Predictive Whittle Networks for Time Series
Supplementary Material

Zhongjie Yu"!
Devendra Singh Dhami'*

Fabrizio Ventola*!

Martin Mundt'-2

Nils Thoma'

Kristian Kersting'2>3

1Department of Computer Science, TU Darmstadt, Darmstadt, Germany
2Hessian Center for Al (hessian.Al)
3Centre for Cognitive Science, TU Darmstadt

APPENDIX

We present supporting material and empirical evidence for
our main paper’s findings in this appendix. Specifically, the
appendix consists of the following sections. We summarize
here their content:

* Appendix [Al Whittle Likelihood and Whittle Net-
works. In this section we describe in more detail the
Whittle likelihood and the Whittle networks.

* Appendix B} Training Procedure. In this section we
provide a graphical representation of the predictive
Whittle networks training procedure which allows to
gauge predictive likelihoods to learn more accurate
forecasters in the spectral domain.

* Appendix [C} Short Time Fourier Transform. In this
section we describe the details of the short time Fourier
transform and its inverse operation.

 Appendix [D} Improving Spectral RNN. In this sec-
tion we describe the details of our SRNN implemen-
tation and the preliminary experiments we have con-
ducted to select the best SRNN architecture for predic-
tive Whittle networks.

* Appendix [Ef Conceiving the Spectral Transformer
(STransformer). In this section we provide additional
details on how we conceived the Spectral Transformer
that operates in the complex space and the related ex-
periments.

* Appendix [ Whittle Einsum Networks (WEin) Im-
plementation. In this section we describe the imple-
mentation of WEin, i.e. our adaptation of Einsum Net-
works to complex values, better suited to model Fourier
transform coefficients.

* Appendix [G} Data Sets. In this section we describe the
data sets we used in our experiments.

“Equal Contribution

 Appendix [H} Alternative Visualization of LLRS. In
this section we provide an alternative visualization of
the LLRS.

* Appendix [} Correlation Error. In this section we in-
troduce our method to quantitatively evaluate the qual-
ity of the predictive uncertainty estimated by predictive
Whittle networks.

* Appendix [ Experimental Setting and Model Ca-
pacity. Here we provide additional details on the ex-
perimental setting and on the capacity of the models
employed in the evaluation described in the main paper.

* Appendix [K} Whittle PC Predictions via MPE. Al-
though not as accurate as neural spectral forecasters,
in this section we show that Whittle PCs are able to
perform tractable forecasting via MPE inference.

A  WHITTLE LIKELIHOOD AND
WHITTLE NETWORKS

The Whittle likelihood models Gaussian stationary multi-
variate time series in the spectral domain. Following part of
the notations in|Yu et al.| [2021], let x;.; = {x!,...,x"V}
be N independent realizations of the p dimensional multi-
variate time series with length 7', and d,, , € CP the dis-
crete Fourier coefficient of the n*" sequence at frequency
A =2nk/T k=0,...,T —1:

T-1 .
o =T7' ) aa(t)e ™ (1)

Based on the Whittle approximation assumption [Whittle,
1953]], the Fourier coefficients are independent complex
normal random variables with mean zero:

di ~N(0,8), k=0,...,T—1, )

where S € CP*P is the spectral density matrix. For a
stationary time series, its spectral density matrix is defined
as:

Se=y_, _ T(ne ™", 3)
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where T'(h) = Cov(zy,xirpn) Vi, h € Z. The Whittle
likelihood of the NN realizations is defined as:

p(XlzN | SO:T—l) ~
HN HT—l 1 e—dfb,ksgldn,k' “4)
n=141Lk=0 7P |S}|

While the Whittle approximation holds asymptotically with
large T, the Whittle networks relax this approximation by
modeling all the Fourier coefficients jointly. With the above
relaxation, the Whittle networks are assumed to be able to
model both stationary and non-stationary time series.

B TRAINING PROCEDURE

As discussed in the main paper, predictive Whittle networks
are trained end-to-end in a co-ordinate descent fashion, en-
abling the Whittle PC to provide feedback to the neural
spectral forecaster (denoted as “NSF”). First, Whittle PC
weights are optimized by maximizing the likelihood of the
context with its ground truth prediction (Left), then, NSF
weights are optimized by employing the Whittle forecast-
ing loss. The Whittle forecasting loss is based on the NSF
predictions as well as the normalized Whittle likelihood
Lnorm obtained from the Whittle PC (Right). These steps
are iterated until convergence. A graphical representation
of the training procedure is shown in Fig. [I] Note that it
is also possible to train the Whittle PC with predictions in-
stead of using the ground truth. In this way, one can trade
model accuracy with the quality of the predictive uncertainty
quantification.

C SHORT TIME FOURIER
TRANSFORM

In the main document, we discuss the benefits of spectral
modeling of time series. To obtain a spectral representa-
tion of time series, in our work, we employ the short time
Fourier transform described in the following, together with
its inverse operation.

Given a time series X = [z, T2, - - - 7], denote x the 7"
window of x with width T),, and X, the STFT with all
frequencies from x¥. The k‘" frequency of X, is denoted
as Xﬁ, and is define as

T

g w(ST —t J:te_“\’“t,

t=1

)
where ; is the ¢ step in x, Ay = 2’:5 w(ST — t) is the
truncated Gaussian window function defined as

—=)), (6)

fs( ) — ~7:S ’LU

where n denotes the location of the window and o is a
learnable standard deviation.

Denote X% the corresponding inverse short time Fourier
transform (iSTFT) of X, and the ! step of X% is defined
as

> w(ST — ) F (X
Y e w(ST 1)

! is the t*" step from the inverse discrete Fourier

B =Fs H(Xe) = , (D)
where F,
transform

Tyw—1
1 ¢ -
FiX,) = = D Xk, ®)
w -0

D IMPROVING SPECTRAL RNN

With the aim of improving the SRNN presented in Wolter
et al.| [2020], we run preliminary experiments where we
compare four different architectures on the Power data set
and we examine the impact of our proposals. We test the
SRNN as introduced by Wolter et al.|[2020], then we add
residual connections to it and test performance. Furthermore,
we make the model deeper, keep residual connections, add
dropout with p = 0.1, and test SRNN with two and three
layers. To have a fair comparison, we choose the hidden
layer sizes for the four aforementioned configurations to
be 192, 192, 128, 96 respectively. In this way, each model
has approximately the same amount of parameters i.e. 600k
trainable parameters. Then, we train each model for 4k
iterations with batch size 256 (80 epochs) with five different
seeds and average the results. The results in Table [I] show
that residual connections have a remarkably positive impact
on the SRNN accuracy (in MSE) making the training also
slightly faster. Moreover, the addition of a second layer
with dropout results in a further improvement in forecasting
(best results in bold). However, a third layer in this setting
does not seem to be beneficial empirically. Therefore, for
predictive Whittle networks we employ the third architecture
i.e. the SRNN with residuals, dropout with p = 0.1, and 2
layers.

As a following step, we run additional experiments to test
whether operating with SRNN in the complex space could
be beneficial. Thus, we compare our SRNN on Power and
Retail (both data sets are described in the main manuscript)
by operating in the real and in the complex space. Table 2]
shows that operating in the complex space increases the
training times (in seconds) while providing only a marginal
improvement in terms of accuracy (in MSE). Therefore,
for predictive Whittle networks, we employ the SRNN that
operates in the real domain.

E CONCEIVING THE SPECTRAL
TRANSFORMER (STRANSFORMER)

In a spectral transformer architecture [Vaswani et al.| 2017],
analogously to SRNNSs, the time steps are considered over
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Figure 1: Predictive Whittle networks training procedure together with the Whittle forecasting loss (here denoted as “WFL”)
allows to gauge the predictive likelihoods provided by the Whittle PC to guide the training towards more accurate neural

spectral forecasting.

Table 1: Forecasting accuracy (in MSE) of four different SRNN architecture proposals on the Power data set. Results are
averaged over five runs with different seeds (best results in bold). Adding residual connections, dropout with p = 0.1, and a
second layer is beneficial, thus, we will use this architecture for predictive Whittle networks.

Test MSE [kWh] -10° | Training time (sec.)
SRNN 4.76 £0.076 309+ 11.0
SRNN + Residuals 4.32 £ 0.063 299 £ 10.8
2 Layers SRNN + Residuals 4.20 £ 0.068 357+ 13.0
3 Layers SRNN + Residuals 4.22 + 0.059 415+ 12.5

ns windows instead of over the whole sequence. Therefore,
it is possible to process long sequences without having to
limit the attention size as done e.g. in[Yang et al. [2020].
As an example, we consider the Power data set. With an
input length of 1440, full attention matrices over the input
sequences would have a size of 14402, In comparison, with
our STransformer operating in the spectral domain, the at-
tention matrices would have only size n? = 312, which is a
drastic reduction in the number of trainable parameters.

We compare the performance on the Power data set for
three different implementations of STransformer: 1) a (non-
complex) STransformer operating in the real space, 2) one
that “emulates” the complex space similarly to
3) our complex STransformer as proposed in the
main document. In this way, we can investigate whether
complex modeling is beneficial, and we can also examine
whether our proposed “native” modeling in the complex
space outperforms the “emulated” one. For the non-complex
STransformer, we applied the same transformations to the
input and the output as described for the SRNN in the main
document. All models are equipped with 8 attention heads,
a hidden dimension of 64, and a dropout with p = 0.5 and
have roughly 600% parameters. Compared to SRNNs, de-
spite their higher complexity, they need comparable training
times thanks to their parallelizability. In these experiments,
we train the models for 4k iterations with batch size 256
with five different seeds and we average the results. Table[3]
indicates that complex modeling is advantageous for trans-

formers (best results in bold). Remarkably, the complex
STransformer achieves higher accuracy than the alternatives
providing faster training compared to the “emulated” one.
While the complex STransformer requires approximately
50% more of the time necessary for the non-complex one,
the “emulated” complex STransformer requires about 275%
more than the non-complex one. This is due to the increased
amount of computations required by the “emulated” com-
plex multi-head attention implementation, which includes
eight computations of scaled dot-product attention. There-
fore, for predictive Whittle networks, we decide to employ
our complex STransformer, since it provides more accurate
forecasting with a relatively moderate increase in training
time compared to the non-complex STransformer, being
also faster and more accurate than the “emulated” one.

F WHITTLE EINSUM NETWORKS
(WEIN) IMPLEMENTATION

We have introduced WEin in the main body, and here we

present the details regarding the extension of the leaf layer
with multivariate Gaussian distribution and its optimization.

F.1 LEAF DISTRIBUTIONS

In EiNets, leaf distributions are represented in the form of
exponential families (EFs), for which the log-density of x is



Table 2: A comparison of the SRNN operating in the real and in the complex space on Power and Retail data sets.
When operating in the complex space, SRNN requires longer training times (in seconds) while providing only a marginal
improvement in terms of accuracy in MSE (best results in bold).

Power Retail
Test MSE [kWh] -10° Training time (sec.) | Test MSE [Sold Units] -10T Training time (sec.)
SRNN 4.20 + 0.068 357 +£13.0 2.45 £+ 0.053 394 +12.2
Complex SRNN 4.24 4+0.116 543 +24.5 2.41 + 0.097 593 £ 23.9

Table 3: Preliminary experiments on the Power data set show that complex modeling is advantageous for transformer
architectures (best results in bold). Compared to non-complex modeling, our complex STransformer improves forecasting
accuracy while requiring a moderate amount of additional time for training. The “emulated” complex STransformer is less
accurate than the complex STransformer and requires considerable additional time for training.

Test MSE [kWh] -10° | Training time (sec.)
STransformer 4.30 £0.074 407 £+ 15.3
Emulated Complex STransformer 4.25 £ 0.100 1481 £ 41.1
Complex STransformer 4.16 £ 0.069 617 £20.5

given by:
{(x) = log h(x) + T(x)"'© — A(O), )

where O are the natural parameters, T the sufficient statis-
tics, A the log-normalizer and h the base measure. By means
of this representation, one can model several common dis-
tributions e.g. Gaussian, Binomial, and Categorial [Peharz
et al 2020]. Furthermore, the representation in expecta-
tion form ¢ [Satol [1999]] enables the optimization of the
leaf parameters using EM on an abstract level, thus, being
independent of the actually employed leaf distribution.

In order to model the covariance matrix Yxr € R2%2 a5
described in |Yu et al.| [2021]], we employ a multivariate
Gaussian whose EF-form parameters are given by Nielsen
and Garcial [2009]]:

- 0, o Z*Iu
o-(3)-(5n)

T(x) :( o ) (11

XX
1 1 D
A(©) = Ztr(@gl@l@{) ~3 log |©2| + 3 logm, (12)

h(z) = (2m)" P72, (13)

with ¢r(-) denoting the trace of a matrix and D the number
of dimensions, in our case D = 2.

F.2 LEAF LAYER OPTIMIZATION

For an EiNet modeling log P(x) the optimization of the leaf
layer parameters ¢y, with respect to update ¢y, is given

by Peharz et al.|[2016]:

T
5y = Sen@)T() "
> pL()
while py, (z) is retrieved via auto-differentiation:
Odlog P 1 oP 1 0P
L= = = 5oL (9)

~ 9logL  PologL PoL

As mentioned above, we need to modify Eq. (T4) in order
to employ a multivariate Gaussian at the leaves. Model-
ing the covariance Y4 imposes the constraint of positive-
definiteness (PD) to Zd;; [De Iaco et al.l 2011]:

TSynz >0, V2 € RP, 2 £, (16)

which also enforces Ed;j to be symmetric. To ensure, that
this constraint holds during optimization, we do not learn
Ygp directly, but rather its Cholesky decomposition via a
lower-triangular matrix G. This approach has been used
regularly in various applications [Pourahmadi et al.,[2007,
Li and Au, 2019]. With £4» = GG” and diag(G) > 0,
Edgz is guaranteed to be PD [Highaml [1990]. Furthermore,
only ng = D+D(D —1)/2 parameters need to be modeled
(instead of D?). To update G, i.e. ¢/LD+1:D+”G in the expec-

tation parameters ¢y, = (4}, ..., T"¢), we calculate the

Cholesky Decomposition C'D(.) of the update ¢€+1‘D+D2:

1:D

L
e i Can
s ( CD($P PP’ A7) >

In order to apply CD to matrix A, A must be PD. As
. 2 . .. . .
P+1PHD s only guaranteed to be positive-semi-definite



(PSD), as we will show below, we add o/ with some small
a > 0, ensuring ¢€+1:D+"G + al to be PD, as the Identity
I is PD:

ZT(¢€+1:'D+nG + O(I)Z _

. (18)
zT¢7L)+1‘D+"Gz +azT12>0,VzeRP 2 #£0.

. 2
Now we can prove that ¢7 THP+P

PSD:

is guaranteed to be
2T gPHEPIne ;> 0 vz € RP. (19)

Proof. For simplicity, we omit the index 2+1P+D”:

1. Since 2TT(z)z = 2TaaTz = (T2)T2)T =

|zTx||3 > 0¥z € RP, T(x) is PSD.

2. AsL >0, P> 0and dlog(z) > 0, Va > 0 by defini-
tion, we know dlogP > 0 and dlogL > 0, therefore,
pr(z) > 0.

3. As multiplication with the scalar pr,(x) does not in-
fluence symmetry, we only need to prove Eq. (T9) to
show that py, (2)T(x) is PSD.

4, Since zTpp(x)T(x)z = pr(x)z'T(x)z and
2I'T(x)z > 0 as well as p(z) > 0, we have
2Tpr(2)T(z)z > 0 and, thus, pr,(z)T(x) is PSD.

5. Given PSD matrices A, B, it can be shown that A + B
is always PSD: 27 Az = 2T A2+ 2T Bz > 0 Vz € RP.
Therefore, also ) pr(x)T(z) PSD.

6. Since —~—— is a scalar, we can proceed as in step 4,
Zm pr ()

thus, ¢y, = SeEEE5E is PSD.

Finally, as mentioned previously, one can employ a stochas-
tic online version of EM [Sato, |1999]]. This requires the full
EM update to be replaced by gliding averages:

dL < (1= N)or + AL, (20)

with A € [0, 1] as step-size parameter. While it does not lead
to a guaranteed increase of the training likelihood in each
iteration, as full-batch EM, it typically leads to faster learn-
ing [Peharz et al., 2020]. As a last step, similarly to what
done in|Peharz et al.|[2020]], we project the variance, i.e., the
diagonal of X4, to a fixed variance interval [Omin, Omaz]-

G DATA SETS

The first data set is the Power consumption from the Euro-
pean Network of Transmission System Operators for Elec-
tricity, with a 15-minute sampling rate. We use the crawled
version made available by Wolter et al.|[2020]. Given 14
days of context, the network has to predict the power load
from noon to midnight of the following day (i.e., 1.5 days).
We choose a window size of 96, which corresponds to a full
day given the 15-minute sampling rate.

Secondly, we investigate the task of forecasting the Retail
demand, using data from a retail location of a big (national)
retailer, spanning over 2 years and including roughly 4000
different products with a daily sampling rate. Here, the task
is to predict six weeks of products demand given a year of
context. Since there is no sales data available for Sundays,
we filter them out, making a window size of 24 a reasonable
choice, i.e., spanning 4 weeks of data. Compared to the
Power, we deliberately use a smaller window size to verify
that our approach performs well with different window sizes.
Regarding the low-pass filter of STFT, we apply it with a
factor of 4 to the Power and with a factor of 2 to the Retail
data.

Third, we test the predictive power of our model on the well-
known challenging M4 data set. It consists of 100, 000 time
series of yearly, quarterly, monthly and other (weekly, daily
and hourly) data, which are divided into training and test
sets. We refer to Makridakis et al.|[2020] for more details of
the M4 data set and the M4 competition. Note that compared
with Power and Retail data sets, the M4 data set contains
time series with a much smaller length of context (x) and
future (y). The window sizes for each subset are 6 for yearly,
8 for quarterly, 18 for monthly, 14 for weekly, 14 for daily,
and 24 for hourly. Therefore, the window sizes in M4 be-
come much smaller, which contain fewer frequencies than
Power and Retail, thus, are less advantageous for spectral
modeling.

The step size of STFT is set to half of the window size for
both data sets.

H ALTERNATIVE VISUALIZATION OF
LLRS

To provide an alternative visualization of the LLRS in Fig. 4
of the main manuscript, we separate the predictions and
LLRS values into two subplots, and stack them vertically
for each data set. This is depicted in Fig. 2] In the top plots,
we present the predictions together with the ground truth. In
the bottom ones, we plot the LLRS scores as curves instead
of using bars.

I CORRELATION ERROR

To support the answer of (Q1) in the main body, that pre-
dictive Whittle networks can provide useful predictive un-
certainty estimates for time series forecasting, we further
introduce the correlation error (CE) as a method to obtain
a quantitative evaluation of the quality of the predictive
uncertainty estimated by predictive Whittle networks. To
provide a correlation error for the n*” test sequence, we first
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Figure 2: An alternative visualization of the LLRS for long-range predictions on Power and Retail data sets.

calculate a relative prediction error

n _
SP'r‘ed -

SE(y}E’red’ yg’T) — minm SE(y?red’ ygLT)
maxy, SE(YP,cq Yer) — ming, SE(YE, .0 Yér)
(21)
where S E denotes the squared error between the predicted
future y p,-.q and the ground truth y 7. Then, given a con-
text x we calculate a likelihood score:

ST — E(ygredb(n) — MaXy, é(ygredIXnL)
‘ minm g(ygred|xm) '

(22)

The square root is employed to take into account the ex-
ponential shape of the conditional Whittle log-likelihood
(CWLL), see Fig. 2 in the main paper. Given that the MSE
reflects the “ground truth” on where a sequence should be
placed in the spectrum from “bad” to “good” predictions, we
define the correlation error for the CWLL as the quadratic
distance of the scores

CE" = (Sprea — SE)2. 23)
where S%..,,5) € [0,1] by definition and, therefore,
CE™ € [0,1]. In order to better assess this novel score,
we provide a random baseline, which draws likelihood

scores randomly from a uniform distribution, i.e. Sp'
U(0,1).

~

To evaluate the correlation error, we compare predictive
Whittle networks (SRNN) equipped with a CWSPN or, as an
alternative, with a Masked Autoregressive Flow (MAF) [Pa{
pamakarios et al., 2017]], a state-of-the-art neural density
estimator. MAF is integrated into the predictive Whittle
networks architecture like CWSPN, therefore, it follows
the same training objective. We refer to this architecture
as SRNN-MAF. For each model, we train and report scores
by modeling in the spectral domain as well as in the time
domain. For CWSPN, modeling the time series in the time
domain degenerates to a CSPN [Shao et al.| 2020]. Fur-
thermore, we evaluate three different model sizes, Small,

Medium, and Large. The results and the number of trainable
parameters are given in Table 4]

In general, modeling in the spectral domain is more bene-
ficial than operating in the time domain, while improving
also parameter efficiency. This is more prominent for MAF.
Furthermore, SRNN-MAF achieves the best scores on larger
model sizes. In comparison, predictive Whittle networks are
particularly good with reduced model capacity. It is also im-
portant to remark that Whittle PCs, like CWSPNs, can natu-
rally answer to a wider range of probabilistic queries than
MAF. Additionally, during our experiments, we observed
that PWN equipped with CWSPN is also less sensitive to hy-
perparameter tuning. Overall, the correlation error obtained
with the different architectures is relatively low (i.e. good),
also on Retail which is a more difficult data set. Moreover,
all results are much better than the random baseline.

J EXPERIMENTAL SETTING AND
MODEL CAPACITY

In this section, we provide further details on the experimen-
tal setting of our evaluation described in Section 4.3 of the
main document.

We design the simple GRU [[Chung et al., 2014]], which op-
erates in the time domain, with 2 recurrent layers, an output
projection layer as well as 128 hidden units. For it, we pro-
vide the similar model capacity of the neural spectral fore-
casters used in the comparison (SRNN and STransformer)
i.e. roughly 900k parameters that is also similar to the model
size of the biggest predictive Whittle network variant (see
text below and Table [3). Similarly, all DeepAR [Salinas
et al.| 2020] models have around 1M parameters.

Regarding N-Beats, it is composed of different blocks specif-
ically designed for time series forecasting [Oreshkin et al.}
2019].. Since our architecture does not perform model ensem-
bling, for the comparison, we employ the N-Beats singleton
model and use a model configuration similar to its default
settings, with one generic, one seasonality, and one trend



Table 4: Test correlation error (lower is better) for different architectures modeling the time series in the time domain
(denoted with “7Time’) or in the spectral domain. A lower score indicates a stronger correlation between CWLL and MSE.
The results indicate that predictive Whittle networks can distinguish between “good” and “bad” predictions. Besides,
modeling in the spectral domain generally outperforms modeling in the time domain w.r.t. the correlation error, in particular
for MAF, where it considerably improves parameter efficiency. Furthermore, for smaller model sizes, predictive Whittle
networks achieve the best scores, while MAF is better for models with larger capacity.

Test Correlation Error

Power Retail
Small Medium Large | Small Medium Large
PWN-CWSPN 0.019 0.016 0.011 | 0.036 0.035  0.027
PWN-CSPN (Time) | 0.023 0.019 0.017 | 0.042 0.031  0.030
SRNN-MAF 0.045 0.026  0.011 | 0.044 0.033  0.023
SRNN-MAF (Time) | 0.093 0.058 0.051 | 0.047 0.045  0.029

Random 0.400 0.455

| #Parameters | 300k 900k  3M [ 30K 70K 200K |

Table 5: Model capacity in thousands of trainable parameters for each model for N-Beats and predictive Whittle networks.

M4 M4 “Others”
Power Retail | Yearly Quarterly Monthly | Weekly Daily Hourly

PWN (SRNN & CWSPN) 959 991 777 781 939 780 783 768
PWN (SRNN & WEin) 635 650 620 620 624 620 620 629
PWN (STran. & CWSPN) 921 953 739 743 901 742 745 731
PWN (STran. & WEin) 597 612 582 583 587 582 582 591
N-Beats 1,133 1,093 929 943 988 997 927 1,030
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Figure 3: Whittle PCs can also be employed for forecasting via MPE queries. Predictions with the LLRS from CWSPN and
WE:in on Power are on the left and for Retail on the right. The context has been cut for clarity. The predictions computed
with CWSPN are more accurate given its more discriminative nature.

block and T-degree of 4, 4, and 2 respectively. With three
blocks per stack, N-Beats results in approximately 1.1M
parameters on Power and Retail. On M4 the number of pa-
rameters ranges from 927k to 1M, since it depends on the
time series (e.g. yearly or monthly). While for predictive
Whittle networks, it ranges from 582k to 939k according
to the variants employed, where often the best performing
variant has remarkably fewer parameters than N-Beats and
the other competitors, like Informer with 11M parameters,
being more accurate (see Table 1 of the main paper). This
further demonstrates that our spectral hybrid architecture is
also more parameter efficient than models that operate in
the time domain.

Since the model capacity of predictive Whittle networks
and N-Beats might vary according to the specific set of time

series or to the variants employed, we report the model sizes
(in thousands of trainable parameters) in Table[5]

K WHITTLE PC PREDICTIONS VIA
MPE

In Table 1 of the main paper, we have also compared the
predictive power of the single components of our architec-
ture i.e. the neural spectral forecasters and the Whittle PCs.
The latter perform density estimation by learning the joint
distribution (pure generative setting as performed by WEin)
or the conditional distribution (more discriminative setting
as performed by CWSPN). This is a more general task than
forecasting. Nevertheless, although not as accurate as neural



forecasters, Whittle PCs can provide valuable predictions by
means of the most probable explanation query (MPE), given
the context x as partial observation. For this particular use
case, CWSPNs are more accurate than WEins. This is mo-
tivated by the more discriminative nature of its design and
objective i.e. to model the conditional distribution of the tar-
get (the future) y given the context x. As depicted in Fig.[3]
Whittle PCs provide good predictions for Power while they
are less accurate on predicting an irregular pattern such as
a spike on Retail (around time step 40). Moreover, when
employing MPE for predictions, the predictive uncertainty
estimated by the log-likelihood ratio score (LLRS) is rela-
tively low since the MPEs achieve a higher likelihood by
definition. Thus, this further motivates the need for a hybrid
architecture where the two components work in synergy to
provide accurate forecasts and useful predictive uncertainty
estimates.
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