
Principle of Relevant Information for Graph Sparsification (Supp. Material)

Shujian Yu1 Francesco Alesiani2 Wenzhe Yin3 Robert Jenssen1,5,6 Jose C. Principe4

1UiT - The Arctic University of Norway, Norway
2NEC Laboratories Europe, Germany

3University of Amsterdam, Netherlands
4University of Florida, USA

5Norwegian Computing Center, Norway
6University of Copenhagen, Denmark

A PROOFS AND ADDITIONAL INFORMATION

A.1 ADDITIONAL INFORMATION ON THE RIGOR OF ASSUMPTION 1

Assumption 1. Given an undirected graph G = {V,E}, let G′ = G + {u, v}, where V (G) = V (G′) and E(G) =
E(G′) ∪ {u, v}, we have SvN(LG′) ≥ SvN(LG), i.e., there exists a strictly monotonically increasing relationship between
the number of edges |G| and the von Neumann entropy SvN(LG).

Note that, one can find counterexamples about Assumption 1. The question of whether the factor dG′−2
dG′

can be removed from
Eq. (12) in Theorem 1 was investigated in [Dairyko et al., 2017]. The answer is negative and adding an edge may decrease
the von Neumann entropy slightly. For example, K2,n−2 graph (n > 5) satisfies SvN (K2,n−2) > SvN (K2,n−2 + e) after
adding edge e.

However, the Assumption 1 does hold for most of edges. To further corroborate our argument, we performed an additional
experiment, where we generated a set of random graphs with 20 nodes by the Erdös-Rényi (ER) model, with the average
node degree d̄ of roughly 1.6, 2.5, 3, 4 and 5, respectively. For each graph, we add one edge to the original graph and
re-evaluate the von Neumann entropy SvN(L). We traverse all possible edges and calculate the percentage that the difference
of SvN(L) is non-negative before and after edge addition. As can be seen from the following table, we have more than 85%
confidence that Assumption 1 holds. We made similar observations also for large graph with 200 nodes.

Table 1: The percentage that adding one edge may increase the von Neumann entropy for a random graph with 20 nodes generated by the
Erdös-Rényi (ER) model.

Degree 1.6 2.5 3 4 5

Percentage (%) 95.65 88.57 88.82 88.13 87.25

A.2 PROOF TO COROLLARY 1

Corollary 1. Under Assumption 1, suppose Gs = {Vs, Es} is a sparse graph obtained from G = {V,E} (by removing
edges), let G′

s = Gs + {u, v}, where {u, v} is an edge from the original graph G, V (Gs) = V (G′
s) and E(Gs) =

E(G′
s) ∪ {u, v}, we have DQJS(LG′

s
∥LG) ≤ DQJS(LGs∥LG), i.e., adding an edge is prone to decrease the QJS divergence.

Before proving Corollary 1, we first present Lemma 1, Lemma 2 and Lemma 3. The proof of Corollary 1 is based on the
results described in Lemma 3, which is based on the conclusion of Lemma 2. We present Lemma 1 as a more restrictive
version of Lemma 2.

Lemma 1. Let λ = {λi} be the eigenvalues of (trace normalized) Graph Laplacian L̃. Suppose the i-th eigenvalue λi has a
minor and negligible increase and the remaining eigenvalues decrease proportionately to their existing values, such that

Accepted for the 38th Conference on Uncertainty in Artificial Intelligence (UAI 2022).

mailto:yusj9011@gmail.com?Subject=Your UAI 2022 paper
mailto:francesco.alesiani@neclab.eu?Subject=Your UAI 2022 paper

∑
i λi = 1. Then, the total derivative of von Neumann entropy S(λ) = −

∑N
i=1 λi log2 λi with respect to λi is given by:

dS

dλi
=

∂S

∂λi
+

∑
i ̸=j

∂S

∂λj

dλj

dλi
= −S(λ) + log2 λi

1− λi
. (1)

Proof. For simplicity, suppose we increase the element λi up to the value λi + dλi for some infinitesimally small value dλi.
As we increase this element, we decrease all the other elements proportionately to their values so that the constraint holds.
Thus, for some infinitesimal value δ we update λ as:

λ1 7→ λ1(1− δ)

...
λi−1 7→ λi−1(1− δ)

λi+1 7→ λi+1(1− δ)

...
λN 7→ λN (1− δ)

or in general λj 7→ λj(1− δ), j ̸= i. Due to the constraint
∑

i λi = 1, or∑
j ̸=i

λj(1− δ) + λi + dλi = 1

(1− λi)(1− δ) + λi + dλi = 1

1− λi − (1− λi)δ + λi + dλi = 1

−(1− λi)δ + dλi = 0

thus we have:
δ = dλi/(1− λi). (2)

Then,
dλj

dλi
=
−λjδ

dλi
= − λj

1− λi
, j ̸= i. (3)

Therefore, the total derivative of von Neumann entropy S(λ) = −
∑N

i=1 λi log2 λi with respect to λi is given by:

dS

dλi
=

∂S

∂λi
+
∑
i ̸=j

∂S

∂λj

dλj

dλi

= −(1

ln 2
+ log2 λi) +

1

1− λi

∑
i ̸=j

λj

(
1

ln 2
+ log2 λj

)

= − (1− λi) log2 λi

1− λi
+

1

1− λi

∑
i ̸=j

λj log2 λj

= − 1

1− λi
{

N∑
i=1

−λi log2 λi + log2 λi}

= − 1

1− λi
{S(λ) + log2 λi}

(4)

In addition of the previous lemma, we show a more general form (without assuming that all other eigenvalues decrease
proportionately to their values).

Lemma 2. Let λ = {λi} be the eigenvalues of (trace normalized) Graph Laplacian L̃. Then, the directional total derivative
of von Neumann entropy S(λ) = −

∑N
i=1 λi log2 λi with respect to λi along a change in the eigenvalues defined by v such

that λ′ = λ+ δv, for δ → 0 is given by:

dS

dλi
|v =

∂S

∂λi
+

∑
j ̸=i

∂S

∂λj

dλj

dλi
|v

= − 1

vi

∑
j

vj log2 λj = −
1

vi
Ev log2 λ (5)

where
∑

j vj = 0 and 0 ≤ vj + λj ≤ 1 is the directional variation of the eigenvalues λ′ = λ+ δv. We denoted Ev the sum
over the element of v (i.e. Ev log2 λ =

∑
j vj log2 λj). In compact form (and with the abuse of the expectation operator)

dS

dλ
|v = −v−1 Ev log2 λ (6)

where the inverse of the vector v is element-wise.

Proof. We first observe that
dλj

dλi
|v =

δvj
δvi

=
vj
vi
, j ̸= i.

for the definition of the variation. Therefore, the total derivative of von Neumann entropy S(λ) = −
∑N

i=1 λi log2 λi with
respect to λi,along the direction v, is given by:

dS

dλi
|v =

∂S

∂λi
+
∑
j ̸=i

∂S

∂λj

dλj

dλi
|v

= −(1

ln 2
+ log2 λi)−

∑
j ̸=i

vj
vi

(
1

ln 2
+ log2 λj

)

= − 1

ln 2
− log2 λi −

1

vi

∑
j ̸=i

vj

(
1

ln 2
+ log2 λj

)
= − 1

ln 2
− log2 λi −

1

vi

∑
j ̸=i

vj
1

ln 2
− 1

vi

∑
j ̸=i

vj log2 λj

= − 1

ln 2
− log2 λi −

1

vi

−vi
ln 2
− 1

vi

∑
j ̸=i

vj log2 λj

= − 1

ln 2
− log2 λi +

1

ln 2
− 1

vi

∑
j ̸=i

vj log2 λj

= − log2 λi −
1

vi

∑
j ̸=i

vj log2 λj

= −vi
vi

log2 λi −
1

vi

∑
j ̸=i

vj log2 λj

= − 1

vi

∑
j

vj log2 λj

Lemma 3. Let λ = {λi} be the eigenvalues of (trace normalized) Graph Laplacian L̃ whose von Neumann entropy is
S(λ) = −

∑N
i=1 λi log2 λi. Let λ′ = λ+ v, such that

∑
i vi = 0 and 0 ≤ vj + λj ≤ 1 and S(λ′) ≥ S(λ), then

Ev log2 λ
′ ≥ Ev log2 λ (7)

and

v
dS

dλ
(λ′)|v ≤ v

dS

dλ
(λ)|v (8)

Proof. From the definition we consider v = λ′ − λ, thus, omitting the vector indices and using vector notation, where
operations are performed element-wise and sum is over the elements of the resulting vector:

Ev log2 λ =
∑
j

(λ′
j − λj) log2 λj

=
∑
j

λ′
j log2 λj −

∑
λj log2 λj

=
∑
j

λ′
j log2 λj + S(λ)

similarly

Ev log2 λ
′ =

∑
j

(λ′
j − λj) log2 λ

′
j

=
∑
j

λ′
j log2 λ

′
j −

∑
j

λj log2 λ
′
j

= −S(λ′)−
∑
j

λj log2 λ
′
j

the difference is

Ev log2 λ
′ − Ev log2 λ = −S(λ′)− S(λ)

−
∑
j

λj log2 λ
′
j −

∑
j

λ′
j log2 λj ≥ 0

which is the sum of two non-negative terms:

−S(λ)−
∑
j

λj log2 λ
′
j ≥ 0

−S(λ′)−
∑
j

λ′
j log2 λj ≥ 0

The last two inequalities follow from the property of the KL divergence, indeed we use the inequality D(p||q) =∑
i pi log2

pi

qi
= Ep log2 p− Ep log2 q = −H(p)− Ep log2 q ≥ 0.

Since for Lemma 2

dS

dλ
(λ)|v = −v−1 Ev log2 λ,

it follows from the first property (Ev log2 λ
′ ≥ Ev log2 λ) that

v
dS

dλ
(λ′)|v ≤ v

dS

dλ
(λ)|v

where the comparison is element wise, i.e.

vi
dS

dλi
(λ′)|v ≤ vi

dS

dλi
(λ)|v

Now, we present proof to Corollary 1.

Proof. Suppose the addition of an edge makes the i-th eigenvalue λi has a minor change ∆λi. By first-order approximation,
we have:

SvN

(
LG + LG′

S

2

)
− SvN

(
LG + LGS

2

)
≈ 1

2

dSvN(LḠ)

dλi
∆λi, (9)

and

SvN(LG′
S
)− SvN (LGS

) ≈ dSvN(LGs)

dλi
∆λi, (10)

in which dS
dλi

is the total derivative of von Neumann entropy S(λ) = −
∑N

i=1 λi log2 λi with respect to λi.

By Assumption 1, we have SvN(LḠ) ≥ SvN(LGs
). By applying Lemma 3, we obtain:

dSvN(LḠ)

dλi
∆λi ≤

dSvN(LGs)

dλi
∆λi. (11)

along the direction v = λ(LḠ) − λ(LGs
), where λ(LḠ) and λ(LGs) are the eigenvalues of the two normalized Graph

Laplacian matrices. We used the variation vi = ∆λi of Lemma 3.

Combining Eqs. (9) to (11), we get:

SvN

(
LG + LG′

S

2

)
− SvN

(
LG + LGS

2

)
≤ 1

2

(
SvN(LG′

S
)− SvN(LGS

)
)
.

(12)

Thus,

SvN

(
LG + LG′

S

2

)
− 1

2

(
SvN(LG′

S
) + SvN (LG)

)
≤ SvN

(
LG + LGS

2

)
− 1

2
(SvN(LGS

) + SvN (LG)) ,

(13)

which completes the proof.

A.3 ADDITIONAL INFORMATION AND PROOF TO THEOREM 4

Theorem 4. The gradient of Eq. (11) in the main manuscript with respect to edge selection vector w is:

∇wJGraph-PRI = Ug, (14)

where w̃ is the normalised w (w̃ = w/
∑M

i=1 wi), 1̃M = 1
M 1M is the normalized version of the all-ones vector. σ̄w =

1
2 (σ̃w + ρ̃) = 1

2B diag
(
w̃ + 1̃M

)
BT . g = −diag

(
BT [(1− β) ln σ̃w + β ln σ̄w]B

)
and U = {uij} ∈ RM×M , uij =

− w̃j

1−w̃i
,∀ij|i ̸= j, uii = 1.

Theorem 4 shows the closed-form gradient of the argument of Eq. (11) in the main manuscript. This gradient can be
used to reduce the computational or memory requirement to compute the gradient, as compared to the use of automatic
differentiation. It can also help in understanding the contribution of the gradient and design approximation of the gradient.
In Theorem 4, w is edge selection vector, while w̃ is its normalised version, i.e. w̃ = w/

∑M
i=1 wi. Similarly, 1̃M = 1

M 1M

is the normalized version of the all-ones vector. In Theorem 4, g is the gradient of the Von Neumann entropy with respect to
the normalized Laplacian matrix, while U is a matrix that normalizes the gradient with respect to the edge selection vector
values.

The gumbel-softmax distribution can be used on both H(G) and SvN(LG) and does not require the results of Theorem 4.

Proof of Theorem 4. Theorem 4 follows by definition of Eq. (10) in the main manuscript and substituting the definition of
Eq. (10) and the use of result from Theorem 5. The total derivative of the cost function w.r.t. to the normalized selection
vector w̃, is given by dJ

dwi
= ∂J

∂wi
+
∑

i̸=j
∂J
∂wj

dwj

dwi
. With the normalized selector vector, we have that

∑
k wk = 1 before

and after the change. If we consider, as in Lemma 1, wi → wi + δ and wj → wj(1 − γ), j ̸= i, then γ = δ
1−wi

and
dwj

dwi
= −γwj

δ = − wj

1−wi

Theorem 5. The gradient of the von Neumann entropy w.r.t. the edge selection vector w is

∇wS(σw) = − diag
(
BT log(B diag(w)BT)B

)
, (15)

where S(σ) = − tr(σ log σ − σ) = −
∑

i(λi log λi − λi) and σw = B diag(w)BT .

Proof of Theorem 5. Theorem 5 follows from ∇σS(σ) = − log σ and the use of gradient of the trace of a function of a
matrix. Here we use the un-normalized Laplacian matrix for simplicity.

B PRINCIPLE OF RELEVANT INFORMATION (PRI) FOR SCALAR RANDOM
VARIABLES

In information theory, a natural extension of the well-known Shannon’s entropy is the Rényi’s α-entropy [Rényi, 1961]. For
a random variable X with PDF f(x) in a finite set X , the α-entropy of H(X) is defined as:

Hα(f) =
1

1− α
log

∫
X
fα(x)dx. (16)

On the other hand, motivated by the famed Cauchy-Schwarz (CS) inequality:∣∣∣ ∫ f(x)g(x)dx
∣∣∣2 ≤ ∫

| f(x) |2 dx

∫
| g(x) |2 dx, (17)

with equality if and only if f(x) and g(x) are linearly dependent (e.g., f(x) is just a scaled version of g(x)), a measure of
the “distance” between the PDFs can be defined, which was named the CS divergence [Jenssen et al., 2006], with:

Dcs(f∥g) = − log(

∫
fg)2 + log(

∫
f2) + log(

∫
g2)

= 2H2(f ; g)−H2(f)−H2(g),

(18)

the term H2(f ; g) = − log
∫
f(x)g(x)dx is also called the quadratic cross entropy [Principe, 2010].

Combining Eqs. (16) and (18), the PRI under the 2-order Rényi entropy can be formulated as:

fopt = argmin
f

H2(f) + β(2H2(f ; g)−H2(f)−H2(g))

≡ argmin
f

(1− β)H2(f) + 2βH2(f ; g),
(19)

the second equation holds because the extra term βH2(g) is a constant with respect to f .

As can be seen, the objective of naïve PRI for i.i.d. random variables (i.e., Eq. (19)) resembles its new counterpart on graph
data (i.e., Eq. (11) in the main manuscript). The big difference is that we replace H2(f) with SvN(σ̃) and H2(f ; g) with
SvN

(
σ̃+ρ̃
2

)
to capture structure information.

If we estimate H2(f) and H2(f ; g) with the Parzen-window density estimator and optimize Eq. (19) by gradient descent.
Fig. 1 demonstrates the structure learned from an original intersect data by different values of β.

Interestingly, when β = 0, we obtained a single point, very similar to what happens for Graph-PRI that learns a nearly star
graph such that edges concentrates on one node. Similarly, when β →∞, both naïve PRI and Graph-PRI get back to the
original input as the solution.

C DETAILS OF USED DATASETS IN SECTION 4.2 AND SECTION 4.3

C.1 MULTI-TASK LEARNING

Synthetic data. This dataset consists of 20 regression tasks with 100 samples each. Each task is a 30-dimensional linear
regression problem in which the last 10 variables are independent of the output variable y. The 20 tasks are related in a

−1

0

1

−1

−0.5

0

0.5

1

0
2
4
6

(a) original data

−1

0

1

−1

−0.5

0

0.5

1

0
2
4
6

(b) β = 0

−1

0

1

−1

−0.5

0

0.5

1

0
2
4
6

(c) β = 1

−1

0

1

−1

−0.5

0

0.5

1

0
2
4
6

(d) β = 3

−1

0

1

−1

−0.5

0

0.5

1

0
2
4
6

(e) β = 6

−1

0

1

−1

−0.5

0

0.5

1

0
2
4
6

(f) β = 100

Figure 1: Illustration of the structures revealed by the naïve PRI for (a) Intersect data set. As the values of β increase the solution passes
through (b) a single point, (c) modes, (d) and (e) principal curves at different dimensions, and in the extreme case of (f) β → ∞ we get
back the data themselves as the solution.

group-wise manner: the first 10 tasks form a group and the remaining 10 tasks belong to another group. Tasks’ coefficients
in the same group are completely related to each other, while totally unrelated to tasks in another group.

Tasks’ data are generated as follows: weight vectors corresponding to tasks 1 to 10 are wk = wa ⊙ bk + ξ, where ⊙ is the
element-wise Hadamard product; and tasks 11 to 20 are wk = wb ⊙ bk + ξ, where ξ ∼ N (0, 0.2I20). Vectors wa and wb

are generated from N (0, I20), while bk ∼ U(0, 1) are uniformly distributed 20-dimensional random vectors.

Input and output variables for the t-th (t = 1, · · · , 20) task, Xt and yt, are generated as X ′
t ∼ N (0, I20) and yt =

X ′
twt +N (0, 1). 10-dimensional unrelated variables X ′′

t ∼ N (0, I10) are then concatenated to X ′
t to form the final input

data Xt = [X ′
t X ′′

t].

Parkinsons’s disease dataset. This is a benchmark multi-task regression data set, comprising a range of biomedical voice
measurements taken from 42 patients with earlystage Parkinson’s disease. For each patient, the goal is to predict the motor
Unified Parkinson’s Disease Rating Scale (UPDRS) score based 18-dimensional record: age, gender, and 16 jitter and
shimmer voice measurements. For the categorical variable “gender", we applied label encoding that converts genders into a
numeric representation. We treat UPDRS prediction for each patient as a task, resulting in 42 tasks and 5, 875 observations
in total.

C.2 BRAIN NETWORK CLASSIFICATION

For both datasets, the Automated Anatomical Labeling (AAL) template was used to extract ROI-averaged time series from
the 116 ROIs. Meanwhile, to construct the initial brain network topology (i.e., the adjacency matrix A), we only keep edge
if its weight (i.e., the absolute correlation coefficient) is among the top 20% of all absolute correlation coefficients in the
network.

As for the node features, we only use the correlation coefficients for simplicity. That is, the node feature for node i can be
represented as xi = [ρi1, ρi2, · · · , ρin]T , in which ρij is the Pearson’s correlation coefficient for node i and node j. One
can expect performance gain by incorporating more discriminative network property features such as the local clustering
coefficient [Rubinov and Sporns, 2010], although this is not the main scope of our work.

The first one is the eyes open and eyes closed (EOEC) dataset [Zhou et al., 2020], which contains the rs-fMRI data of 48 (22

females) college students (aged 19-31 years) in both eyes open and eyes closed states. The task is to predict two states based
on brain network FC.

The second one is from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database1. We use the rs-fMRI data
collected and preprocessed in [Kuang et al., 2019] which includes 31 AD patients aged 60–90 years. They were matched by
age, gender, and education to mild cognitive impairment (MCI)2 and 37 normal control (NC) subjects, together comprising
106 participants been selected. In this work, we only focus on distinguishing MCI group from NC group.

EOEC is publicly available from https://github.com/zzstefan/BrainNetClass/.

ADNI preprocessed by [Kuang et al., 2019] is publicly available from http://gsl.lab.asu.edu/software/ipf/.

D NETWORK ARCHITECTURE AND HYPERPARAMETER TUNING

D.1 FMRI-BASED BRAIN NETWORK CLASSIFICATION

The classification problem is solved using graph neural networks composed of two graph convolutional networks of size
32 and with relu activation function. We also use node feature drop with probability 10−1. The node pooling is the sum
of the node features, while the node classification minimizes the cross entropy loss. Hyper parameter search is applied
to all method with time budget of 3′000 seconds, over 3 runs. The learning rates, λ, β and the softmax temperature are
optimized using early pruning. Each graph neural network is fed with graphs generated from the full correlation matrix by
selecting edges among the strongest 20% absolute correlation values. For the Graph-PRI method, we used the GCN [Kipf
and Welling, 2017] as graph classification network.

For SVM, we use the Gaussian kernel and set kernel size equals to 1. For LASSO, we set the hyperparameter as 0.1. For
t-test, we set the significance level as 0.05.

E MINIMAL IMPLEMENTATION OF GRAPH-PRI IN PYTORCH

Algorithm 1 PRI for Graph Sparsification

Input: ρ = BBT , β, learning rate η, number of samples S
Output: σw

1: B ← incident matrix of ρ;
2: Initialize θ = {θ1, θ2, · · · , θM};
3: while not converged do
4: L = 0;
5: for i = 1, 2, · · · , S do
6: wi ← GumbelSoftmax(θ);
7: σwi = B diag (wi)BT ;
8: L = L+ Jβ(ρ, σwi);
9: end for

10: L = 1
SL

11: θ ← θ − η∇θL;
12: end while
13: w← GumbelSoftmax(θ);
14: return σw = B diag (w)BT ;

We additional provide PyTorch implementation of Graph-PRI.

1

2 import torch
3 import networkx as nx
4 import numpy as np

1http://adni.loni.usc.edu/
2MCI is a transitional stage between AD and NC.

https://github.com/zzstefan/BrainNetClass/
http://gsl.lab.asu.edu/software/ipf/
http://adni.loni.usc.edu/

5

6 def vn_entropy(k, eps=1e-20):
7

8 k = k / torch.trace(k)
9 eigv = torch.abs(torch.symeig(k, eigenvectors=True)[0])

10 entropy = -torch.sum(eigv[eigv>0] * torch.log(eigv[eigv>0] + eps))
11 return entropy
12

13 def entropy_loss(sigma, rho, beta):
14

15 assert(beta>=0), "beta shall be >=0"
16 if beta > 0:
17 return 0.5 * (1 - beta) / beta * vn_entropy(sigma) + vn_entropy(0.5 * (sigma + rho))
18 else:
19 return vn_entropy(sigma)
20

21 def sparse(G, tau, n_samples, max_iteration, lr, beta):
22 ’’’
23 Args:
24 G: networkx Graph
25 n_samples: number of samples for gumbel softmax
26 ’’’
27

28 E = nx.incidence_matrix(g1, oriented=True)
29 E = E.todense().astype(np.double)
30 E = torch.from_numpy(E)
31

32 rho = E @ E.T
33

34 m, n = G.number_of_edges(), G.number_of_nodes()
35 theta = torch.randn(m, 2, requires_grad=True)
36 optimizer = torch.optim.Adam([theta], lr=lr)
37

38 for itr in range(max_iteration):
39 cost = 0
40 for sample in range(n_samples):
41 # Sampling
42 z = F.gumbel_softmax(theta, tau, hard = True)
43 w = z[:, 1].squeeze()
44 sigma = E @ torch.diag(w) @ E.T
45 _loss = entropy_loss(sigma, rho, beta)
46 cost = cost + _loss
47

48 cost = cost / n_samples
49 cost.backward()
50 optimizer.step()
51 optimizer.zero_grad()
52

53 z = F.gumbel_softmax(theta, tau, hard=True)
54 w = z[:,1].squeeze()
55

56 sigma = E @ torch.diag(w) @ E.T # sparse laplacian
57

58 return sigma, w

Listing 1: Graph-PRI PyTorch

References

Michael Dairyko, Leslie Hogben, Jephian C-H Lin, Joshua Lockhart, David Roberson, Simone Severini, and Michael Young.
Note on von neumann and rényi entropies of a graph. Linear Algebra and its Applications, 521:240–253, 2017.

Robert Jenssen, Jose C Principe, Deniz Erdogmus, and Torbjørn Eltoft. The cauchy–schwarz divergence and parzen
windowing: Connections to graph theory and mercer kernels. Journal of the Franklin Institute, 343(6):614–629, 2006.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks. In ICLR, 2017.

Liqun Kuang et al. A concise and persistent feature to study brain resting-state network dynamics: Findings from the
alzheimer’s disease neuroimaging initiative. Human brain mapping, 40(4):1062–1081, 2019.

Jose C Principe. Information theoretic learning: Renyi’s entropy and kernel perspectives. Springer Science & Business
Media, 2010.

Alfréd Rényi. On measures of entropy and information. In Proceedings of the Fourth Berkeley Symposium on Mathematical
Statistics and Probability, volume 1, pages 547–561, 1961.

Mikail Rubinov and Olaf Sporns. Complex network measures of brain connectivity: uses and interpretations. Neuroimage,
52(3):1059–1069, 2010.

Zhen Zhou et al. A toolbox for brain network construction and classification (brainnetclass). Human Brain Mapping, 41
(10):2808–2826, 2020.

	Proofs and Additional Information
	Additional information on the rigor of Assumption 1
	Proof to Corollary 1
	Additional Information and Proof to Theorem 4

	Principle of Relevant Information (PRI) for scalar random variables
	Details of used datasets in Section 4.2 and Section 4.3
	Multi-task learning
	Brain network classification

	Network architecture and hyperparameter tuning
	fMRI-based Brain Network Classification

	Minimal Implementation of Graph-PRI in PyTorch

