
Distributed Adversarial Training to Robustify Deep Neural Networks at Scale
(Supplementary Material)

Gaoyuan Zhang1,* Songtao Lu1,* Yihua Zhang2 Xiangyi Chen3 Pin-Yu Chen1 Quanfu Fan1 Lee Martie1

Lior Horesh1 Mingyi Hong3 Sijia Liu1,2

1IBM Research
2Michigan State University

3University of Minnesota
*Equal Contribution

1 DAT ALGORITHM FRAMEWORK

Algorithm A1 Distributed adversarial training (DAT) for solving problem (??)

1: Initial θ1, dataset D(i) for each of M workers, and T iterations
2: for Iteration t = 1, 2, . . . , T do
3: for Worker i = 1, 2, . . . ,M do . Worker
4: Draw a finite-size data batch Bit ⊆ D(i)

5: For each data sample x ∈ Bit, call for an inner maximization oracle:

δ
(i)
t (x) := argmax

‖δ‖∞≤ε
φ(θt, δ;x), (A1)

where we omit the label or possible pseudo-label y of x for brevity
6: Computing local gradient of fi in (??) with respect to θ given perturbed samples:

g
(i)
t = λE

x∈B(i)
t

[∇θ`(θt;x)] + E
x∈B(i)

t
[∇θφ(θt;x+ δ

(i)
t (x))] (A2)

7: (Optional) Call for gradient quantizer Q(·) and transmit Q(g
(i)
t) to server

8: end for
9: Gradient aggregation at server: . Server

ĝt =
1
M

∑M
i=1Q(g

(i)
t) (A3)

10: (Optional) Call for gradient quantizer ĝt ← Q(ĝt), and transmit ĝt to workers:
11: for Worker i = 1, 2, . . . ,M do . Worker
12: Call for an outer minimization oracle A(·) to update θ:

θt+1 = A(θtĝt, ηt), ηt is learning rate (A4)

13: end for
14: end for

Additional details on gradient quantization Let b denote the number of bits (b ≤ 32), and thus there exists s = 2b

quantization levels. We specify the gradient quantization operation Q(·) in Algorithm A1 as the randomized quantizer
[Alistarh et al., 2017, Yu et al., 2019]. Formally, the quantization operation at the ith coordinate of a vector g is given by
[Alistarh et al., 2017]

Q(gi) = ‖g‖2 · sign(gi) · ξi(gi, s), ∀i ∈ {1, 2, . . . , d}. (A5)

Accepted for the 38th Conference on Uncertainty in Artificial Intelligence (UAI 2022).

In (A5), ξi(gi, s) is a random number drawn as follows. Given |gi|/‖g‖2 ∈ [l/s, (l+ 1)/s] for some l ∈ N+ and 0 ≤ l < s,
we then have

ξi(gi, s) =

{
l/s with probability 1− (s|gi|/‖g‖2 − l)
(l + 1)/s with probability (s|gi|/‖g‖2 − l),

(A6)

where |a| denotes the absolute value of a scalar a, and ‖a‖2 denotes the `2 norm of a vector a. The rationale behind using
(A5) is that Q(gi) is an unbiased estimate of gi, namely, Eξi(gi,s)[Q(gi)] = gi, with bounded variance. Moreover, we at
most need (32 + d + bd) bits to transmit the quantized Q(g), where 32 bits for ‖g‖2, 1 bit for sign of gi and b bits for
ξi(gi, s), whereas it needs 32d bits for a single-precision g. Clearly, a small b saves the communication cost. We note that if
every worker performs as a server in DAT, then the quantization operation at Step 10 of Algorithm A1 is no longer needed.
In this case, the communication network becomes fully connected. With synchronized communication, this is favored for
training DNNs under the All-reduce operation.

2 THEORETICAL RESULTS

In this section, we will quantify the convergence behaviour of the proposed DAT algorithm. First, we define the following
notations:

Φi(θ,x) = max
‖δ(i)‖∞≤ε

φ(θ, δ(i);x), and Φi(θ) = Ex∈D(i)Φi(θ;x). (A7)

We also define
li(θ) = Ex∈D(i) l(θ;x), (A8)

where the label y of x is omitted for labeled data. Then, the objective function of problem (??) can be expressed in the
compact way

Ψ(θ) =
1

M

M∑
i=1

λli(θ) + Φi(θ) (A9)

and the optimization problem is then given by minθ Ψ(θ).

Therefore, it is clear that if a point θ? satisfies
‖∇θΨ(θ?)‖ ≤ ξ, (A10)

then we say θ? is a ξ approximate first-order stationary point (FOSP) of problem (??).

Prior to delving into the convergence analysis of DAT, we make the following assumptions.

2.1 ASSUMPTIONS

A1. Assume objective function has layer-wise Lipschitz continuous gradients with constant Li for each layer

‖∇iΨ(θ·,i)−∇iΨ(θ′·,i)‖ ≤ Li‖θ·,i − θ′·,i‖,∀i ∈ [h]. (A11)

where∇iΨ(θ·,i) denotes the gradient w.r.t. the variables at the ith layer. Also, we assume that Ψ(θ) is lower bounded, i.e.,
Ψ? := minθ Ψ(θ) > −∞ and bounded gradient estimate, i.e., ‖∇ĝ(i)

t ‖ ≤ G.

A2. Assume that φ(θ, δ;x) is strongly concave with respect to δ with parameter µ and has the following gradient Lipschitz
continuity with constant Lφ:

‖∇θφ(θ, δ;x)−∇θφ(θ, δ′;x)‖ ≤ Lφ‖δ − δ′‖. (A12)

A3. Assume that the gradient estimate is unbiased and has bounded variance, i.e.,

Ex∈B(i) [∇θl(θ;x)] =∇θl(θ),∀i, (A13)
Ex∈B(i) [∇θΦ(θ;x)] =∇θΦ(θ),∀i, (A14)

where recall that B(i) denotes a data batch used at worker i, ∇θl(θ) := 1
M

∑M
i=1∇θli(θ) and ∇θΦ(θ) :=

1
M

∑M
i=1∇θΦi(θ); and

Ex∈B(i)‖∇θl(θ;x)−∇θl(θ)‖2 ≤ σ2,∀i (A15)

Ex∈B(i)‖∇θΦ(θ;x)−∇θΦ(θ)‖2 ≤ σ2,∀i. (A16)

Further, we define a component-wise bounded variance of the gradient estimate

Ex∈B(i)‖[∇θl(θ;x)]jk − [∇θl(θ)]jk‖2 ≤ σ2
jk,∀i, (A17)

Ex∈B(i)‖[∇θΦ(θ;x)]jk − [∇θΦ(θ)]jk‖2 ≤ σ′2jk,∀i, (A18)

where j denotes the index of the layer, and k denotes the index of entry at each layer. Under A3, we have∑h
j=1

∑dj
k=1 max{σ2

jk, σ
′2
jk} ≤ σ2

A4. Assume that the component wise compression error has bounded variance

E[(Q([g(i)(θ)]jk)− [g(i)(θ)]jk)2] ≤ δ2
jk,∀i. (A19)

The assumption A4 is satisfied as the randomized quantization is used [Alistarh et al., 2017, Lemma 3.1].

2.2 ORACLE OF MAXIMIZATION

In practice, Φi(θ;x),∀i may not be obtained, since the inner loop needs to iterate by the infinite number of iterations to
achieve the exact maximum point. Therefore, we allow some numerical error term resulted in the maximization step at (A1).
This consideration makes the convergence analysis more realistic.

First, we have the following criterion to measure the closeness of the approximate maximizer to the optimal one.

Definition 1. Under A2, if point δ(x) satisfies

max
δ≤‖ε‖

〈δ − δ∗(x),∇δφ(θ, δ∗(x);x)〉 ≤ ε (A20)

then, it is a ε approximate solution to δ∗(x), where

δ∗(x) := arg max
δ≤‖ε‖

φ(θ, δ;x). (A21)

and x denotes the sampled data.

Condition (A20) is standard for defining approximate solutions of an optimization problem over a compact feasible set and
has been widely studied in [Wang et al., 2019, Lu et al., 2020].

In the following, we can show that when the inner maximization problem is solved accurately enough, the gradients of
function φ(θ, δ(x);x) at δ(x) and δ∗(x) are also close. A similar claim of this fact has been shown in [Wang et al., 2019,
Lemma 2]. For completeness of the analysis, we provide the specific statement for our problem here and give the detailed
proof as well.

Lemma 1. Let δ
(k)
t be the (µε)/L2

φ approximate solution of the inner maximization problem for worker k, i.e.,
maxδ(k) φ(θ, δ(k);xt), where xt denotes the sampled data at the tth iteration of DAT. Under A2, we have∥∥∥∇θφ

(
θt, δ

(k)
t (xt);xt

)
−∇θφ

(
θt, (δ

∗)
(k)
t (xt);xt

)∥∥∥2

≤ ε. (A22)

Throughout the convergence analysis, we assume that δ(k)
t (xt),∀k, t are all the (µε)/L2

φ approximate solutions of the inner
maximization problem. Let us define∥∥∥[∇φ(θt, δ

(k)
t (xt);xt)]ij − [∇φ(θt, (δ

∗)
(k)
t (xt);xt]ij

∥∥∥2

= εij . (A23)

From Lemma 1, we know that when δ
(k)
t (xt) is a (µε)/L2

φ approximate solution, then

h∑
i=1

di∑
j=1

εij =

h∑
i=1

di∑
j=1

∥∥∥[∇φ(θt, δ
(k)
t (xt);xt)]ij − [∇φ(θt, (δ

∗)
(k)
t (xt);xt]ij

∥∥∥2

≤ ε. (A24)

2.3 FORMAL STATEMENTS OF CONVERGENCE RATE GUARANTEES

In what follows, we provide the formal statement of convergence rate of DAT. In our analysis, we focus on the 1-sided
quantization, namely, Step 10 of Algorithm A1 is omitted, and specify the outer minimization oracle by LAMB [You et al.,
2019], see Algorithm A2. The addition and multiplication operations in LAMB are component-wise.

Theorem 1. Under A1-A4, suppose that {θt} is generated by DAT for a total number of T iterations, and let the problem
dimension at each layer be di = d/h. Then the convergence rate of DAT is given by

1

T

T∑
t=1

E‖∇θΨ(θt)‖2 ≤
∆Ψ

ηtclCT
+ 2

(
ε+

(1 + λ)σ2

MB

)
+ 4δ2 +

κ
√

3

C
‖χ‖1 +

ηtcuκ‖L‖1
2C

. (A25)

where ∆Ψ := E[Ψ(θ1)] − Ψ?], ηt is the learning rate, κ = cu/cl, cl and cu are constants used in LALR (??), χ is an

error term with the (ih + j)th entry being
√

(1+λ)σ2
ij

MB + εij + δ2
ij , ε and εij were given in (A24), L = [L1, . . . , Lh]T ,

C = 1
4

√
h(1−β2)
G2d , 0 < β2 < 1 is given in LAMB, B = min{|B(i)|,∀i}, and G is given in A1.

Remark 1. When the batch size is large, i.e., B ∼
√
T , then the gradient estimate error will be O(σ2/

√
T). Further, it

is worth noting that different from the convergence results of LAMB, there is a linear speedup of deceasing the gradient
estimate error in DAT with respect to M , i.e., O(σ2/(M

√
T)), which is the advantage of using multiple computing nodes.

Remark 2. Note that A4 implies E[(Q([g(k)(θ)]ij)− [g(k)(θ)]ij‖2] ≤
∑h
i=1

∑di
j=1 δ

2
ij := δ2. From [Alistarh et al., 2017,

Lemma 3.1], we know that δ2 ≤ min{d/s2,
√
d/s}G2. Recall that s = 2b, where b is the number of quantization bits.

Therefore, with a proper choice of the parameters, we can have the following convergence result that has been shown in
Theorem ??.

Corollary 1. Under the same conditions of Theorem 1, if we choose

ηt ∼ O(1/
√
T), ε ∼ O(ξ2), (A26)

we then have

1

T

T∑
t=1

E‖∇θΨ(θt)‖2 ≤
∆Ψ

clC
√
T

+
(1 + λ)σ2

MB
+
cuκ‖L‖1
2C
√
T

+O

(
ξ,

σ√
MT

,min

{
d

4b
,

√
d

2b

})
. (A27)

In summary, when the batch size is large enough, DAT converges to a first-order stationary point of problem (??) and there
is a linear speed-up in terms of M with respect to σ2. Next, we provide the details of the proof.

3 PROOF DETAILS

3.1 PRELIMINARIES

In the proof, we use the following inequality and notations.

1. Young’s inequality with parameter ε is

〈x,y〉 ≤ 1

2ε
‖x‖2 +

ε

2
‖y‖2, (A28)

where x,y are two vectors.

2. Define the historical trajectory of the iterates as Ft = {θt−1, . . . ,θ1}.

3. We denote vector [x]i as the parameters at the ith layer of the neural net and [x]ij represents the jth entry of the parameter
at the ith layer.

4. We define

gt :=
1

M

M∑
i=1

Ext∈B(i)

(
λ∇l(θt;xt) +∇θφ(θt, δ

(i)
t (xt);xt)

)
=

1

M

M∑
i=1

g
(i)
t . (A29)

3.2 DETAILS OF LAMB ALGORITHM

Algorithm A2 LAMB [You et al., 2019]

Input: learning rate ηt, 0 < β1, β2 < 1, scaling function τ(·), ζ > 0
for t = 1, . . . do

mt = β1mt−1 + (1− β1)ĝt, where ĝt is given by (A3)
vt = β2vt−1 + (1− β2)ĝ2

t

mt = mt/(1− βt1)
vt = vt/(1− βt2)
Compute ratio ut = mt√

vt+ζ

end for
Update

θt+1,i = θt,i −
ηtτ(‖θt,i‖)
‖ut,i‖

ut,i. (A30)

3.3 PROOF OF LEMMA 1

Proof. From A2, we have∥∥∥∇φ(θt, δ(i)
t (xt);xt

)
−∇φ

(
θt, (δ

∗)
(i)
t (xt);xt

)∥∥∥ ≤ Lφ‖δ(i)
t (xt)− (δ∗)

(i)
t (xt)‖. (A31)

Also, we know that function φ(θ, δ,x) is strongly concave with respect to δ, so we have

µ‖δ(i)
t (xt)− (δ∗)

(i)
t (xt)‖

≤
〈
∇δφ(θt, (δ

∗)
(i)
t (xt);xt)−∇δφ(θt, δ

(i)
t (xt);xt), δ

(i)
t (xt)− (δ∗)

(i)
t (xt)

〉
. (A32)

Next, we have two conditions about the qualities of solutions δ(i)
t (xt) and (δ∗)

(i)
t (xt). First, we know that δ(i)

t (xt) is a-ε
approximate solution to (δ∗)

(i)
t (xt), so we have〈

(δ∗)
(i)
t (xt)− δ

(i)
t (xt),∇δφ(θt, δ

(i)
t (xt);xt)

〉
≤ ε. (A33)

Second, since (δ∗)
(i)
t (xt) is the optimal solution, it satisfies〈

(δ
(i)
t (xt)− (δ∗)

(i)
t (xt),∇δφ(θt, (δ

∗)
(i)
t (xt);xt)

〉
≤ 0. (A34)

Adding them together, we can obtain〈
δ

(i)
t (xt)− (δ∗)

(i)
t (xt),∇δφ(θt, (δ

∗)
(i)
t (xt);xt)−∇δφ(θt, δ

(i)
t (xt);xt)

〉
≤ ε. (A35)

Substituting (A35) into (A32), we can get

µ‖δ(i)
t (xt)− (δ∗)

(i)
t (xt)‖2 ≤ ε. (A36)

Combining (A31), we have ∥∥∥∇φ(θt, δ
(i)
t (xt);xt)−∇φ(θt, (δ

∗)
(i)
t (xt);xt)

∥∥∥2

≤ L2
φ

ε

µ
. (A37)

3.4 DESCENT OF QUANTIZED LAMB

First, we provide the following lemma as a stepping stone for the subsequent analysis.

Lemma 2. Under A1–A3, suppose that sequence {θt} is generated by DAT. Then, we have

E[−〈∇Ψ(θt), ĝt〉] ≤ −
E‖∇Ψ(θt)‖2

2
+ ε+

(1 + λ)σ2

MB
. (A38)

Proof. From (A21), (A7) and A2, we know that

∇θΦi(θ,x) = ∇θφ(θ, (δ∗)(i)(x);x), (A39)

so we can get

∇θΨ(θ) =
1

M

M∑
i=1

λ∇θli(θ) +∇θΦi(θ) (A40)

=λ∇θl(θ) +
1

M

M∑
i=1

Ex∈D(i)∇θφ(θ, (δ∗)(i)(x);x) (A41)

:=ḡ(θ). (A42)

Then, we have

E〈∇Ψ(θt),gt〉 =E〈∇Ψ(θt), ḡt〉+ E〈∇Ψ(θt),gt − ḡt〉 (A43)
=EFtExt|Ft

〈∇Ψ(θt), ḡt〉+ E〈∇Ψ(θt),gt − ḡt〉 (A44)
(A42)

= E‖∇Ψ(θt)‖2 + E〈∇Ψ(θt),gt − ḡt〉 (A45)

=E‖∇Ψ(θt)‖2 + E〈∇Ψ(θt),gt − g∗t 〉+ E〈∇Ψ(θt),g
∗
t − ḡt〉 (A46)

where

ḡt :=
1

M

M∑
i=1

Ext∈D(i)

(
λ∇l(θt,xt) +∇θφ(θt, (δ

∗)
(i)
t (xt);xt)

)
= λ∇l(θt) +∇Φ(θt), (A47)

and

g∗t :=
1

M

M∑
i=1

Ext∈B(i)

(
λ∇l(θt,xt) +∇θφ(θt, (δ

∗)
(i)
t (xt);xt)

)
. (A48)

Next, we can quantify the different between gt and g∗t by gradient Lipschitz continuity of function τ(·) as the following

E‖gt − g∗t ‖2
(a)

≤ 1

M

M∑
i=1

EFt
Ext|Ft

[
‖∇θφ(θt, (δ

∗)(i)(xt);xt)−∇θφ(θt, δ
(i)(xt);xt)‖2

] (A24)

≤ ε (A49)

where in (a) we use Jensen’s inequality.

And the difference between ḡt and g∗t can be upper bounded by

E‖ḡt − g∗t ‖2 =EFt

∥∥∥∥∥ 1

M

M∑
i=1

Ext|Ft
∇θφ(θt, (δ

∗)(i)(xt);xt)−∇θφ(θt)

∥∥∥∥∥
2

+ λEFt

∥∥∥∥∥ 1

M

M∑
i=1

Ext|Ft
∇l(θt;xt)−∇l(θt)

∥∥∥∥∥
2

(A50)

A3
=

(1 + λ)σ2

MB
. (A51)

Applying Young’s inequality with parameter 2, we have

E[−〈∇Ψ(θt),gt〉] ≤− E‖∇Ψ(θt)‖2 +
E‖∇Ψ(θt)‖2

2
+ E‖ḡt − g∗t ‖2 + E‖g∗t − gt‖2 (A52)

(A49)

≤ − E‖∇Ψ(θt)‖2

2
+ ε+

(1 + λ)σ2

MB
. (A53)

3.5 PROOF OF THEOREM 1

Proof. We set β1 = 0 in LAMB for simplicity. From gradient Lipschitz continuity, we have

Ψ(θt+1)
A1
≤Ψ(θt) +

h∑
i=1

〈[∇θΨ(θt)]i,θt+1,i − θt,i〉+

h∑
i=1

Li
2
‖θt+1,i − θt,i‖2 (A54)

(a)

≤Ψ(θt)−ηt
h∑
i=1

di∑
j=1

τ(‖θt,i‖)
〈

[∇Ψ(θt)]ij ,
[ut]ij
‖ut,i‖

〉
︸ ︷︷ ︸

:=R

+

h∑
i=1

η2
t c

2
uLi
2

, (A55)

where in (a) we use (A30), and the upper bound of τ(‖θt,i‖).

Next, we split term R as two parts by leveraging sign([∇Ψ(θt)]ij) and sign([ut]ij) as follows.

R =− ηt
h∑
i=1

di∑
j=1

τ(‖θt,i‖)[∇Ψ(θt)]ij
[ut]ij
‖ut,i‖

1 (sign([∇Ψ(θt)]ij) = sign([ut]ij))

− ηt
h∑
i=1

di∑
j=1

τ(‖θt,i‖)[∇Ψ(θt)]ij
[ut]ij
‖ut,i‖

1 (sign([∇Ψ(θt)]ij) 6= sign([ut]ij)) (A56)

(a)

≤ − ηtcl
h∑
i=1

di∑
j=1

√
1− β2

G2di
[∇Ψ(θt)]ij [ĝt]ij1 (sign([∇[Ψ(θt)]ij) = sign([ĝt]ij))

− ηt
h∑
i=1

di∑
j=1

τ(‖θt,i‖)[∇Ψ(θt)]ij
[ut]ij
‖ut,i‖

1 (sign([∇Ψ(θt)]ij) 6= sign([ut]ij)) (A57)

(b)

≤ − ηtcl
h∑
i=1

di∑
j=1

√
1− β2

G2di
[∇Ψ(θt)]ij [ĝt]ij

− ηt
h∑
i=1

di∑
j=1

τ(‖θt,i‖)[∇Ψ(θt)]ij
[ut]ij
‖ut,i‖

1 (sign([∇Ψ(θt)]ij) 6= sign([ut]ij)) . (A58)

where in (a) we use the fact that ‖ut,i‖ ≤
√

di
1−β2

and
√
vt ≤ G, and in (b) we add

−ηtcl
h∑
i=1

di∑
j=1

√
1− β2

G2di
[∇Ψ(θt)]ij [ĝt]ij1 (sign([∇Ψ(θt)]ij) 6= sign([ĝt]ij)) ≥ 0. (A59)

Taking expectation on both sides of (A58), we have the following:

E[R] ≤−ηtcl

√
h(1− β2)

G2d

h∑
i=1

di∑
j=1

E[[∇Ψ(θt)]ij [ĝt]ij︸ ︷︷ ︸
:=U

+ ηtcu

h∑
i=1

di∑
j=1

E [[∇Ψ(θt)]ij1 (sign([∇Ψ(θt)]ij) 6= sign([ut]ij))]︸ ︷︷ ︸
:=V

. (A60)

Next, we will get the upper bounds of U and V separably as follows. First, we write the inner product between [∇Ψ(θ)]ij
and [ĝt]ij more compactly,

U ≤− ηtcl

√
h(1− β2)

G2d

h∑
i=1

E 〈[∇Ψ(θ)]i, [ĝt]i〉 (A61)

≤− ηtcl

√
h(1− β2)

G2d

h∑
i=1

E 〈[∇Ψ(θt)]i, [ĝt]i − [gt]i + [gt]i〉 (A62)

≤− ηtcl

√
h(1− β2)

G2d

(
E 〈∇Ψ(θ),gt〉+

h∑
i=1

E 〈[∇Ψ(θt)]i, [ĝt]i − [gt]i〉

)
. (A63)

Applying Lemma 2, we can get

U
(A38)

≤ − ηtcl

√
h(1− β2)

G2d

1

2
E‖∇Ψ(θt)‖2 + ηtcl

√
h(1− β2)

G2d

(
ε+

(1 + λ)σ2

MB

)
− ηtcl

√
h(1− β2)

G2d

h∑
i=1

E 〈[∇Ψ(θt)]i, [ĝt]i − [gt]i〉 (A64)

(a)

≤ − ηtcl

√
h(1− β2)

G2d

1

2
E‖∇Ψ(θt)‖2 + ηtcl

√
h(1− β2)

G2d

(
ε+

(1 + λ)σ2

MB

)
+
ηtcl
4

√
h(1− β2)

G2d
E‖∇Ψ(θt)‖2 + clηt

√
h(1− β2)

G2d
E‖ĝt − gt‖2 (A65)

(b)

≤ − ηtcl
4

√
h(1− β2)

G2d

1

2
E‖∇Ψ(θt)‖2 + ηtcl

√
h(1− β2)

G2d

(
ε+

(1 + λ)σ2

MB

)
+ ηtcl

√
h(1− β2)

G2d
δ2 (A66)

where we use the in (a) we use Young’s inequality (with parameter 2), and in (b) we have

E‖ĝt − gt‖2 = E

∥∥∥∥∥ 1

M

M∑
i=1

Q(g
(i)
t)− g

(i)
t

∥∥∥∥∥
2
A4
≤ δ2. (A67)

Second, we give the upper of V :

V ≤ηtcu
h∑
i=1

di∑
j=1

[∇Ψ(θt)]ij P (sign([∇Ψ(θt)]ij) 6= sign([ĝt]ij))︸ ︷︷ ︸
:=W

(A68)

where the upper bound of W can be quantified by using Markov’s inequality followed by Jensen’s inequality as the

following:

W =P (sign([∇Ψ(θt)]ij) 6= sign([ĝt]ij))

≤P[|[∇Ψ(θt)]ij − [ĝt]ij | > [∇Ψ(θt)]ij] (A69)

≤E[[∇Ψ(θt)]ij − [ĝt]ij]

|[∇Ψ(θt)]ij |
(A70)

≤
√
E[([∇Ψ(θt)]ij − [ĝt]ij)2]

|[∇Ψ(θt)]ij |
(A71)

(A42)

≤
√

E[([ḡt]ij − [g∗t]ij + [g∗t]ij − [gt]ij + [gt]ij − [ĝt]ij)2]

|[∇Ψ(θt)]ij |
(A72)

(a)

≤
√

3

√
(1+λ)σ2

ij

M |B| + εij + δ2
ij

|[∇Ψ(θt)]ij |
(A73)

where (a) is true due to the following relations: i) from (A51), we have

E[([ḡt]ij − [g∗t]ij)
2] ≤

(1 + λ)σ2
ij

MB
; (A74)

ii) from (A49), we can get
E[([gt]ij − [g∗t]ij)

2] ≤ εij ; (A75)

and iii) from (A67), we know
E[([ĝt]ij − [gt]ij)

2] ≤ δ2
ij . (A76)

Therefore, combining (A55) with the upper bound of U shown in (A66) and V shown in (A68)(A73), we have

E[Ψ(θt+1)] ≤E[Ψ(θt)]− ηtcl

√
h(1− β2)

G2d

1

4
E‖∇Ψ(θt)‖2 + ηtcl

√
h(1− β2)

G2d

(
ε+

(1 + λ)σ2

MB

)

+ ηtcl

√
h(1− β2)

G2d
δ2 + ηtcu

√
3

h∑
i=1

di∑
j=1

√
(1 + λ)σ2

ij

MB
+ εij + δ2

ij +
η2
t c

2
u

∑h
i=1 Li

2
. (A77)

Note that the error vector χ is defined as the following

χ =

√
(1+λ)σ2

11

M |B| + ε11 + δ2
11

...√
(1+λ)σ2

ij

M |B| + εij + δ2
ij

...√
(1+λ)σ2

hdh

M |B| + εhdh + δ2
hdh

∈ Rd, (A78)

and we have

L =

L1

...
Lh

 ∈ Rh. (A79)

Recall
κ =

cu
cl
. (A80)

Rearranging the terms, we can arrive at√
h(1− β2)

G2d

1

4︸ ︷︷ ︸
:=C

(
‖∇Ψ(θt)‖2

)
≤E[Ψ(θt)]− E[Ψ(θt+1)]

ηtcl
+ 4Cδ2 + 2C

(
ε+

(1 + λ)σ2

MB

)

+
√

3κ‖χ‖1 +
ηtcuκ‖L‖1

2
. (A81)

Applying the telescoping sum over t = 1, . . . , T , we have

1

T

>∑
t=1

E‖∇θΨ(θt)‖2 ≤
E[Ψ(θ1)]− E[Ψ(θT+1)]

ηtclCT
+ 2

(
ε+

(1 + λ)σ2

MB

)
+ 4δ2

+
κ
√

3

C
‖χ‖1 +

ηtcuκ‖L‖1
2C

. (A82)

4 ADDITIONAL EXPERIMENTS

4.1 TRAINING DETAILS

ImageNet AT and Fast AT experiments are conducted at a single computing node with dual 22-core CPU, 512GB RAM
and 6 Nvidia V100 GPUs. The training epoch is 30 by calling for the momentum SGD optimizer. The weight decay and
momentum parameters are set to 0.0001 and 0.9. The initial learning rate is set to 0.1 (tuned over {0.01, 0.05, 0.1, 0.2}),
which is decayed by ×1/10 at the training epoch 20, 25, 28, respectively.

ImageNet DAT experiments are conducted at {1, 3, 6} computing nodes with dual 22-core CPU, 512GB RAM and 6 Nvidia
V100 GPUs. The training epoch is 30 by calling for the LAMB optimizer. The weight decay is set to 0.0001. β1 and β2 are
set to 0.9 and 0.999. The initial learning rate η1 is tuned over {0.01, 0.05, 0.1, 0.2, 0.4}, which is decayed by ×1/10 at the
training epoch 20, 25, 28, respectively. To execute algorithms with the initial learning rate η1 greater than 0.2, we choose the
model weights after 5-epoch warm-up as its initialization for DAT, where each warm-up epoch k uses the linearly increased
learning rate (k/5)η1.

4.2 ADDITIONAL RESULTS

Discussion on cyclic learning rate. It was shown in [Wong et al., 2020] that the use of a cyclic learning rate (CLR)
trick can further accelerate the Fast AT algorithm in the small-batch setting [Wong et al., 2020]. In Figure A1, we present
the performance of Fast AT with CLR versus batch sizes. We observe that when CLR meets the large-batch setting, it
becomes significantly worse than its performance in the small-batch setting. The reason is that CLR requires a certain
number of iterations to proceed with the cyclic schedule. However, the use of large data batch only results in a small amount
of iterations by fixing the number of epochs.

Additional details on HPC setups. To further reduce communication cost, we also conduct DAT at a HPC cluster. The
computing nodes of the cluster are connected with InfiniBand (IB) and PCIe Gen4 switch. To compare with results in
Table ??, we use 6 of 57 nodes of the cluster. Each node has 6 Nvidia V100s which are interconnected with NVLink. We use
Nvida NCCL as communication backend. In Table ??, we have presented the performance of DAT for ImageNet, ResNet-50
with use of HPC compared to standard (non-HPC) distributed system.

References

D. Alistarh, D. Grubic, J. Li, R. Tomioka, and M. Vojnovic. QSGD: Communication-efficient SGD via gradient quantization
and encoding. In NeurIPS, 2017.

S. Lu, M. Razaviyayn, B. Yang, K. Huang, and M. Hong. Finding second-order stationary points efficiently in smooth
nonconvex linearly constrained optimization problems. In NeurIPS, 2020.

128 1024 6144 12288
Batch Size for Cyclic LR

30

40

50

60

70

80

Ac
cu

ra
cy

TA
RA

Figure A1: TA/RA of Fast AT with CLR versus batch sizes on (CIFAR-10, ResNet-18).

Y. Wang, X. Ma, J. Bailey, J. Yi, B. Zhou, and Q. Gu. On the convergence and robustness of adversarial training. In ICML,
2019.

E. Wong, L. Rice, and J. Z. Kolter. Fast is better than free: Revisiting adversarial training. In ICLR, 2020.

Y. You, J. Li, et al. Large batch optimization for deep learning: Training bert in 76 minutes. In ICLR, 2019.

Y. Yu, J. Wu, and L. Huang. Double quantization for communication-efficient distributed optimization. In NeurIPS, 2019.

	DAT Algorithm Framework
	Theoretical Results
	Assumptions
	Oracle of maximization
	Formal statements of convergence rate guarantees

	Proof Details
	Preliminaries
	Details of LAMB algorithm
	Proof of Lemma 1
	Descent of quantized LAMB
	Proof of Theorem 1

	Additional Experiments
	Training details
	Additional results

