017, Huang et al., 2017]. Then the converged point
may become sensitive to the scale of parameters. Hence, it
is desired to obviate this ambiguity of training.

To this end, we leverage the technique of optimization on
manifold [Absil et al., 2009, Cho and Lee, 2017, Huang
et al., 2017, Badrinarayanan et al., 2015]. We propose to con-
strain the scale-invariant weights of deep neural networks
with BN in a quotient manifold i.e. PSI manifold defined
in Section 4, in which all the positively scale-equivalent
weights are viewed as the same element. Constraining the
scale-invariant weights on the PSI manifold maintains the
representation ability of hypothesis space due to the PSI
property of network with BN. More importantly, optimizing
on the manifold avoids the training ambiguity caused by the
PSI property.

By constructing the Riemannian metric and retraction func-
tion on the PSI manifold [Boumal et al., 2019], we pro-
pose the gradient descent (GD), stochastic gradient descent
(SGD), and SGD with momentum on the manifold. We ab-
breviate the corresponding algorithms as PSI-GD, PSI-SGD,
and PSI-SGDM, respectively. Compared with vanilla GD
and SGD on the Euclidean weight space, the proposed al-
gorithms guarantee the equivalent scale-invariant weights
(caused by positively re-scaling) converge to the equivalent
local optima.

In contrast to the literature of optimizing network with BN
on manifold [Cho and Lee, 2017, Huang et al., 2017, Badri-
narayanan et al., 2015], we give the exact convergence rates
of PSI-GD and PSI-SGD. They are respectively converge in
the order of O(1/T ) and O(1/

√
T ) under the non-convex

and smooth assumptions, where T is the number of iter-
ations. The order of convergence rates match the optimal
results with fine-tuned learning rates [Ghadimi and Lan,

Submitted to the 38th Conference on Uncertainty in Artificial Intelligence (UAI 2022). To be used for reviewing only.



Figure 1: Batch normalized neural network with W = (1, · · · , 1)T . For a = (a1, a2, a3, a4) > 0, f(x,W ) =
f(x, Ta(W )).

2013] in non-convex optimization. However, the proposed
algorithms are actually training with adaptive learning rate,
which is adjusted according to the smoothness of loss func-
tion. The adaptive learning rate allows us to show the pro-
posed algorithms have better constant in the convergence
rates compared with their vanilla versions on the Euclidean
space.

To empirically study the proposed algorithms, we compare
PSI-SGD and PSI-SGDM with the other three baseline algo-
rithms. They are respectively vanilla SGD, adaptive learning
rate algorithm Adam [Diederik P. Kingma, 2015], and an-
other manifold based algorithm SGDG [Cho and Lee, 2017].
The experiments are conducted on image classification task
on datasets CIFAR and ImageNet [Krizhevsky and Hin-
ton, 2009, Deng et al., 2009]. We empirical observe the pro-
posed methods consistently improve the baseline algorithms
in the sense of both convergence rate and generalization
over various experimental settings. The observed acceler-
ated convergence rate and better generalization ability of
PSI-GD and PSI-SGD verify our theoretical justification
that the two method are able to find local minima with less
iterations.

2 RELATED WORKS

Optimization on Manifold. Absil et al. [2009] presents
an introduction and summarization to this topic. The founda-
tions and some recent theoretical results in this topic refers
to [Absil and Gallivan, 2006, Liu et al., 2017, Zhang and
Sra, 2016, Boumal et al., 2019]. Roughly speaking, opti-
mization on manifold converts the constrained problem into
an unconstrained problem on a specific manifold. Huang
et al. [2018], Lezcano-Casado and Martínez-Rubio [2019],
Casado [2019], Li et al. [2019] leverage the technique to
handle some explicit constraints to deep neural networks
e.g., orthogonal constraints. [Cho and Lee, 2017, Huang
et al., 2017] fix the ambiguity of optimizing network with
BN by manifold based algorithms (Grassmann and Oblique
manifold respectively). However, in contrast to this paper,

the theoretical results of their method are not explored. For
example, the convergence rate of their methods.

PSI property. Our method in this paper is build upon
PSI property brought by BN. The PSI property properly de-
fined in Section 4 are widely appears in modern deep neural
networks. For example, the network with ReLU activation
[Neyshabur et al., 2015] and the network with normalization
layer, e.g., batch normalization [Ioffe and Szegedy, 2015],
layer normalization [Ba et al., 2016] and group normaliza-
tion [Wu and He, 2018]. Arora et al. [2018], Wu et al. [2018]
use a similar theoretical framework as ours to show the net-
work with PSI property allows a more flexible choice of
the learning rate, and thus easier to be trained. However,
we design algorithm to avoid the optimization brought by
PSI property, and show the proposed methods can have
improved convergence rate.

Due to the PSI property, Li and Arora [2019] uses exponen-
tially increased learning rate for the network with BN to
handle implicit effect brought by weight decay. In contrast
to fixing the ambiguity of optimization by manifold based
methods, Neyshabur et al. [2015], Meng et al. [2018], Zheng
et al. [2019] re-parameterize the network by “path value”
and optimizing on the path value space.

3 BACKGROUND

3.1 PROBLEM SET UP

In this paper, we consider the deep neural network with the
following structure

f(x,W ) = BN(WLφ(BN(WL−1φ(· · ·φ(BN(W 1x)))))),
(1)

where φ(·) is the non-linear activation, andW l is the weight
matrix of the l-th layer. BN(·) operator in the equation
represents batch normalization [Ioffe and Szegedy, 2015]
layer, which normalizes every hidden output z = θTx

2



Figure 2: Gradient descent on Riemannian manifold.

across a batch of training samples as

BN(z) = γ
z − E(z)√

Var(z)
+ β = γ

θT (x− E(x))√
θTVarxθ

+ β, (2)

where γ and β are learnable affine parameters. The loss is

L(W , g) =
1

n

n∑
i=1

`(f(xi,W ), yi), (3)

across this paper, where {(xi, yi)} is the training set,
`(x, y) represents the loss function, and g are scale-
variant parameters i.e. γ and β in BN layer. Let W =
(w(1) · · · ,w(m)), the w(i) is the weight vector of the
i-th neuron. Then L(W , g) is positively scale-invariant
w.r.t. W . It means L(W , g) = L(Ta(W ), g) for any
Ta(W ) = (a1w

(1), · · · , amw(m)) with {ai > 0}. An il-
lustration for the PSI property of the network with BN refers
to Figure 1. Specially, let V be the normalized W which
means V = (w(1)/‖w(1)‖, · · · ,w(m)/‖w(m)‖). Then we
have L(V , g) = L(W , g).

It worth noting that our discussions below can be applied on
the top of any functions with PSI property e.g., ReLU neural
networks [Meng et al., 2018, Neyshabur et al., 2015]. How-
ever, we use NN with BN as a representation to illustrate
our conclusions.

3.2 OPTIMIZATION ON MANIFOLD

We briefly introduce some definitions of optimization on
the manifold, more details refers to Appendix A or [Absil
et al., 2009]. A Matrix ManifoldM is a subset of Euclidean
space that for any x ∈ M, there exists a neighborhood
Ux of x, such that Ux is homeomorphic to a Euclidean
space. The PSI parameters W can be defined on a matrix
manifold, e.g., Grassmann manifold or Oblique manifold
without losing model capacity [Cho and Lee, 2017, Huang
et al., 2017]. We propose a PSI manifold for them in this
paper. For any x ∈M, there is a tangent space TxM. For
any f(x) defined on M, there is a Riemannian gradient
gradf(x) ∈ TxM. After defining a retraction function

Rx(·) : TxM→M, it was shown in [Boumal et al., 2019]
that gradient descent on manifold (refers to Figure 2)

xt+1 = Rxt (−ηgradf(xt)) (4)

has the same convergence rate with vanilla gradient descent
in Euclidean space under various mild conditions.

4 PSI MANIFOLD

The optimization ambiguity of PSI parameters states as
follows. By chain rule,

∇w(i)L(W , g) = ai∇aiw(i)L(Ta(W ), g), (5)

so the two positively scale-equivalent pointsW and Ta(W )
with the same output converge to different local optima ow-
ing to the different gradients. In other words, gradient-based
algorithms in Euclidean space can not make two iterates
started fromW and Ta(W ) positively scale equivalent with
each other across the training. This makes the converged
point becomes sensitive the scale of weights. To alleviate
this, we construct a quotient manifold i.e., PSI manifold.
Constraining parameters in it avoids the training ambiguity
brought by the positively scale-invariant property.

4.1 CONSTRUCTION OF PSI MANIFOLD

A quotient manifold is induced by an equivalent relationship.
We formally formulate the positively scale-equivalence to
derive the PSI manifold with PSI parameters defined in it.

Definition 1 (Positively Scale-Equivalent). For a pair of
W ,W ′, they are positively scale-equivalent with each other,
if there exists a transformation Ta(·) such that W ′ =
Ta(W ).W ∼W ′ denotes the equivalence.

We can verify that the positively scale-equivalent ∼ is an
equivalent relationship. With the following proposition, we
construct the PSI manifold.

3



Proposition 1. For PSI parametersW , the positively scale-
equivalent relationship∼ induces a quotient manifoldM =
M/ ∼= Rd1 × · · ·Rdm/ ∼ named PSI manifold. Here di
is the dimension of w(i).

Following the proof of Proposition 3.4.6 in [Absil et al.,
2009], we get the conclusion.

Up till now, we formally defined the PSI manifold. Intu-
itively, all the parameters that are positively scale-equivalent
with each other in the Euclidean space are viewed as the
same element in the PSI manifoldM. Then, we can define
the PSI parameters directly in the manifold without losing
the representation ability of the model.

The PSI manifold is proposed to alleviate the ambiguity of
optimization brought by the PSI property. To this end, we
can optimize the PSI parameters directly in the PSI manifold,
since all the positively scale-equivalent parameters are the
same point in it. But (4) implies that optimization on PSI
manifold requires the formulation of Riemannian gradient
and retraction function on it. The following proposition
defines a Riemannian metric in the PSI manifold, which
formulates the Riemannian gradient (See this Definition in
Appendix A).

Proposition 2. The Riemannian metric 〈·, ·〉W in the PSI
manifold can be defined as

〈Ξ1,Ξ2〉W =

m∑
i=1

〈ξ(i)
1 , ξ

(i)
2 〉

‖w(i)‖2
, (6)

for every W ∈ M 1 and Ξ1,Ξ2 ∈ TWM, where Ξk =

(ξ
(1)
k , · · · ξ(m)

k ).

The proof of this Proposition is in Appendix B.1. With the
Riemannian metric, we can exactly compute the Riemannian
gradient on the PSI manifold. According to Definition of
Riemannian gradient in Appendix A, we have

gradw(i)L(W , g) = ‖w(i)‖2∇w(i)L(W , g) (7)

for each w(i). The retraction function RW (·) is also re-
quired to derive gradient-based algorithms on the PSI mani-
fold.

Proposition 3. A retraction function RW (Ξ) on the PSI
manifold can be defined as

RW (Ξ) = W + Ξ (8)

for everyW ∈M,Ξ ∈ TWM.

The proof of this proposition appears in Appendix C.1. Now
we are ready to optimize PSI parameters in the PSI manifold
directly, which avoids the ambiguity of training brought by
PSI property.

1Please note that for any Ta(W ) andW are view as the same
element in the PSI manifoldM. HereW is a representation from
the elements {Ta(W ) : ai > 0}.

4.2 OPTIMIZATION ON THE PSI MANIFOLD

In this subsection, we give the update rules of GD, SGD, and
SGD with momentum on the PSI manifold, abbreviated as
PSI-GD, PSI-SGD, and PSI-SGDM respectively. We show
that all of these update rules on the PSI manifold generate
a unified optimization path for parameters that positively
scale-equivalent with each other.

Combining equation (4) and Proposition 2, 3, we have the
following update rule of GD

w
(i)
t+1 = R

w
(i)
t

(
−η

w
(i)
t

grad
w

(i)
t
L(W t, gt)

)
= w

(i)
t − ηw(i)

t
‖w(i)

t ‖
2∇

w
(i)
t
L(W t, gt),

(9)

SGD

w
(i)
t+1 = R

w
(i)
t

(
−η

w
(i)
t

grad
w

(i)
t
L̂(W t, gt)

)
= w

(i)
t − ηw(i)

t
‖w(i)

t ‖
2G

w
(i)
t

(W t, gt),
(10)

and SGD with momentum

u
(i)
t+1 = R

ρu
(i)
t

(
−η

w
(i)
t

grad
w

(i)
t
L̂(W t, gt)

)
= ρu

(i)
t − ηw(i)

t
‖w(i)

t ‖
2G

w
(i)
t

(W t, gt);

w
(i)
t+1 = R

w
(i)
t

(
u

(i)
t+1

)
= w

(i)
t+1 + u

(i)
t+1.

(11)

for PSI parameters. Here

grad
w

(i)
t
L̂(W t, gt) = ‖w(i)

t ‖
2G

w
(i)
t

(W t, gt)

= ‖w(i)
t ‖

2∇
w

(i)
t

1

S

S∑
k=1

∇
w

(i)
t
` (f(xk,W t), yk)

(12)
for a batch of {(x1, y1), · · · , (xS , yS)} is an unbiased es-
timation to the Riemannian gradient. In addition, the up-
date rules of non-scale-invariant parameters g follows the
gradient-based algorithms in Euclidean space.

One can justify that the proposed algorithms on PSI man-
ifold are essentially using adaptive learning rates decided
by ‖w(i)

t ‖2 to match the gradient scale brought by a vari-
ant of weight scale. The following proposition shows the
well-posedness of the algorithms on PSI manifold.

Theorem 1. For two positively scale-equivalent weights
W 0 and Ta(W 0), let W t, Ŵ t be t-th iterate of
PSI-SGDM respectively started from {W 0,U0} and
{Ta(W 0), Ta(U0)}. Then we have Ŵ t = Ta(W t).

This theorem can be easily generalized to PSI-GD and PSI-
SGD; the proof of it is in Appendix C.1. The conclusion
shows that the iterates generated by the update rules on
the PSI manifold are equivalent with respect to applying
Ta(·). Hence, optimizing on the PSI manifold avoids the
optimization ambiguity brought by the PSI property. The
complete algorithm of PSI-SGDM refers to Algorithm 1.
With ρ = 0, the PSI-SGDM degenerates to PSI-SGD.

4



Algorithm 1 SGD with momentum on the PSI manifold
(PSI-SGDM).

Input: Training steps T ; batch size S; momentum parameters
ρ; learning rate η

w
(i)
t

and ηgt
.

for t = 0 · · ·T − 1 do
Sampling a batch of data {(x1, y1), · · · , (xS .yS)} from
training set
for i = 1, · · · ,m do
u

(i)
t+1 =

ρu
(i)
t − ηw(i)

t
‖w(i)

t ‖2 1
S

∑S
k=1∇w

(i)
t
` (f(xk,W t), yk)

w
(i)
t+1 = w

(i)
t+1 + u

(i)
t+1

end for
gt+1 = gt − ηgt

∑S
k=1∇gt

` (f(xk,W t), yk)
end for
return (W T , gT )

Remark 1. The update rule of SGD with momentum on
manifold [Cho and Lee, 2017, Liu et al., 2017] involves the
parallel transformation to make sure theU t+1 locates in the
tangent space TW t

M. However, it requires the proposed
retraction in Proposition 3 to be an exponential retraction
map [Absil et al., 2009], which may fails in-practical. Hence,
we heuristically propose the PSI-SGDM without verifying
the retraction function. Even though, our method is well-
defined to positively scale-transformation.

5 OPTIMIZATION ON THE PSI
MANIFOLD ACCELERATES
TRAINING

In this section, we give the convergence rates of PSI-GD and
PSI-SGD. Furthermore, we show that they accelerate train-
ing compared with vanilla GD and SGD on the Euclidean
space.

5.1 CONVERGENCE RATES OF OPTIMIZATION
ON THE PSI MANIFOLD

We give the convergence rates of PSI-GD and PSI-SGD
(Algorithm 1) in this subsection. For the PSI parameters,
let V t = (w

(1)
t /‖w(1)

t ‖, · · · ,w
(m)
t /‖w(m)

t ‖), we involve
the following assumption to characterize the smoothness of
normalized parameters∥∥∇2

v(i)v(j)L(V , g)
∥∥

2
≤ Lvv

ij ,∥∥∥∇2
v(i)gL(V , g)

∥∥∥
2
≤ Lvg

i ,∥∥∇2
gL(V , g)

∥∥
2
≤ Lgg.

(13)

Here ‖ · ‖2 is the spectral norm of matrix, it represents the
Lipschitz constant of gradient. For PSI-SGD, we further

assume the bounded variance:

E
[∥∥∥G

w
(i)
t

(W t, gt)−∇w
(i)
t
L(W t, gt)

∥∥∥2
]
≤ σ2;

E
[∥∥∥Ggt

(W t, gt)−∇w
(i)
t
L(W t, gt)

∥∥∥2
]
≤ σ2.

(14)

Remark 2. One may figure out that due to (5), the upper
bound (14) can not hold as ‖wi‖ goes to zero. However,
due to Lemma 1 below, the weights wi obtained by GD or
SGD will never goes to zero. Thus the bounded variance
(14) is reasonable in this regime.

Let L(W ∗, g∗) = infW ,g L(W , g), we have the following
two Theorems to give the convergence rates of PSI-GD and
PSI-SGD.

Theorem 2. Let {W t, gt} be the iterates of PSI-GD (9),
then we have

min
0≤t<T

‖∇V t,gt
L(V t, gt)‖

2 ≤ 2L̃(L(W 0, g0)− L(W ∗, g∗))

T
(15)

by choosing η
(i)
wt = 1/L̃v(i) and ηgt

= 1/L̃g. Here
L̃ = max{L̃v(1) , · · · , L̃v(m) , L̃g}, where L̃v(i) = Lvg

i +∑m
j=1 L

vv
ij ; L̃g = mLgg +

∑m
i=1 L

vg
i .

Theorem 3. Let {W t, gt} be the iterates of PSI-SGD (10),
then we have

min
0≤t<T

E
[
‖∇V t,gt

L(V t, gt)‖
2] ≤ 2L̃(L(W 0, g0)− L(W ∗, g∗))√

T

+
σ2L̃

2
√
T

m∑
i=1

(
1

L̃g

+
1

L̃v(i)

)
,

(16)
by choosing η

w
(i)
t

= 1
L̃

v(i)

√
T

and ηgt
= 1

L̃g

√
T

, where

L̃, L̃v(i) and L̃g are defined in Theorem 2.

The proofs of the two theorems are respectively referred to
Appendix D.3 and D.4. We see the convergence rates of PSI-
GD and PSI-SGD are respectively O(1/T ) and O(1/

√
T ).

One can note the convergence rate is about the gradient
with respect to normalized parameters V t. But equation (5)
implies

‖∇W t,gt
L(W t, gt)‖

2 =

m∑
i=1

1

‖w(i)
t ‖2

∥∥∥∇
v
(i)
t ,gt

L(V t, gt)
∥∥∥2

+ ‖∇gt
L(V t, gt)‖

2

≤ ‖∇V t,gt
L(V t, gt)‖

2 ,
(17)

if ‖w(i)
t ‖2 ≥ 1 for 1 ≤ i ≤ m. Thus we can get the

corresponded convergence rates of PSI-GD and PSI-SGD.
They match the optimal results with well tuned learning
rates in the Euclidean space [Ghadimi and Lan, 2013]. The
following lemma shows that the ‖w(i)

t ‖2 keeps increasing
across training for gradient-based algorithms.

5



Lemma 1 (Lemma 2.4 in [Arora et al., 2018]). For any PSI
weight w(i), w(i) and ∇w(i)` (f(xk,W ), yk) are perpen-
dicular for any (xk, yk). On the other hand∥∥∥w(i) + ηw(i)∇w(i)` (f(xk,W ), yk)

∥∥∥2

=
∥∥∥w(i)

∥∥∥2

+ η2
w(i) ‖∇w(i)` (f(xk,W ), yk)‖2 .

(18)

Thus, ‖w(i)
t ‖2 ≥ 1 holds, if ‖w(i)

0 ‖2 ≥ 1. Since the network
is usually initialized by w(i) ∼ N (0, 2/

√
di) [He et al.,

2015], ‖w(i)
0 ‖2 ≈ 2 with high probability. Hence, we can

conclude
∥∥∇W t,gt

L(W t, gt)
∥∥2 ≤

∥∥∇V t,gt
L(V t, gt)

∥∥2
.

We will show the inequality and the increasing ‖w(i)
t ‖2 is

the reason for the acceleration of the algorithms on PSI
manifold.

5.2 WHY OPTIMIZATION ON THE PSI
MANIFOLD ACCELERATES TRAINING

In this subsection, we show PSI-GD and PSI-SGD acceler-
ate training compared with their version on the Euclidean
space.

Roughly speaking, PSI parameters move towards a smoother
region (smaller gradient Lipschitz constant) across training,
since the gradient Lipschitz constant is in inverse ratio to the
weight scale which keeps increasing according to Lemma
1. Because a smoother region allows a larger learning rate,
gradually increasing learning rate accelerates training in this
regime. Fortunately, PSI-GD and PSI-SGD happen to be
vanilla GD and SGD with adaptive increasing learning rates
according to equation (9), (10) and (18).

To begin with, we verify the convergence rates of vanilla GD
and SGD. We assume a global smoothness for L(W , g),∥∥∇2

w(i)w(j)L(W , g)
∥∥

2
≤ Lww

ij ,∥∥∥∇2
w(i)gL(W , g)

∥∥∥
2
≤ Lwg

i ,∥∥∇2
gL(W , g)

∥∥
2
≤ Lgg.

(19)

The assumption is stronger than (13) since (13) only
involves the normalized parameters, thus Lvv

ij ≤
Lww
ij ;Lvg

i ≤ Lwg
i . We consider the update rule of GD

w
(i)
t+1 = w

(i)
t − ηw(i)

t
∇

w
(i)
t
L(W t, gt);

gt+1 = gt − ηgt
∇gt
L(W t, gt),

(20)

and SGD

w
(i)
t+1 = w

(i)
t − ηw(i)

t
G
w

(i)
t

(W t, gt);

gt+1 = gt − ηgt
Ggt

(W t, gt),
(21)

where G
w

(i)
t

(W t, gt) and Ggt
(W t, gt) are respectively un-

biased estimations of∇
w

(i)
t
L(W t, gt) and∇gt

L(W t, gt)

defined in equation (12). For SGD, we assume the two esti-
mators satisfy the bounded variance assumption (14).

The following two Theorems characterize the convergence
rate of GD and SGD.

Theorem 4. Let {W t, gt} updated by GD (20), by choos-
ing η(i)

wt = 1/L̃w(i) and ηgt
= 1/L̃g ,

min
0≤t<T

‖∇W t,gt
L(W t, gt)‖

2 ≤ 2L̃(L(W 0, g0)− L(W ∗, g∗))

T
.

(22)
Here L̃ = max{L̃w(1) , · · · , L̃w(m) , L̃g}, where L̃w(i) =

Lwg
i +

∑m
j=1 L

ww
ij ; L̃g = mLgg +

∑m
i=1 L

wg
i .

Theorem 5. Let {W t, gt} updated by SGD (21), then

min
0≤t<T

E
[
‖∇W t,gt

L(W t, gt)‖
2] ≤ 2L̃(L(W 0, g0)− L(W ∗, g∗))√

T

+
σ2L̃

2
√
T

m∑
i=1

(
1

L̃g

+
1

L̃w(i)

)
,

(23)
by choosing η

w
(i)
t

= 1
L̃

w(i)

√
T

and ηgt
= 1

L̃g

√
T

, where

L̃, L̃w(i) and L̃g are defined in Theorem 4.

The two convergence rates of ‖∇W ,gL(W , g)‖ match the
optimal results with well tuned learning rates [Ghadimi and
Lan, 2013]. Since Lvv

ij ≤ Lww
ij ;Lvg

i ≤ Lwg
i , the right

hand side in (22) is smaller than the one in (15). To see the
results for SGD, under (19), the upper bound in (16) can be
replaced by the smaller one of the upper bounds in (16) and
(23). Thus the convergence rate of PSI-SGD is also sharper
than the one of SGD.

On the other hand, equation (17) and the discussion
in the above section implies ‖∇W t,gt

L(W t, gt)‖2 ≤
‖∇V t,gt

L(V t, gt)‖2. Thus, from equation (17), one can
verify the proposed algorithms accelerate training in a fac-
tor ‖w(i)

t ‖2 ≥ 1 compared with the versions on Euclidean
space. In addition, ‖w(i)

t ‖2 keeps increasing to a bounded
constant across training, thus the acceleration is more sig-
nificant after a number of iterations. A detailed discussion
to ‖w(i)

t ‖2 is in Appendix E.

The proofs of the two theorems are delegated to Appendix
D.1 and D.2. In the proof, we see that scaling the learning
rate with 1/L̃w(i) and 1/L̃g are respectively the optimal
schedule of η

w
(i)
t

and ηgt
. Since smaller L̃w(i) and L̃g cor-

responds with a smoother loss landscapes, it explains that
L(W , g) allows a larger learning rate in a smoother region
to get the optimal convergence rate.

Now we are ready to illustrate the source of acceleration of
PSI-GD and PSI-SGD. Due to L(W , g) = L(Ta(W ), g),
we have

∇2
w(i)w(j)L(W , g) = aiaj∇2

aiw
(i)ajw

(j)L(Ta(W ), g);

∇2
w(i)gL(W , g) = ai∇2

aiw
(i)gL(Ta(W ), g).

(24)
The fact shows that the smoothness of PSI param-
eters increasing with its scale. Because a larger

6



Table 1: Performance of ResNet on various datasets. The ResNet for CIFAR and ImageNet are respectively the specific
structure for the corresponded dataset, more details about the structure refers to [He et al., 2016].

Dataset CIFAR-10
Algorithm SGD Adam SGDG PSI-SGD PSI-SGDM
ResNet20 91.14 89.90 91.38 92.25 92.41
ResNet32 91.32 90.40 92.48 93.56 93.30
ResNet44 91.95 91.02 92.99 93.90 93.39
ResNet56 92.19 91.49 93.11 94.08 93.90
Dataset CIFAR-100

ResNet20 65.53 63.35 68.19 69.11 68.41
ResNet32 67.41 64.43 70.13 70.81 70.14
ResNet44 67.72 65.03 71.32 71.94 72.03
ResNet56 68.02 65.77 71.46 72.88 72.40
Dataset ImageNet

ResNet18 67.72 68.16 68.97 70.38 69.42
ResNet34 71.30 70.68 72.40 73.31 72.88
ResNet50 73.46 74.00 74.67 74.67 75.11

a in the right hand side of the above results
in a smaller ‖∇2

aiw(i)ajw(j)L(Ta(W ), g)‖2 and
‖∇2

aiw(i)g
L(Ta(W ), g)‖2. Due to Lemma 1, the in-

creasing ‖w(i)
t ‖ implies the loss landscape of PSI

parameters becomes smoother across training. Thus,
gradually increasing the learning rate to update PSI
parameters can accelerate training. The proposed PSI-GD
and PSI-SGD are proven to be vanilla GD and SGD with
the increasing learning rate that is proportional to ‖w(i)

t ‖2,
which interprets the acceleration.

Finally, equation (24) shows that our algorithms are optimal
in the manner of leveraging the smoothness to accelerate
training. The intuition is that the proposed methods have a
more accurate estimation of local smoothness across train-
ing. We point out thatLvv

ij ≤ Lww
ij ;Lvg

i ≤ L
wg
i in equation

(19) also gives a sharper convergence rate of PSI-GD and
PSI-SGD.

6 EXPERIMENTS

6.1 IMPROVED CONVERGENCE RATE

We use a toy example to verify that our proposed algorithms
indeed have improved convergence rate compared with other
baselines methods.

Data. We sample 1000 training samples {xi} from 10-
dimensional normal distribution with its label yi = µ>xi +
εi for εi ∼ N (0, 1).

Setup. We use a toy neural network f(x) = w>1 φ(W2x)
with w1 ∈ R100, W2 ∈ R100×10, and the activation func-
tion φ(·) is ELU function. The training loss is MES loss.
We compare the convergence rates in terms of gradient
norm of the proposed algorithms PSI-SGD and PSI-SGDM
with three baselines algorithms. The benchmark optimiza-
tion algorithm SGD with momentum (abbrev. SGD); adap-

Figure 3: Convergence rates of gradient norm on a toy ex-
ample.

tive learning rate algorithm Adam [Diederik P. Kingma,
2015]; manifold based algorithm SGDG [Cho and Lee,
2017] which is applied to the network with BN.

Main Results. The convergence rates of gradient norm
are in Figure ??. As can be seen, the three manifold based
methods PSI-SGD, PSI-SGDM, SGDG exhibit improved
convergence rates compared other methods. However, we
still observe that PSI-SGD and PSI-SGDM are slightly bet-
ter than SGDG. More important is that in contrast to SGDG,
our algorithms have proved convergence rate. The toy exam-
ple verifies that our algorithms have improved convergence
rates compared with other methods.

6.2 EXPERIMENTS ON REAL-WORLD DATASET

In this section, we empirically study the proposed algorithms
PSI-SGD and PSI-SGDM on real-world dataset.

Data. We consider the image classification task on
three benchmark datasets.CIFAR10 and CIFAR100
[Krizhevsky and Hinton, 2009] are respectively colorful
images with 50K training samples and 10K validation sam-
ples from 10 and 100 categories. ImageNet [Deng et al.,
2009] are colorful images with 1M+ training samples from

7



Figure 4: Results of ResNet trained over various Algorithms on CIFAR10 and CIFAR100.

1K object classes.

Setup. The model is a unified structure ResNet with var-
ious structures. As in the above section, we compare our
methods with SGD, Adam, and SGDG. For PSI-SGD or
PSI-SGDM, the PSI parameters are updated by the two
algorithms, while the other parameters are updated by SGD.

We do not use the regularizer to the PSI weights e.g., l2-
regularizer in the loss function since it breaks the PSI prop-
erty of PSI weights. More experiments with regularized
refer to Appendix F.

For CIFAR we conduct 200 epochs of training for each
algorithm. The learning rate starts from 0.1 and decays by
a factor 0.2 at epochs 60, 120, and 160. For ImageNet,
the training is conducted for 100 epochs, and the learning
rate starts from 0.1 and decays by a factor 0.2 at epochs 30,
60, and 90. For the hyperparameters of baseline methods,
we grid search the learning rates in the range of {0.01, 0.1,
1.0} and {0.0001, 0.001, 0.01} respectively for SGD and
Adam, and the hyperparameters of SGDG follow the one
of [Cho and Lee, 2017]. The other hyperparameters of all
these methods are summarized in Appendix F.2.

It worth noting that the PSI weights updated by PSI-SGD
and PSI-SGDM may overflow after quite a number of itera-
tions. Hence, we normalize the PSI weights w(i) if ‖w(i)‖
is larger than 10000 during training. This operation will not
change the output of the model due to the PSI property.

Main Results. We report the test accuracy of each method.
The results refers to Table 1 and Figure 4. We have the fol-
lowing observations and conclusions from the experimental
results.

1. In Table 1, the model trained by manifold based meth-
ods i.e., SGDG, PSI-SGD and, PSI-SGDM generalize
better in most cases. this is due to the manifold based
algorithms can avoid quite a lot of local minima with
poor generalization, since they have a unified optimiza-
tion path for the parameters equivalent to each other.

Besides that, the proposed PSI-SGD and PSI-SGDM
are significantly better than SGDG, and the perfor-
mances of PSI-SGD and PSI-SGDM are comparable.
We speculate this is due to the sharper convergence

rate of PSI-SGD and PSI-SGDM allow them to find
local minima in less number of iterations.

2. Figure 4 show that the PSI-SGD and PSI-SGDM con-
verge faster than the three baselines after a certain
number of iterations i.e., after 120 epochs of update.
This justifies our theoretical results in Section 5, since
the acceleration is linearly with ‖w(i)

t ‖2 which is large
after a while of training (Lemma 1).

We present the results of training error instead of gra-
dient norm here because evaluating the gradient norm
requires implementing back propagations on all train-
ing data which brings a great extra computational effort,
especially for large scale dataset e.g., ImageNet.

We have one remark about the efficiency of our methods.
They are simple and efficient compared with SGDG, since
SGDG involves the operators like trigonometric functions in
the update rule. For example, the elapsed time of ResNet56
with respect to one-epoch training of CIFAR10 under SGD,
Adam, SGDG, PSI-SGD, and PSI-SGDM are respectively
16.98, 18.1, 26.6, 18.2, and 18.5 seconds. All the experi-
ments are conducted on a server with single NVIDIA V100
GPU.

7 CONCLUSION

In this paper, we fix the optimization ambiguity brought by
the PSI property of the network with BN. Our scenario is
built upon optimization on manifold by constructing a spe-
cific manifold and optimizing the PSI weights of the network
with BN in it. The developed gradient-based algorithms on
PSI manifold are shown to have a well-defined optimization
path with respect to positively equivalent rescaling.

We also give the convergence rates of the proposed methods.
Besides that, we theoretically justify that PSI-GD and PSI-
SGD accelerate training by a clever schedule of adaptive
learning rate.

Finally, we conduct various experiments to show that the
proposed methods have better performance in the generaliza-
tion and efficiency compared with the other three baselines.

8



REFERENCES

P-A Absil and Kyle A Gallivan. Joint diagonalization on the
oblique manifold for independent component analysis. In
2006 IEEE International Conference on Acoustics Speech
and Signal Processing Proceedings, volume 5, pages V–V.
IEEE, 2006.

P-A Absil, Robert Mahony, and Rodolphe Sepulchre. Op-
timization algorithms on matrix manifolds. Princeton
University Press, 2009.

Sanjeev Arora, Zhiyuan Li, and Kaifeng Lyu. Theoretical
analysis of auto rate-tuning by batch normalization. In
International Conference on Learning Representations,
2018.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton.
Layer normalization. arXiv preprint arXiv:1607.06450,
2016.

Vijay Badrinarayanan, Bamdev Mishra, and Roberto
Cipolla. Symmetry-invariant optimization in deep net-
works. arXiv preprint arXiv:1511.01754, 2015.

Nicolas Boumal, Pierre-Antoine Absil, and Coralia Cartis.
Global rates of convergence for nonconvex optimization
on manifolds. IMA Journal of Numerical Analysis, 39(1):
1–33, 2019.

Mario Lezcano Casado. Trivializations for gradient-based
optimization on manifolds. In Advances in Neural Infor-
mation Processing Systems, pages 9157–9168, 2019.

Minhyung Cho and Jaehyung Lee. Riemannian approach to
batch normalization. In Advances in Neural Information
Processing Systems, pages 5225–5235, 2017.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and
Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE conference on computer vision
and pattern recognition, pages 248–255. Ieee, 2009.

Jimmy Ba Diederik P. Kingma. Adam: A method for
stochastic optimization. In International Conference on
Learning Representations, 2015.

Saeed Ghadimi and Guanghui Lan. Stochastic first-and
zeroth-order methods for nonconvex stochastic program-
ming. SIAM Journal on Optimization, 23(4):2341–2368,
2013.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Delving deep into rectifiers: Surpassing human-level per-
formance on imagenet classification. In Proceedings of
the IEEE international conference on computer vision,
pages 1026–1034, 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Pro-
ceedings of the IEEE conference on computer vision and
pattern recognition, pages 770–778, 2016.

Lei Huang, Xianglong Liu, Bo Lang, and Bo Li. Projection
based weight normalization for deep neural networks.
arXiv preprint arXiv:1710.02338, 2017.

Lei Huang, Xianglong Liu, Bo Lang, Adams Yu, Yongliang
Wang, and Bo Li. Orthogonal weight normalization: So-
lution to optimization over multiple dependent stiefel
manifolds in deep neural networks. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 32,
2018.

Sergey Ioffe and Christian Szegedy. Batch normalization:
Accelerating deep network training by reducing internal
covariate shift. In International Conference on Machine
Learning, pages 448–456, 2015.

Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal,
Mikhail Smelyanskiy, and Ping Tak Peter Tang. On large-
batch training for deep learning: Generalization gap and
sharp minima. 2016.

Alex Krizhevsky and Geoffrey Hinton. Learning multiple
layers of features from tiny images. CIFAR, 2009.

Mario Lezcano-Casado and David Martínez-Rubio. Cheap
orthogonal constraints in neural networks: A simple
parametrization of the orthogonal and unitary group.
arXiv preprint arXiv:1901.08428, 2019.

Jun Li, Fuxin Li, and Sinisa Todorovic. Efficient rieman-
nian optimization on the stiefel manifold via the cayley
transform. In International Conference on Learning Rep-
resentations, 2019.

Zhiyuan Li and Sanjeev Arora. An exponential learning rate
schedule for deep learning. In International Conference
on Learning Representations, 2019.

Yuanyuan Liu, Fanhua Shang, James Cheng, Hong Cheng,
and Licheng Jiao. Accelerated first-order methods for
geodesically convex optimization on riemannian mani-
folds. In Advances in Neural Information Processing
Systems, pages 4868–4877, 2017.

Qi Meng, Shuxin Zheng, Huishuai Zhang, Wei Chen, Qiwei
Ye, Zhi-Ming Ma, Nenghai Yu, and Tie-Yan Liu. G-sgd:
Optimizing relu neural networks in its positively scale-
invariant space. In International Conference on Learning
Representations, 2018.

Behnam Neyshabur, Russ R Salakhutdinov, and Nati Srebro.
Path-sgd: Path-normalized optimization in deep neural
networks. In Advances in neural information processing
systems, pages 2422–2430, 2015.

9



Shibani Santurkar, Dimitris Tsipras, Andrew Ilyas, and
Aleksander Madry. How does batch normalization help
optimization? In Advances in Neural Information Pro-
cessing Systems, pages 2483–2493, 2018.

Xiaoxia Wu, Rachel Ward, and Léon Bottou. Wngrad:
Learn the learning rate in gradient descent. arXiv preprint
arXiv:1803.02865, 2018.

Yuxin Wu and Kaiming He. Group normalization. In Pro-
ceedings of the European conference on computer vision
(ECCV), pages 3–19, 2018.

Hongyi Zhang and Suvrit Sra. First-order methods for
geodesically convex optimization. In Conference on
Learning Theory, pages 1617–1638, 2016.

Shuxin Zheng, Qi Meng, Huishuai Zhang, Wei Chen, Neng-
hai Yu, and Tie-Yan Liu. Capacity control of relu neural
networks by basis-path norm. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 33, pages
5925–5932, 2019.

10



A RELATED DEFINITIONS OF OPTIMIZATION ON MANIFOLD

We give a brief introduction to optimization on manifold in this section. A summary of this topic can be referred to [Absil
et al., 2009]. This paper focuses on the matrix manifold which is a subspace of Euclidean space Rn. We start with the
definition of matrix manifold.

Definition 2 (Matrix manifold). A Matrix ManifoldM is a subset of Euclidean space Rn = Rm×p with any x ∈M has a
neighborhood Ux of x such that Ux is homeomorphic to a Euclidean space. In addition, for a given equivalent relation ∼ of
elements in the manifoldM, we use [x] to denote set {y ∈M : y ∼ x}. ThenM =M/ ∼= {[x] : x ∈M} is a quotient
manifold.2

Various spaces can be categorized into matrix manifold, e.g. Euclidean space, unit ball. For a manifoldM with x ∈ M,
there is a tangent space TxM which gives the tangential direction of x ∈ M. For matrix manifold, tangent space TxM
must be a linear space with finite dimension [Absil et al., 2009], it specifies the moving direction of a point in the manifold.
Since manifold can be non-linear space, the movement of a point x ∈M along a specific direction Ξ ∈ TxM is decided by
the retraction function Rx(·) : TxM :→M, which is defined as follows.

Definition 3 (Retraction). A retraction on a manifoldM is a smooth mapping Rx(·) : TxM :→M satisfies:

(1) Rx(0x) = x, where 0x denotes the zero element of TxM.

(2) Rx(·) satisfies

lim
t→∞

Rx(0x + tΞ)−Rx(0x)

t
= Ξ

for any Ξ ∈ TM.

For instance, the retraction function of Rn can be defined as Rx(Ξ) = x + Ξ; and for unit ball it can be written as
Rx(Ξ) = x+Ξ

‖x+Ξ‖ where Ξ ∈ TxM.

To obtain the gradient based optimization algorithms on manifold, we should give the definition of Riemannian gradient in
manifold. The following Riemannian metric derives the definition of corresponded gradient.

Definition 4 (Riemannian metric). For matrix manifold, Reimannian metric is an inner product 〈·, ·〉x of tangent space
TxM for any x ∈M. In addition, given a set of coordinate basis vector {Ei} of TxM, then for any Ξx and ζx, we have

〈Ξx, ζx〉x = Ξ̂
T

xGxζ̂x. (25)

Here Ξ̂x, ζ̂x are respective coordinates of Ξx and ζx under the coordinate basis vector {Ei}, and Gx = (g)ij where
gij = 〈Ei, Ej〉x.

Based on the Riemannian metric, the Riemannian gradient is defined as follows.

Definition 5 (Riemannian gradient). The Riemannian gradient of function f(·) defined in an open set containing manifold
M at x ∈M is the tangent vector gradf(x) belongs to TxM satisfies that

lim
t→∞

f(x+ tΞ)− f(x)

t
= 〈Ξx, gradf(x)〉x

for any Ξ ∈ TxM.

In fact, if function f(·) has gradient at point x, then we see

〈Ξx,∇f(x)〉 = lim
t→∞

f(x+ tΞx)− f(x)

t
= 〈Ξx, gradf(x)〉x

= ΞTxGxgradf(x).

(26)

Hence, we have gradf(x) = G−1
x ∇f(x) by the arbitrariness of Ξx.

Boumal et al. [2019] proves that for function f(·) defined on manifoldM with Lipschitz Riemannnian gradient3, gradient
descent in manifold

xt+1 = Rxt(−gradf(xt)) (27)

can convergence to a local minimum of f(·).
2Please notice we useM to represent quotient manifold whileM is the original manifold equipped with equivalent relationship.
3Which means there exist a positive number Lg satisfy ‖gradf(x)− gradf(y)‖ ≤ Lg‖x− y‖ for any x,y ∈M

11



B PROOFS IN SECTION 4

B.1 PROOF OF PROPOSITION 2

Proof. It is easily to verify that the function 〈·, ·〉W is an inner product for everyW ∈M. We notice that Ξ ∈ TWM is a
representation Ξ̄W ∈ TWM for someW ∈ π−1(W ). Similar to Example 3.5.4 in [Absil et al., 2009], we see different
representation of Ξ ∈ TWM satisfies that

Ξ̄Ta(W ) = Ta(Ξ̄W ). (28)

Then, combining equation (6), we can conclude that the Riemannian metric is well-defined to the choice of horizontal lift
Ξ̄W . Hence, we get the conclusion.

B.2 PROOF OF PROPOSITION 3

We need a Lemma to give the proof.

Lemma 2 (Proposition 4.1.3 in [Absil et al., 2009]). LetM =M/ ∼ be a quotient manifold and R̄ be a retraction onM
such that for all x ∈M any two x̄a, x̄b ∈ π−1(x) and ξ ∈ TxM,

π(R̄x̄a(ξ̄x̄a
)) = π(R̄x̄b(ξ̄x̄b

)). (29)

Here π(·) is a canonical projection fromM toM satisfies that π(x) = π(y) if and only if x ∼ y. ξ̄x̄a
, ξ̄x̄b

are respectively
tangent vector in Tx̄aM and Tx̄b

M. R̄·(·) is a retraction inM. Then

Rx(ξ) = π(R̄x̄(ξ̄x̄)) (30)

defines a retraction on quotient manifoldM.

With this Lemma, we now provide the proof of Proposition 3.

Proof of Proposition 3. According to the lemma 2, we only need to verify the conditions. First we notice that Ξ ∈ TWM
is a representation Ξ̄W ∈ TWM for someW ∈ π−1(W ). Similar to the Example 3.5.4 in [Absil et al., 2009], different
representation of Ξ ∈ TWM satisfies

Ξ̄Ta(W ) = Ta(Ξ̄W ). (31)

Hence we can choose
R̄W (Ξ̄W ) = W + Ξ̄W . (32)

Thus R̄W (·) is a retraction inM. Then, for any canonical projection π(·) there exist π(R̄W (Ξ̄W )) = π(R̄Ta(W )(Ξ̄Ta(W ))).
Hence, we get the conclusion.

C PROOFS IN SECTION 4.2

C.1 PROOF OF THEOREM 1

Proof. Since
∇w(i)L(W , g) = ai∇aiw(i)L(Ta(W ), g) (33)

due to the PSI property. Then, combining the update rule of PSI-SGDM (11), we have

U0
update−−−→ U1; Ta(U0)

update−−−→ Ta(U1)

W 0
update−−−→W 1; Ta(W 0) = Ŵ 0

update−−−→ Ŵ 1 = Ta(W 1).
(34)

By induction, we get the conclusion.

12



D PROOFS IN SECTION 5

D.1 PROOF OF THEOREM 4

Proof. By Taylor’s expansion, and condition of Lipschitz gradient

L(W t+1, gt+1)− L(W t, gt) =

∫ 1

0

〈∇W t,gt
L(W t + s∆W t, gt + s∆gt), (∆W t,∆gt)〉 ds

= 〈∇W ,gL(W t, gt), (W t, gt)〉

+

∫ 1

0

〈∇W t,gt
L(W t + s∆W t, gt + s∆gt)−∇W ,gL(W t, gt), (∆W t,∆gt)〉 ds

≤ 〈∇W ,gL(W t, gt), (W t, gt)〉+
1

2

m∑
i,j=1

Lww
ij

∥∥∥∆w
(i)
t

∥∥∥∥∥∥∆w
(j)
t

∥∥∥
+

m∑
i=1

Lwg
i

∥∥∥∆w
(i)
t

∥∥∥ ‖∆gt‖+
mLgg

2
‖ ‖∆gt‖

(35)

Thus,

L(W t+1, gt+1)− L(W t, gt) ≤ −
m∑
i=1

(
η
w

(i)
t

∥∥∥∇
w

(i)
t
L(W t, gt)

∥∥∥2

+ ηgt
‖∇gt

L(W t, gt)‖
2

)

+
1

2

m∑
i,j=1

Lww
ij

∥∥∥η
w

(i)
t
∇

w
(i)
t
L(W t, gt)

∥∥∥∥∥∥η
w

(j)
t
∇

w
(j)
t
L(W t, gt)

∥∥∥
+

m∑
i=1

Lwg
i

∥∥∥η
w

(i)
t
∇

w
(i)
t
L(W t, gt)

∥∥∥ ‖ηgt
∇gt
L(W t, gt)‖

+
mLgg

2
‖ηgt
∇gt
L(W t, gt)‖

2 .

(36)

Then, by Young’s inequality,∥∥∥η
w

(i)
t
∇

w
(i)
t
L(W t, gt)

∥∥∥∥∥∥η
w

(j)
t
∇

w
(j)
t
L(W t, gt)

∥∥∥ ≤ 1

2

(∥∥∥η
w

(i)
t
∇

w
(i)
t
L(W t, gt)

∥∥∥2

+
∥∥∥η

w
(j)
t
∇

w
(j)
t
L(W t, gt)

∥∥∥2
)

∥∥∥η
w

(i)
t
∇

w
(i)
t
L(W t, gt)

∥∥∥ ‖ηgt
∇gt
L(W t, gt)‖ ≤

1

2

(∥∥∥η
w

(i)
t
∇

w
(i)
t
L(W t, gt)

∥∥∥2

+ ‖ηgt
∇gt
L(W t, gt)‖

2

)
.

(37)

Then, we see

L(W t+1, gt+1)− L(W t, gt) ≤
m∑
i=1

(
−η

w
(i)
t

+
L̃w(i)

2
η2

w
(i)
t

)∥∥∥∇
w

(i)
t
L(W t, gt)

∥∥∥2

+

(
−ηgt

+
L̃g

2
η2
gt

)
‖∇gt

L(W t, gt)‖
2

≤ ‖∇LW t,gt
(W t, gt)‖

2 max
1≤i≤m

{(
−η

w
(i)
t

+
L̃w(i)

2
η2

w
(i)
t

)}
∧
(
−ηgt

+
L̃g

2
η2
gt

) (38)

where

L̃w(i) = Lwg
i +

m∑
j=1

Lww
ij ; L̃g = mLgg +

m∑
i=1

Lwg
i . (39)

Summing over equation (38) from 0 to T − 1, let 0 ≤ η
w

(i)
t
≤ 2/L̃w(i) , we get

L(wT , gT )− L(W 0, g0)

≤ min
0≤t<T

‖∇LW t,gt
(W t, gt)‖

2
T−1∑
t=0

max
1≤i≤m

{(
−η

w
(i)
t

+
L̃w(i)

2
η2

w
(i)
t

)}
∧
(
−ηgt

+
L̃g

2
η2
gt

)
.

(40)

We see the best selection of η
w

(i)
t

and ηgt
are respectively 1/L̃w(i) and 1/L̃g . By the value of η

w
(i)
t

and ηgt
, we get

min
0≤t<T

‖∇LW t,gt
(W t, gt)‖

2 max

{
1

2L̃w(i)

, · · · , 1

2L̃w(m)

,
1

2L̃g

}
≤ L(W 0, g0)− L(W ∗, g∗)

T
. (41)

Then we conclude the proof.

13



D.2 PROOF OF THEOREM 5

Proof. By conditions of Lipschitz gradient, we have

L(W t+1, gt+1)− L(W t, gt) ≤ −
m∑
i=1

(
η
w

(i)
t

∥∥∥∇
w

(i)
t
L(W t, gt)

∥∥∥2

+ ηgt
‖∇gt

L(W t, gt)‖
2

)

+
1

2

m∑
i,j=1

Lww
ij

∥∥∥η
w

(i)
t
G
w

(i)
t

(W t, gt)
∥∥∥∥∥∥η

w
(j)
t
G
w

(j)
t

(W t, gt)
∥∥∥

+

m∑
i=1

Lwg
i

∥∥∥η
w

(i)
t
G
w

(i)
t

(W t, gt)
∥∥∥ ‖ηgt

Ggt
(W t, gt)‖

+
mLgg

2
‖ηgt
Ggt

(W t, gt)‖
2 .

(42)

By Young’s inequality, taking expectation conditional in (W t, gt), we have

E
[∥∥∥η

w
(i)
t
G
w

(i)
t

(W t, gt)
∥∥∥ ∥∥∥η

w
(j)
t
G
w

(j)
t

(W t, gt)
∥∥∥]

≤ 1

2

(
E
[∥∥∥η

w
(i)
t
G
w

(i)
t

(W t, gt)
∥∥∥2
]

+ E
[∥∥∥η

w
(j)
t
G
w

(j)
t

(W t, gt)
∥∥∥2
])

=
1

2
η2

w
(i)
t

E
[∥∥∥G

w
(i)
t

(W t, gt)−∇w
(i)
t
L(W t, gt) +∇

w
(i)
t
L(W t, gt)

∥∥∥2
]

+
1

2
η2

w
(j)
t

E
[∥∥∥G

w
(j)
t

(W t, gt)−∇w
(j)
t
L(W t, gt) +∇

w
(j)
t
L(W t, gt)

∥∥∥2
]

a
=

1

2
η2

w
(i)
t

E
[∥∥∥G

w
(i)
t

(W t, gt)−∇w
(i)
t
L(W t, gt)

∥∥∥2

+
∥∥∥∇

w
(i)
t
L(W t, gt)

∥∥∥2
]

+
1

2
η2

w
(j)
t

E
[∥∥∥G

w
(j)
t

(W t, gt)−∇w
(j)
t
L(W t, gt)

∥∥∥2

+
∥∥∥∇

w
(j)
t
L(W t, gt)

∥∥∥2
]

≤ 1

2
η2

w
(i)
t

(
σ2 + E

[∥∥∥∇
w

(i)
t
L(W t, gt)

∥∥∥2
])

+
1

2
η2

w
(j)
t

(
σ2 + E

[∥∥∥∇
w

(j)
t
L(W t, gt)

∥∥∥2
])

,

(43)

where a is due to equation (14). Similarly, we have

E
[∥∥∥η

w
(i)
t
G
w

(i)
t

(W t, gt)
∥∥∥ ‖ηgt

Ggt
(W t, gt)‖

]
≤ 1

2
η2

w
(i)
t

(
σ2 + E

[∥∥∥∇
w

(i)
t
L(W t, gt)

∥∥∥2
])

+
1

2
η2
gt

(
σ2 + E

[
‖∇gt

L(W t, gt)‖
2]) , (44)

and
E
[
‖ηgt
Ggt

(W t, gt)‖
2] ≤ 1

2
η2
gt

(
σ2 + E

[
‖∇gt

L(W t, gt)‖
2]) . (45)

Fixing the randomness ofW t, gt, plugging equation (43), (44) and (45) into (42), then taking expectation, we get

E
[
L(W t+1, gt+1)

]
− L(W t, gt) ≤

m∑
i=1

(
−η

w
(i)
t

+
L̃w(i)

2
η2

w
(i)
t

)
E
[∥∥∥∇

w
(i)
t
L(W t, gt)

∥∥∥2
]

+

(
−ηgt

+
L̃g

2
η2
gt

)
E
[
‖∇gt

L(W t, gt)‖
2]+

σ2

2

(
η2
gt
L̃g +

m∑
i=1

η2

w
(i)
t

L̃w(i)

)
a

≤ − 1√
T

m∑
i=1

1

L̃w(i)

E
[∥∥∥∇

w
(i)
t
L(W t, gt)

∥∥∥2
]
− 1√

T L̃g

E
[
‖∇gt

L(W t, gt)‖
2]

+
σ2

2T

(
1

L̃g

+

m∑
i=1

1

L̃w(i)

)

≤ − 1√
T L̃

E
[
‖∇W t,gt

L(W t, gt)‖
2]+

σ2

2T

(
1

L̃g

+

m∑
i=1

1

L̃w(i)

)
,

(46)

where a is due to the value of η
w

(i)
t

and ηgt
, L̃ is max{L̃w(1) , · · · , L̃w(m) , L̃g}. Summing over from 0 to T − 1 of equation

(46), we get
T−1∑
t=0

1√
T L̃

E
[
‖∇W t,gt

L(W t, gt)‖
2] ≤ L(W 0, g0)− E [L(W T , gT )] +

σ2

2

m∑
i=1

(
1

L̃g

+
1

L̃w(i)

)
√
T (47)

14



Thus, we have(√
T

L̃

)
min

0≤t<T
E
[
‖∇W t,gt

L(W t, gt)‖
2] ≤ L(W 0, g0)− L(W ∗, g∗) +

σ2

2

m∑
i=1

(
1

L̃g

+
1

L̃w(i)

)
(48)

Then we get the conclusion.

D.3 PROOF OF THEOREM 2

Proof. By assumption (13) and PSI property, we have

L(W t+1, gt+1)− L(W t, gt) ≤ −
m∑
i=1

(
η
v
(i)
t

∥∥∥∇
v
(i)
t
L(V t, gt)

∥∥∥2

+ ηgt
‖∇gt

L(V t, gt)‖
2

)

+
1

2

m∑
i,j=1

Lvv
ij

∥∥∥η
v
(i)
t
∇

v
(i)
t
L(V t, gt)

∥∥∥ ∥∥∥η
v
(j)
t
∇

v
(j)
t
L(V t, gt)

∥∥∥
+

m∑
i=1

Lvg
i

∥∥∥η
v
(i)
t
∇

v
(i)
t
L(V t, gt)

∥∥∥ ‖ηgt
∇gt
L(V t, gt)‖

+
mLgg

2
‖ηgt
∇gt
L(V t, gt)‖

2 .

(49)

Here we use one fact that
‖w(i)‖‖w(j)‖∇2

w(i)w(j)L(W , g) = ∇2
v(i)v(j)L(V , g);

‖w(i)‖∇2
w(i)gL(W , g) = ∇2

v(i)gL(V , g).
(50)

Then follow the proof of Theorem 4, we get the conclusion.

D.4 PROOF OF THEOREM 3

Proof. By noticing that

L(W t+1, gt+1)− L(W t, gt) ≤ −
m∑
i=1

(
η
v
(i)
t

∥∥∥∇
v
(i)
t
L(V t, gt)

∥∥∥2

+ ηgt
‖∇gt

L(V t, gt)‖
2

)

+
1

2

m∑
i,j=1

Lvv
ij

∥∥∥η
v
(i)
t
G
v
(i)
t

(V t, gt)
∥∥∥∥∥∥η

v
(j)
t
G
v
(j)
t

(V t, gt)
∥∥∥

+

m∑
i=1

Lvg
i

∥∥∥η
v
(i)
t
G
v
(i)
t

(V t, gt)
∥∥∥ ‖ηgt

Ggt
(V t, gt)‖

+
mLgg

2
‖ηgt
Ggt

(V t, gt)‖
2 .

(51)

Following the proof of Theorem 5, we get the desired conclusion.

E UPPER BOUND TO ‖w(i)
t ‖2

In this section we respectively give an upper bound to ‖w(i)
t ‖2 for vanilla GD and SGD. The conclusions are similar to the

results in [Arora et al., 2018].

Proposition 4. For iterates in Theorem 4, we have

‖w(i)
t ‖

2 ≤ ‖w(i)
0 ‖

2 +
2(L(W 0, g0)− L(W ∗, g∗))

Lw(i)

, (52)

for any 0 ≤ t ≤ T and 1 ≤ i ≤ m.

15



Proof. From equation (38), we have

‖w(i)
t+1‖2 − ‖w

(i)
t ‖2

η2

w
(i)
t

=
∥∥∥∇

w
(i)
t
L(W t, gt)

∥∥∥2

≤ 2Lw(i)(L(W t, gt)− L(W t+1, gt+1)) (53)

for 1 ≤ i ≤ m. By the value of ηw(i) , we then have

L2
w(i)

(
‖w(i)

t+1‖
2 − ‖w(i)

t ‖
2
)
≤ 2Lw(i)(L(W t, gt)− L(W t+1, gt+1)). (54)

Summing over t from 0 to T − 1, we have

‖w(i)
T ‖

2 − ‖w(i)
0 ‖

2 ≤ 2(L(W 0, g0)− L(W ∗, g∗))

Lw(i)

. (55)

Then we get the conclusion due to the increasing property of ‖w(i)
t ‖2 with respect to t.

Proposition 5. For iterates in Theorem 5, we have

E
[
‖w(i)

t ‖
2
]
≤ ‖w(i)

0 ‖
2 +O

(
σ2

L̃w(i)

)
, (56)

for any 0 ≤ t ≤ T , and 1 ≤ i ≤ m.

Proof. From equation (46), we have

L̃w(i)TE
[
‖w(i)

t+1‖
2 − ‖w(i)

t ‖
2
]

= E
[∥∥∥G

w
(i)
t

(W t, gt)
∥∥∥2
]

= E
[∥∥∥G

w
(i)
t

(W t, gt)−∇w
(i)
t
L(W t, gt) +∇

w
(i)
t
L(W t, gt)

∥∥∥2
]

a
= E

[∥∥∥G
w

(i)
t

(W t, gt)−∇w
(i)
t
L(W t, gt)

∥∥∥2

+
∥∥∥∇

w
(i)
t
L(W t, gt)

∥∥∥2
]

b

≤ σ2 + E
[∥∥∥∇

w
(i)
t
L(W t, gt)

∥∥∥2
]

(57)

where a and b are due to equation (46). We then have

t∑
s=0

1

L̃w(i)

√
T
E
[∥∥∥∇

w
(i)
s
L(W s, gs)

∥∥∥2
]
≤ L(W 0, g0)− L(W ∗, g∗) +

t∑
s=0

σ2

2T

(
1

L̃g

+

m∑
i=1

1

L̃w(i)

)
. (58)

for any 0 ≤ t ≤ T due to equation (46), the monotonic decreasing of L(W t, gt) and the value of η
w

(i)
t

. Let

S
(i)
t =

t∑
s=1

1√
T
E
[∥∥∥∇

w
(i)
s
L(W s, gs)

∥∥∥2
]
≤ L̃w(i)(L(W 0, g0)− L(W ∗, g∗)) +

σ2L̃w(i)

2

(
1

L̃g

+
m∑
i=1

1

L̃w(i)

)
(59)

Summing over equation (57) with respect to t from 0 to T − 1, and combining the above equation, we conclude that

E
[
‖w(i)

T ‖
2 − ‖w(i)

0 ‖2
]
≤ σ2

L̃w(i)

+
S

(i)
T√
T

= O

(
σ2

L̃w(i)

)
. (60)

Thus, we get the conclusion due to the increasing property of ‖w(i)
t ‖2 with respect to t.

We respectively bound the ‖w(i)
t ‖2 for GD and SGD. Due to there is a scalar ‖w(i)

t ‖2 is in ‖∇wtL(W t, gt)‖, we conclude
that both PSI-GD and PSI-SGD accelerate training within a constant scalar.

16



Table 2: Performance of ResNet with regularizer on CIFAR10 and CIFAR100. The results in parenthesis are reported in
[He et al., 2016] and [Huang et al., 2017].

Dataset CIFAR-10 CIFAR-100
Algorithm SGD Adam SGDG PSI-SGD PSI-SGDM SGD Adam SGDG PSI-SGD PSI-SGDM
ResNet20 92.35(91.25) 90.89 91.99 92.49 92.70 68.62(67.72) 65.66 68.67 69.62 69.64
ResNet32 93.64(92.49) 91.83 92.53 93.75 93.80 70.67(69.38) 67.72 70.49 71.21 71.07
ResNet44 93.74(92.83) 91.85 93.30 94.15 93.92 71.31(70.05) 68.24 71.49 72.03 72.00
ResNet56 94.19(93.03) 91.78 93.37 93.98 93.99 72.44(70.93) 68.78 71.56 73.05 72.62

F MORE EXPERIMENTAL RESULTS

F.1 EXPERIMENTS WITH REGULARIZER

The experimental results in Section 6 are conducted without regularizer e.g. l2-regularizer. This is due to the regularizer
breaks the PSI property of PSI parameters. Even though, it is desired to verify the proposed method within loss with
regularizer.

Thus we conduct the experiments on CIFAR10 and CIFAR100 to see the performance of the proposed methods on the
loss with l2-regularizer. The settings follow Section 6 in the main part of the paper, expected for the loss has l2-regularizer 4.
The results refers to Table 2. We can observe from the result that adding regularizer significantly improve the performance of
SGD and Adam, while the improvement on the manifold based methods is incremental. Even though, optimization on PSI
manifold always finds minimum generalize better. We suggest this is because optimizing on the PSI manifold corresponds
with a larger learning rate, then the iterates are away from the initialized point. Hence they are able to find flatter minima
which is empirically observed to generalize better [Keskar et al., 2016].

Finally, all the experimental results refers to Figure 5 and 6.

F.2 HYPERPARAMETERS

The PSI parameters are updated by the various methods while non-PSI parameters are all updated by SGD. The hyperparam-
eters refers to Table 3.

Table 3: The hyperparameters of the experiments

Hyperparameters SGD Adam SGDG PSI-SGD PSI-SGDM
Learning Rate 0.1 0.001 0.2 1.0 0.1

Regularizer 0.0005 0.0005 0.1 0.0005 0.0005
Batch Size 128 128 128 128 128
Momentum 0.9 - - - 0.9

β1 - 0.9 - - -
β2 - 0.999 - - -

4The regularizer of SGDG follows the setting in [Cho and Lee, 2017].

17



Figure 5: Results of CIFAR10 on various structures of ResNet i.e. 20, 32, 44, 56. The first and the last two columns are
respectively obtained with or without regularizer.

18



Figure 6: Results of CIFAR100 on various structures of ResNet i.e. 20, 32, 44, 56. The first and the last two columns are
respectively obtained with or without regularizer.

19


	Introduction
	Related Works
	Background
	Problem Set Up
	Optimization on Manifold

	PSI Manifold
	Construction of PSI Manifold
	Optimization on the PSI manifold

	Optimization on the PSI Manifold Accelerates Training
	Convergence Rates of Optimization on the PSI Manifold
	Why Optimization on the PSI manifold Accelerates Training

	Experiments
	Improved Convergence Rate
	Experiments on Real-world Dataset

	Conclusion
	Related Definitions of Optimization on Manifold
	Proofs in Section 4
	Proof of Proposition 2
	Proof of Proposition 3

	Proofs in Section 4.2
	Proof of Theorem 1

	Proofs in Section 5
	Proof of Theorem 4
	Proof of Theorem 5
	Proof of Theorem 2
	Proof of Theorem 3

	Upper Bound to wt(i)2
	More Experimental Results
	Experiments with Regularizer
	Hyperparameters


