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1 PROOFS

1.1 PROOF OF THEOREM 1

Theorem 1. (Hoeffding Inequality with IWERM) Let {(xi, yi)}nt
i=1 be nt instances that are sampled from the instrumental

distribution Q(x, y). Denote r.v. S = R(θ)−Rw
t (θ) that takes over θ, and let b = supS, a = inf S, E[S] = η. ∀ϵ > 0, we

have

P
(∣∣R(θ)−Rw

t (θ)
∣∣ ≥ ϵ

)
≤ 2e

−2nt(ϵ−η)2

(b−a)2 . (1)

Proof. Firstly, assuming that X be real-valued random variable and E[X] = η. ∀λ > 0, we have Markov’s inequality:

P (X ≥ ϵ) = P
(
eλX ≥ eλϵ

)
≤ e−λϵE[eλX]. (2)

Following Hoeffding’s lemma,

E[eλX] ≤ exp
(
λη + λ2(b−a)2

8

)
. (3)

Considering S and Si for each (xi, yi) and ai ≤ Si ≤ bi. Using (2) and (3), we have

P(S ≥ ϵ) = P
( nt∑

i=1

Si ≥ Nϵ
)
≤

( nt∏
i=1

EQ[e
λSi ]

)
e−ntλϵ ≤

( nt∏
i=1

e(λη+
λ2(bi−ai)

2

8 )
)
e−ntλϵ. (4)

Minimizing over λ ≥ 0,

P(S ≥ ϵ) ≤ min
λ≥0

exp
(ntλ

2(b− a)2

8
− ntλϵ+ ntλη

)
= exp

(
− 2nt(ϵ−η)2)

(b−a)2

)
. (5)

Finally,

P (|S| ≥ ϵ) ≤ 2 exp
(
− 2nt(ϵ−η)2)

(b−a)2

)
. (6)

RQ1: What is the difference between Theorem 1 and [Beygelzimer et al., 2009]’s Theorem 1?

Ans1: Both the two theorems aim to provide a safe guarantee – consistency, but [Beygelzimer et al., 2009]’s Theorem 1
only applies to stream-based AL, while ours applies to any AL, including stream-based AL and pool-based AL as B ≥ 1.
Specifically, in Beygelzimer et al. [2009], they make use of the martingale property and applied Azuma’s inequality to
get the bound, while our paper use Hoeffding’s inequality to get the bound. The difference between the two inequalities
is: Hoeffding proved this result for independent variables rather than martingale differences, and also observed that light
modifications of his argument establish the result for martingale differences. From the perspective of AL, [Beygelzimer et al.,
2009], since their theorem could only be applied to stream-based AL, where the data samples come in order, or pool-based
AL with batch size as 1. They calculate the conditional expectation of E[Zt|Zt − 1, ..., Z0], while Zt =

∑
(Ut, ..., U0). In

contrast, our theorem could be applied to any kind of AL sampling scheme, both stream-based AL and pool-based AL with
B ≥ 1.

1.2 PROOF OF PROPOSITION 1

Proposition 1. (Asymptotic Variance of Estimators) Let Rw
t (θ) =

1∑nt
i=1 β(xi,yi)

∑nt

i=1 β(xi, yi)l(f(xi; θ), yi) and R(θ) =

E(x,y)∼P [l(f(x; θ), y)] =
∫∫

l(f(x; θ), y)P (x, y)dxdy, by employing “Delta Method”, we have

√
nt(R

w
t (θ)−R(θ))

nt→∞−→ N (0, σ2
Q), (7)

with σ2
Q =

∫∫
β(x, y)[l(f(x; θ), y)−R(θ)]2P (x, y)dxdy.

2



Proof. Take li = l(f(xi; θ), yi), l = {l1, ..., li, ..., lnt
} βi = β(xi, yi), β = {β1, ..., βi, ..., βnt

}, rt =
nt∑
i=1

βili, Rt =

Rw
t (θ) =

1
nt
rt, R = R(θ) and Bnt =

nt∑
i=1

βi, lnt =
1
nt

nt∑
i=1

li.

Since the data samples are drawn from Q distribution, we have EQ[Rt] = R , EQ[rt] = ntR, and EQ[Bnt
] = nt. The

random variables β1, ..., βnt and β1l1, ..., βnt lnt are i.i.d., by using CLT, we have

√
nt(

1

nt
rt −R)

nt→∞−→ N (0, V ar(βl)) (8)

√
nt(

1

nt
Bnt

− 1)
nt→∞−→ N (0, V ar(β)) (9)

Assuming g(u, v) = u
v , let u = 1

nt
rt, v = 1

nt
Bnt

. We then use multivariate delta method to get

√
nt(g(u, v)− g(E[u], E[v]) =

√
nt(

1

Bnt

rt −
R

1
)
nt→∞−→ N (0,∇gTΣ∇g) (10)

where ∇g = ∇( rt
Bnt

) = ∇g(R, 1) represents the gradient of g and Σ is the covariance matrix of rt and Bnt
.

Σ =

(
V ar(βl) Cov(βl, β)

Cov(β, βl) V ar(β)

)
Then we calculate

∇g(R, 1)TΣ∇g(R, 1) = V ar(βl)− 2RCov(βl, β) +R2V ar(β)

= E[(βl)2]− E[(βl)]2 − 2R(E[β2l]−R ∗ 1]) +R2(E[β2]− E[β]2)

= E[(βl)2]−R2 − 2RE[β2l] + 2R2 +R2(E[β2]−R2 ∗ 1)
= E[(βl)2]− 2RE[β2l] +R2E[β2]

=

∫∫
β(x, y)2(li −R)2Q(x, y)dxdy

=

∫∫
β(x, y)[l(f(x; θt), y)−R(θ)]2P (x, y)dxdy

(11)

Note that in the proof of Proposition 1, we utilize original form Rw
t (θ) =

1∑nt
i=1 β(xi,yi)

∑nt

i=1 β(xi, yi)l(f(xi; θ), yi). In

our full paper, to facilitate the calculation, we use Rw
t (θ) =

1
nt

∑nt

i=1 β(xi, yi)l(f(xi; θ), yi), while limnt→∞ β(x, y) = 1
and EQ[β(x, y)] = 1.

1.3 PROOF OF PROPOSITION 2

Proposition 2. (Optimal Sampling Distribution) The optimal instrumental sampling distribution that minimizes σ2
Q is

Qopt
t (x, y) ∝

∣∣l(f(x; θ), y)−R(θ)
∣∣P (x, y). (12)

Proof. We minimize the variance estimate σ2
Q in terms of Q under the constraint

∫∫
Q(x, y)dxdy = 1 using Lagrange

multiplier τ .

L[Q, τ ] = σ2
Q + τ(

∫∫
Q(x, y)dxdy − 1) (13)

=

∫∫
Λ(x, y)

Q(x, y)
+ τ(Q(x, y)− 1)dxdy, (14)
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where Λ(x, y) = P (x, y)2[l(f(x; θ), y)−R(θ)]2.

We define G(Q(x, y);x, y) = Λ(x,y)
Q(x,y) + τ(Q(x, y) − 1). The optimal point for the constrained problem satisfies the

Euler-Lagrange equation:

∂G

∂Q(x, y)
= − Λ(x, y)

Q(x, y)2
+ τ = 0. (15)

A solution w.r.t the normalization constraint is:

Q∗ =

√
Λ(x, y)∫∫ √
Λ(x, y)dxdy

. (16)

Since Q is a sampling distribution, we dismiss the negative solution. Substituting Λ into (16), we have

Q∗(x, y) ∝
∣∣l(f(x; θ), y)−R(θ)

∣∣P (x, y). (17)

These proofs are with reference of [Sawade et al., 2010].

2 ADDITIONAL RELATED WORK

This Section is the supplement of the Section Related Work in full paper, which mainly discusses the difference between
[Farquhar et al., 2021] and our work. Both [Farquhar et al., 2021] and our work focus on the bias problems resulting from
the AL processes. In [Farquhar et al., 2021], they construct unbiased estimator of empirical risk RLabelled by RPool with
weighted loss. They optimize the intended objective, not for minimize the train – test gap. Different from [Farquhar et al.,
2021], we construct (asymptotic) unbiased estimator of the expectation of loss EX×Y∼P [loss] by IWERM (βRLabelled).
In [Farquhar et al., 2021], their assumptions of constructing unbiased estimator during AL processes are 1) data that are
sampled uniformly from DPool is unbiased (with probability 1

N if |DPool| = N ) and 2) the selection probability must be
non-zero on all of the training data. In our work, we construct the (asymptotic) unbiased estimator during the AL processes
by the assumption: data in DPool are sampled i.i.d. from underlying distribution P (x, y) and each data (xi, yi) are sampled
with probability P (xi, yi). In [Farquhar et al., 2021], they construct the acquisition proposal distribution from the perspective
of the risk estimation itself. In our work, we construct the acquisition proposal distribution from the existing AL strategies.
To sum up, [Farquhar et al., 2021] aims to “remove the bias” during AL training processes, while our work aims to model
the difference between the underlying distribution of the whole data space and the sampling distribution generated by AL
strategies.

3 SUPPLEMENT OF METHODOLOGY

3.1 INDEPENDENCE ASSUMPTION

In main paper, we discussed the independence assumption in Section 1. The whole AL process is changing constantly with
the labeled set and basic model updating in each stage, and thus it is not enough to just collect data “actively” and treat the
model fitting part the same as passive learning. For passive learning, one key assumption is that the training set comprises
i.i.d.samples from the unknown true data distribution P (x, y), Dn

i.i.d.∼ P .

If we select data samples sequentially by some fixed heuristics in AL (e.g., uncertainty-based strategies), the labeled training
set is not drawn i.i.d. from P . In AL sampling processes, data are sampled in different stages are not independent to
each other, since the sampling strategy at stage t depends on stage t − 1, would mixing them into Dl violates the needs
of independence to prove decent statistical bounds? The answer is No. From the aspect of sample size tends to infinity,
Although AL processes are not independent, after observed enough data, for both stream-based and pool-based AL, the
data (including both labeled and unlabeled) are sampled i.i.d.from underlying data distribution (which is consistent with
Section 3 in [Beygelzimer et al., 2009]). Therefore, we can still obtain the statistical bounds with independence assumption
as sample size tends to infinity. From the aspect of per stage in AL sampling processes, although the current data distribution
of labeled set is non i.i.d., but the estimator provided by IWERM is still be unbiased, therefore, we can still obtain the
statistical bounds of our learned hypothesis consistent with the statistical bounds under the independent assumptions.
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3.2 DISCUSSIONS OF “NON-INFORMATIVENESS”

We analyse the representation of βt when the sample size tends to infinity. Suppose that Rw
t (θ) is an unbiased estimator

of R(θ), which is based on a sufficiently strong classifier (e.g., using CNN as a basic classifier). If an infinite number of
samples are observed, the basic classifier will have a very certain prediction given xi. Thus, entropy-based uncertainty
sampling will converge to “non-informativeness” as the sample size tends to infinity, since all predictions are certain.

We explain why some AL sampling strategies can converge to “non-informativeness” based on the assumptions in AL
sampling processes (see Section 3.1 after Lemma 1) from 2 aspects, using entropy-based uncertainty sampling as example.
We review the assumptions here: In this paper, we assume that AL would not query non-existing or out-of-distribution
(OOD) data samples and would not query wrong/noisy labels from oracles/experts, that is, P (x, y) > 0 and Q(x, y) > 0.
Additionally, we could also obtain another vital information from these assumptions: P (y = ytrue|xi) = 1 for all labeled
samples. Firstly, after querying enough samples, any xi actually appears in the labeled trained set, and thus we know
it’s hard label and are very certain about it, i.e., P (y = ytrue|xi) = 1, thus the confidence is 1. Secondly, [de Cossio and
de Cossio Diaz, 2015] shows that the practice of using sample average as surrogates of probability expectations is reliable
provided sample size is large. Equation (1) in [de Cossio and de Cossio Diaz, 2015] shows that the entropy of model
parameters will converge to a certain value as sample size increases. That is, after observing enough data, any given xi will
not change the basic model, and thus any xi is meaningfulness to improve the basic model, which is consistent with our
proposed “non-informativeness” assumption.

Besides for uncertainty-based AL methods like entropy-based uncertainty sampling (US), some representative/diversity
based AL strategies also converge to “non-informativeness”. For instance, Wu et al. [2006] provided a diversity-based
method, which encourages the selection of unlabeled samples that are far from the labeled set and removes the redundancy
within the selected samples. The redundancy of samples is measured by the angles between the samples:

diversity(xi) = 1−maxxj∈Dl

K(xi,xj)√
K(xi,xi)K(xj ,xj)

(18)

where K is Mercer kernel operator and Dl refers to the labeled set. when the size of Dl. when the size of Dl tends to infinity,
then diversity(xi) converges to a constant. Moreover, some combined AL strategies also converge to “non-informativeness”.
For instance, combining uncertainty-based and representative/diversity based methods with weighted sum optimization, if
each of the components converges to a constant, the combined strategies will converge to “non-informativeness”.

Next we show an example that the acquisition function of existing AL methodology would not converge to “non-
informativeness”. Wu et al. [2006] further provided a representativeness-based sampling scheme, which indicates that the
examples with high representativeness will add more information to the training set. The representativeness of an instance
can be evaluated on how many instances are similar to it. Given unlabeled data pool Du, |Du| = n, the representativeness
score is defined as the average similarity of all other data in Du:

representativeness(xi) =

∑
i̸=j K(xi,xj)

n− 1
. (19)

The output of this acquisition function would not be constant as the sample size increases, since it just depends on unlabeled
data pool.

It’s not easy to provide a very clear and recognizable paradigm for ensuring whether an AL sampling scheme converges
to “non-informativeness” or not. We should observe its acquisition function to determine whether it converges to “non-
informativeness” or not. In general, most non-agnostic AL sampling schemes that make selection singly depend on the basic
learned models would converge to “non-informativeness”, since they are aiming to detect the disagreement of predictions
of given learned models or the uncertainty of the output label, after observing enough data and obtaining well-training
basic learned models, the discrepancy among unlabeled data samples could not be accessed. In contrast, most agnostic AL
sampling methods like [Sener and Savarese, 2017] that make selection singly depend on the information extracted from
unlabeled pool would not converge to “non-informativeness”, since the unlabeled data pool is constantly changes, and the
information extracted from unlabeled data pool might also be changed in each stage of AL processes.

3.3 DISCUSSIONS OF P DISTRIBUTION

How to estimate Pt distribution in practice is one key point in experimental settings. In classical ML experiments, the feature
is fixed, thus we employ the fixed feature provided by the data set. In deep learning tasks, we employ the penultimate layer
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Table 1: Datasets used in the experiments. The Imbalance Ratio (IR) is the ratio of the number of samples in the majority
class to that of the minority class.

Dataset # of classes # of feature
dimension

# of initial
labelled set

# of unlabeled
pool

# of test set # of Maximum
Budget

Imbalance Ratio

EX8a 2 2 20 325 518 325 1.0
GCloudub 2 2 20 380 600 380 2.0
R15 15 2 40 200 360 200 1.0
D31 31 2 80 1,120 1,800 1,120 1.0
Clean1 2 168 20 170 285 170 1.3
Tic-tac-toe 2 9 20 363 575 363 6.8
Splice 2 61 20 380 600 380 1.1
Vehicle 4 18 20 318 508 318 1.1

of the neural network as feature, therefore the feature changes dynamically as the updating of basic classifier. In classical ML
tasks, we model Pt(x, y) = Pt(x|y)Pt(y) using a class-conditional generative model and prior distribution of class labels.
In deep learning tasks, we model Pt(x, y) = Pt(y|x)Pt(x) using the classifiers posterior and input data distribution. The
classifier posterior Pt(y|x) is learned from the labeled data, while input data distribution Pt(x) is estimated from feature x.

4 ADDITIONAL EXPERIMENTS

4.1 DATASET DESCRIPTION

See Table 1 for the details of datasets applied in our experiments, including the number of classes, the number of feature
dimension, the size of initial labeled pool, the size of initial unlabeled data pool, the size of testing set and the imbalance
ratio of each dataset.

4.2 BASELINES

This section shows the detail description of baseline AL models.

• US [Lewis and Catlett, 1994]: This method is introduced in full paper.

• QBC: Query-by-Committee (QBC) uses a committee of models C = {θ(1), ..., θ(C)} (constructed by ensemble
methods or various basic classifiers), which are trained on Dl to predict the labels of Du, and the ones with largest
disagreement are selected for labeling by an oracle Seung et al. [1992], Settles [2009]. The disagreement level could be
measured by Voting Entropy (VE) or KL divergence. The optimization function is:

x∗
V E = argmax

x
−
∑
i

V (yi)

C
log

V (yi)

C
, (20)

where V (·) is the voting entropy across the committee of classifiers.

• EER: Expected Error Reduction (EER) maximizes the decrease of loss by adding new data samples Roy and
McCallum [2001], Settles [2009]. The optimization function is:

x∗
EER = argmin

x

∑
i

pθ(yi|x)(−
U∑

u=1

∑
j

pθ+(yj |x(u)) log pθ+(yj |x(u))), (21)

where θ+ refers to the newly trained model after adding new data tuple.

• BMDR: Batch-mode Discriminative and Representative AL (BMDR) Wang and Ye [2015] queries a batch of
informative and representative examples by minimizing the empirical risk bound of AL.

min
Dq,f

∑
{x,y}∈Dl

l(f,x, y) +
∑

xi∈Dq

l(f,x, ŷ) + λ||f ||2 + βMMD(D,Dl ∪ Dq), (22)

where D = Dl ∪ Du. MMD is maximum mean discrepancy, is a distance on the space of probability measures which
has found numerous applications in machine learning and nonparametric testing.

• US-D: It is US with Dropout regularization.
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• UPAL [Ganti and Gray, 2012]: works by minimizing the unbiased estimator of the risk of a hypothesis in a given
hypothesis space. In this work, they calculate the importance weight of data (xi, yi) as Qt

i

pt
i

, where Qt
i ∈ {0, 1},

represents whether this data sample are queried or not, and pti is sampling distribution, calculated by pti = ptmin + (1−
1

npt
min
)

H(Pr[+1|xi,hA,t−1])∑
j H(Pr[+1|xj ,hA,t−1])

. H(·) is entropy and ptmin = 1
nt

.

• SWAL [Imberg et al., 2020]: this work shows that optimal predictive performance is achieved by over-sampling
influential instances and high-leverage data points, and that uncertain instances not necessarily are informative ones.
SWAL computes sampling probabilities pt,i ∈ (0, 1) for each data point, and they update the sampling weights (w) by
wt,i = wt−1,i + ( 1

pt,i−wt−1,i
). and update the model parameter by:

θ̂t = argmin
θ

∑
i

wt,ili(f(xi; θ), yi). (23)

We employed 3 variants in this paper:

1. SWAL-cora calculates the sampling probabilities by: pt,i ∝
√

hii(θ), where hii(θ) = Varθ(Y ∗
i |xi)x

T
i H

−1xi,
H = H(θ) ∝ XTVX and V = V(θ) be the diagonal matrix of Varθ(Y ∗

i |xi).

2. SWAL-corb calculates the sampling probabilities by: pt,i ∝ ||
√

Varθ(Y ∗
i )VXH−1xi||.

3. SWAL-prop calculates the sampling probabilities by: pt,i ∝
√

Eθ[li(f(xi; θ), Y ∗
i )

2].

US, US-D, QBC, EER and BMDR are all converge to “non-informativeness” as the sample size increases.

4.3 IMPLEMENTATION DETAILS

• In classical ML tasks, for basic classifier in various AL methods and our framework, we employed Support Vector Ma-
chine (SVM) with probability measure1. Note that there are some experiments were missing in presented experimental
results, e.g., EER on D31 dataset could not be completed, since the basic classifier would encounter “All samples with
positive weights have the same label.” error when facing some subsets. So we didn’t report these performance in our
experiments since they are not completed 10 repeated trials. There are 3 requirements for choosing basic learned model:
1) the basic learned model is asymptotically unbiased and consistent as sample size increases in passive learning tasks;
2) the basic learned model could output the predicted class probabilities; 3) the basic learned model could change
sample weights during training.

• For the basic parameter settings of basic AL models, we followed the settings provided by ALiPy project Tang et al.
[2019]2. The experiments are based on sklearn.

• In QBC, we employed “Bagging meta-estimator” strategy to achieve “committee of classifiers” and the basic classifier
in Bagging is the default setting in sklearn library, that is, Decision Tree classifier.

• We utilize Gaussian Naive Bayes3 to estimate Pt in AL with classical ML tasks.

• We utilize predicted class probabilities (Pt(y|x)) provided by basic classifiers and Kernel Density Estimator4 (KDE) to
calculate (Pt(x)) to estimate Pt in AL with deep learning tasks.

• When splitting datasets of classical ML tasks, we have more data samples in the testing (60%) sets than the training
sets (40%), since we want to observe the generalization of the basic classifiers generated by various AL methods.

• We randomly select the initial data pool D0
l from the training set and the remaining un-selected training set becomes

our unlabeled data pool.

• In classical ML tasks, we fixed the random seed (4666) when splitting the initial labeled/training/testing sets to ensure
that considering the 10 repeated experiments, we have the same data splitting for running each AL method on each
dataset.

• To avoid bias problems, we have avoided any specific dataset tuning or pre-processing.

1https://scikit-learn.org/0.24/modules/generated/sklearn.svm.SVC.html
2https://github.com/NUAA-AL/ALiPy
3https://scikit-learn.org/0.24/modules/naive_bayes.html
4https://scikit-learn.org/0.24/modules/generated/sklearn.neighbors.KernelDensity.html
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• In our practical implementation, we time a coefficient on the importance-weight: βt(xi, yi) = |Du+Dl|
|Du|

Pt(xi,yi)
Qt(xi,yi)

,
where |Du + Dl| refers to the full dataset size and |Du| refers to the size of unlabeled data pool at stage t. This is
because during estimation at each stage, Pt is estimated and normalized over the whole dataset. For Qt – specially for
calculating the importance weight of training data, it is estimated and normalized over the labelled set,. So when we
calculate the importance weight βt for training data, we have an extra normalization coefficient |Du+Dl|

|Du| . To eliminate
the impact of the coefficient, we should time this coefficient when calculating the importance weight for re-training the
basic classifier. Note that it only works for pool-based AL.

4.4 EXPERIMENTAL RESULTS

4.4.1 Sensitive analysis

We use GaussianNB for P , which has 2 parameters: priors and variance smoothing. The priors refer to the prior prob-
abilities of the classes. The variance smoothing refers to the portion of the largest variance of all features that is added
to variances for calculation stability. can see https://scikit-learn.org/stable/modules/generated/
sklearn.naive_bayes.GaussianNB.html for more details. In the paper, we use the default settings (variance
smoothing: 10−9, prior: None). We conduct new experiments varying the hyperparameters using US on EX8a under B = 10
(see Table 2). Our model is not sensitive to the hyperparameter settings.

Table 2: Sensitive Analysis.

setting AUBC (acc)
variance smoothing 10−9 0.839(0.013)
variance smoothing 10−7 0.849(0.016)
variance smoothing 10−5 0.846(0.015)
variance smoothing 10−3 0.844(0.011)
variance smoothing 10−2 0.843(0.013)
variance smoothing 10−1 0.847(0.022)
prior None 0.839(0.013)
prior Uniform 0.842(0.018)
prior Class Ratio 0.843(0.010)

4.4.2 Additional Experiments on Classical ML tasks

We present the accuracy vs. Budget curves with batch size settings B = 1, B = 5 and B = 20 (see Figures 10, 7 and 4), the
AUC vs. Budget curves with batch size setting B = 1, B = 5, B = 10 and B = 20 (see Figures 11, 8, 2 and 5) and the F1

vs. Budget curves with batch size settings B = 1, B = 5, B = 10 and B = 20 (see Figures 12, 9, 3 and 6).

We could observe from the same with different batch size settings (i.e., B ∈ {1, 5, 10, 20}), our approach still improves the
performance of the baseline AL model much and maintains the advantage over the unbiased AL baselines. In general, the
performance on B ∈ {1, 5, 20} show similar trends compared with the performance with batch size setting B = 1, which
ensures the stability of our proposed at different batch size settings.

For different evaluation metrics, i.e., compare AUBC (acc) with AUBC (AUC) and AUBC (F1), despite the difference in
concrete AUBC values, the shape of the curves, the trend and the timing of model convergence are similar. That is, different
evaluations also provide consistent results.
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Figure 1: Accuracy-budget curves for classical ML tasks with B = 10. The solid lines represent our proposed method and
the dashed lines represent the corresponding baseline AL strategy. The mean and standard deviation of the AUBC (acc) over
10 trials is shown in parentheses in the legend.
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Figure 2: AUC-budget curves for classical ML tasks with B = 10. The solid lines represent our proposed method and the
dashed lines represent the corresponding baseline AL strategy. The mean and standard deviation of the AUBC (auc) over 10
trials is shown in parentheses in the legend.
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Figure 3: F1-budget curves for classical ML tasks with B = 10. The solid lines represent our proposed method and the
dashed lines represent the corresponding baseline AL strategy. The mean and standard deviation of the AUBC (f1) over 10
trials is shown in parentheses in the legend.
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Figure 4: Accuracy-budget curves for classical ML tasks with B = 20. The solid lines represent our proposed method and
the dashed lines represent the corresponding baseline AL strategy. The mean and standard deviation of the AUBC (acc) over
10 trials is shown in parentheses in the legend.
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Figure 5: AUC-budget curves for classical ML tasks with B = 20. The solid lines represent our proposed method and the
dashed lines represent the corresponding baseline AL strategy. The mean and standard deviation of the AUBC (auc) over 10
trials is shown in parentheses in the legend.
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Figure 6: F1-budget curves for classical ML tasks with B = 20. The solid lines represent our proposed method and the
dashed lines represent the corresponding baseline AL strategy. The mean and standard deviation of the AUBC (f1) over 10
trials is shown in parentheses in the legend.
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Figure 7: Accuracy-budget curves for classical ML tasks with B = 5. The solid lines represent our proposed method and the
dashed lines represent the corresponding baseline AL strategy. The mean and standard deviation of the AUBC (acc) over 10
trials is shown in parentheses in the legend.
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Figure 8: AUC-budget curves for classical ML tasks with B = 5. The solid lines represent our proposed method and the
dashed lines represent the corresponding baseline AL strategy. The mean and standard deviation of the AUBC (auc) over 10
trials is shown in parentheses in the legend.
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Figure 9: F1-budget curves for classical ML tasks with B = 5. The solid lines represent our proposed method and the
dashed lines represent the corresponding baseline AL strategy. The mean and standard deviation of the AUBC (f1) over 10
trials is shown in parentheses in the legend.
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Figure 10: Accuracy-budget curves for classical ML tasks with B = 1. The solid lines represent our proposed method and
the dashed lines represent the corresponding baseline AL strategy. The mean and standard deviation of the AUBC (acc) over
10 trials is shown in parentheses in the legend.
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Figure 11: AUC-budget curves for classical ML tasks with B = 1. The solid lines represent our proposed method and the
dashed lines represent the corresponding baseline AL strategy. The mean and standard deviation of the AUBC (auc) over 10
trials is shown in parentheses in the legend.
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Figure 12: F1-budget curves for classical ML tasks with B = 1. The solid lines represent our proposed method and the
dashed lines represent the corresponding baseline AL strategy. The mean and standard deviation of the AUBC (f1) over 10
trials is shown in parentheses in the legend.
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