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S1 COMPARISONS WITH HETEROGENEOUS CAUSAL DISCOVERY METHODS

We notice that our method shares some similarities with JCI [Mooij et al., 2020] and CD-NOD [Huang et al., 2020]
in establishing causal identifiability with the help of heterogeneous data/environments, indicated by the variables Z.
However, how Z enters the causal model is very different, which in turn leads to significant methodological, theoretical, and
computational differences.

Causal identification While JCI and CD-NOD are flexible in utilizing environment information and dealing with various
kinds of distributions by learning the graph jointly over Z and X through conditional independence tests, there are many
situations where the causal structure is only partially identifiable. For example, consider two competing causal models

M1 : X1 = ϵ1, X2 = B21(Z)X1 + ϵ2, X3 = B31(Z)X1 +B32(Z)X2 + ϵ3,

M2 : X1 = ϵ1, X2 = B⋆
21(Z)X1 +B⋆

23(Z)X3 + ϵ2, X3 = B⋆
31(Z)X1 + ϵ3.

Their corresponding causal graphs of X1, X2, X3, and Z are the same except that the arrow direction between X2 and X3

is reversed. Because the graphs are Markov equivalent, the causal direction between X2 and X3 cannot be identified by JCI
and CD-NOD. On the contrary, our method is able to identify the direction as established by our theorems.

Proof techniques Because of the difference illustrated in the example above, to prove our causal identifiability results,
existing proofs in the literature do not apply and significant efforts are needed to figure out how heterogeneity helps structure
learning with our model formulation (through varying causal effects). JCI and CD-NOD are able to narrow down the Markov
equivalence class under general assumptions like faithfulness, but there could still be causal indeterminacy without additional
assumptions. For example, if one would like to assume the observations are subject to a diverse set of hard interventions,
then one still has to make assumptions on the interventional experiments to fully identify causal structures [Hyttinen et al.,
2013].

Environment variable To our knowledge, JCI mainly focuses on observations from a finite number of contexts (i.e.,
Z is discrete). On the contrary, we allow Z to be continuous, i.e., the environment can change continuously and may be
different for each observation. In other words, we can have n environments, one for each of the n observations. For JCI
to be applicable to continuous Z, one possible solution is to discretize Z, but the causal identification may be sensitive
to the method of discretization. Our parameterization naturally allows borrowing of information from observations in
similar environments thus overcomes this problem. While CD-NOD allows continuous environments, it is not clear how to
generalize it to allow cycles and confounders.

Algorithm JCI and CD-NOD are constraint-based methods relying on conditional independence tests, which are known to
lack statistical power even just for a moderately large conditioning set (say, 10) and require a large sample size and careful
adjustment for multiplicity. By contrast, our method is fully model-based and hence is significantly less prone to the curse of
dimensionality. In addition, to the best of our knowledge, current ASD-JCI version allows no more than p = 10 variables,
largely limited by the statistical power and the computational burden of constraint-based causal discovery.
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Additional simulations We now compared the performance of ASD-JCI and the method from Faria et al. [2022] with our
proposed method. We considered two scenarios. In the first scenario, we generated n = 200 samples from the following
model

X1 = ϵ1, X2 = ϵ2,

X3 = 0.8Z ×X1 + 0.5Z ×X2 + ϵ3,

X4 = −0.9Z ×X1 − 0.5Z ×X2 + 0.9Z ×X3 + ϵ4,

where ϵ1, ϵ2, ϵ3, ϵ4 ∼ N(0, 1) and Z ∼ U(−1, 1). We assumed X2 was not observed at the model fitting stage and served
as a latent confounder between X3 and X4. The underlying causal model on X = (X1, X3, X4) was acyclic and causally
insufficient. Notice that in this case, the confounding was not stable and independent of Z. We applied ASD-JCI123 (one
version of JCI which had the top performance for unknown interventional targets in the experiments of their paper) with
acyclic = TRUE, sufficient = FALSE, test = gaussCItest (i.e., the d-separation criterion from Hyttinen et al. [2014]). Other
parameters were set to their default values. The comparison with our method is shown in Table S1 where our method
outperformed the other two competitors. The method of Faria et al. [2022] performed worst in this example, since it applies
to discrete environments and it remains unclear how the clustering is carried out in the continuous case.

Table S1: Additional simulation experiment – acyclic model. Average operating characteristics over 50 repetitions. The
standard deviation for each statistic is given within parentheses.

CHOD ASD-JCI Faria et al.

TPR FDR MCC TPR FDR MCC TPR FDR MCC

0.860 (0.203) 0.120 (0.199) 0.805 (0.296) 0.753 (0.284) 0.380 (0.126) 0.518 (0.273) 0.707 (0.145) 0.480 (0.069) 0.363 (0.139)

In the second scenario, we generated data from a cyclic model

X1 = 0.8Z ×X3 + ϵ1, X2 = 0.9 cos(πZ)×X1 + ϵ2,

X3 = 0.9 tanh(πZ)×X2 + ϵ3, X4 = −0.8Z ×X3 + ϵ4, X5 = 0.9 sin(πZ)×X4 + ϵ5,

where X1, X2, X3 form a cycle. We compared with ASD-JCI123 and set acyclic = FALSE, sufficient = TRUE, test =
gaussCItest (i.e., the σ-separation criterion from Forré and Mooij [2018]). Other parameters were set to their default values.
The results are shown in Table S2 where CHOD still significantly outperformed ASD-JCI123, which had a high FDR.

Table S2: Additional simulation experiment – cyclic model. Average operating characteristics over 50 repetitions. The
standard deviation for each statistic is given within parentheses.

CHOD ASD-JCI123

TPR FDR MCC TPR FDR MCC

0.860 (0.172) 0.206 (0.102) 0.758 (0.161) 0.820 (0.063) 0.758 (0.019) 0.150 (0.069)

S2 BRIEF DISCUSSION OF CAUSAL INFERENCE WITH CHOD

When making inference like finding post-intervention distribution P(Y |do(W )) for Y ,W ⊆X , linear Gaussianity allows
analytical marginalization for causal inference, whereas complex models such as linear non-Gaussian and non-linear
Gaussian models do not (discrete approximation is often required which is #P-hard and sampling-based approximation is
still NP-hard). For example, for an acyclic graph, the causal effect of do(Xj = xj) can be computed as [Maathuis et al.,
2009]:

∂
∂xE(Xk|do(Xj = x), Z)|x=xj

= [Σ(Z)k,pa+(j)Σ(Z)−1
pa+(j),pa+(j)]1,

where Σ(Z) is the covariance matrix ofX given Z and pa+(j) = {j} ∪ pa(j).



S3 PROOFS

Let [n] = (1, . . . , n). We call ds(j) = {ℓ : ℓ ↔ · · · ↔ j} the districts of j.

S3.1 PROOF OF THEOREM 1

We prove it by contradiction. Suppose that G ≠ G′ but

P(X|Z,B(Z),S) = P(X|Z,B′(Z),S′), ∀X, Z,

for some B(Z),S,B′(Z),S′. Since centered Gaussian distribution is fully determined by its covariance, the two linear
Gaussian SEMs are distribution equivalent if and only if

(I −B(Z))TS−1(I −B(Z)) = (I −B′(Z))TS
′−1(I −B′(Z)), ∀Z,

which, in the bivariate case, is equivalent to the following three equations,

(σ′
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′
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If G ≠ G′, then the equations above can at best have constant solutions, which contradicts our assumption. For example,
since at least one but not all of b12(Z), b21(Z), b′12(Z), b′21(Z) has to be zero because G ̸= G′, without loss of generality,
suppose b12(Z) = 0 and b′12(Z) ̸= 0. Then the second equation of (S1) is reduced to a quadratic equation of b′12(Z) of
which the solutions are clearly constant in Z,

(σ11σ22 − σ2
12)(σ

′
22b

′2
12(Z) + 2σ′

12b
′
12(Z) + σ′

11)− σ11(σ
′
11σ

′
22 − σ

′2
12) = 0.

Therefore, G = G′. □

S3.2 PROOF OF THEOREM 2

We first prove the identification of causal ordering by induction. Without loss of generality, we assume the true ordering is
[p]. Letting initially the ordering S = ∅, we have

Var(Xj |XS) = Var(Xj) = Var(
∑

ℓ bjℓ(Z)Xℓ + εj), ∀j.

On the one hand, if pa(j) = ∅, i.e., Xj is a root, then Var(Xj) = Var(εj) is not a function of the exogenous covariate Z.
On the other hand, if pa(j) ̸= ∅, i.e., Xj is not a root, Var(Xj) is a function of the covariate Z by assumption. Hence we
can pick a root node as the first of the causal ordering by examining whether Var(Xj) is a function of Z. Without loss of
generality, we pick X1.

Suppose we have picked the first m nodes of the true ordering, S = [m]. Consider

Var(Xj |XS) = Var(
∑

ℓ bjℓ(Z)Xℓ + εj |XS) = Var(
∑

ℓ>m bjℓ(Z)Xℓ + εj |XS), ∀j > m.

If pa(j) ⊆ S, i.e., Xj is qualified as the next node of the causal ordering, then Var(Xj |XS) = Var(εj |XS) is not a function
of the covariate Z. By contrast, for any node that can not be the next in the ordering, Var(Xj |XS) is still a function of Z by
assumption. Hence we can identify the next node in the ordering by examining whether Var(Xj |XS) is a function of Z.
Without loss of generality, we pick j = m+1 and set S = [m+1] to be the first m+1 nodes of the correct ordering, which
completes the proof of the ordering identifiability. Note that the causal ordering need not be unique but the constructive
proof that we provide always identifies one such correct ordering.

Next, given the ordering [p], we prove directed edges can be recovered if pa(j) ∩ ds(j) = ∅. For the first node, we have
pa(1) = ∅ and ϵ1 = X1. For the second node, we have

Cov(X1, X2) = b21(Z)Var(ϵ1) + Cov(ϵ1, ϵ2).



If pa(2) = ∅, ϵ2 = X2, and Cov(X1, X2) = Cov(ϵ1, ϵ2) is a not a function of the covariate Z. Otherwise, pa(2) = {1},
and we calculate ϵ2 = X2 − b21(Z)X1 = X2 − Cov(X1, X2)/Var(ϵ1)X1, since Cov(ϵ1, ϵ2) = 0 for 1 /∈ ds(2).

Recursively, suppose we have identified the parent sets of the first j − 1 nodes, the causal coefficients, and residuals. Denote
ds[j](j) = ds(j) ∩ [j − 1]. Then for the jth node, when {ds[j](j) ∪ pa(ds[j](j) ∪ {j})} ⊆ C ⊆ [j − 1],

Cov(Xk, Xj |XS) = Cov(
∑

ℓ ̸∈ds[j](j)
bℓ→k(Z)ϵℓ + ϵk, ϵj |XC) = 0, ∀j > k /∈ C, (S2)

where bℓ→k(Z) = [(I −B(Z))−1]kℓ is the total causal effect from Xℓ to Xk. Equivalently, when restricted to the first j
nodes, {ds[j](j) ∪ pa(ds[j](j) ∪ {j})} is the Markov blanket of the jth node [Richardson, 2003]. We take the minimum
set for which the conditional independence condition (S2) is satisfied, then C = {ds[j](j) ∪ pa(ds[j](j) ∩ {j})}. For any
k ∈ C,

Cov(Xk, Xj |XC\{k}) =


Cov(ϵk, ϵj |XC\{k}) = Cov(ϵk, ϵj |ϵds[j](j)\{k}), if k ∈ ds[j](j),

Cov(Xk, bjk(Z)Xk + ϵj |XC\{k})

= bjk(Z)Var(Xk|Xpa(ds[j](j)∪{j})\{k}), if k ∈ pa(j).

The second quantity is a function of the covariate Z, whereas the first one is a constant. Therefore, we take the set
D = {k : Cov(Xk, Xj |XC\{k}) = f(Z)}, then pa(j) ⊆ D ⊆ C\ds[j](j). Moreover,

Cov(Xk, Xj |XD\{k}, ϵC\D) =


Cov(Xk, ϵj |XD\{k}, ϵC\D) = 0, if k ∈ D\pa(j),
Cov(Xk, bjk(Z)Xk + ϵj |XD\{k}, ϵC\D)

= bjk(Z)Var(Xk|XD\{k}, ϵC\D) ̸= 0, if k ∈ pa(j).

We take E = {k : Cov(Xk, Xj |XD\{k}, ϵC\D) ̸= 0}, then E = pa(j). Given the parent set, the causal coefficients and
residuals can be easily computed, which completes the proof by induction. □

Discussion of Theorem 2 Through direct calculation, we have for S = [m],∀m,

Var(Xj |XS) = Var(Ajε|εS) = Aj,[p]\S(S[p]\S,[p]\S − S[p]\S,S(SS,S)
−1SS,[p]\S)A

T
j,[p]\S ,

whereA = (I −B)−1 andAj is the jth row ofA. By the definition of directed acyclic graphs, Ajℓ ̸= 0 if and only if there
exists a directed path from Xℓ to Xj , i.e., Xℓ is the ancestor of Xj . If S contains all nodes precede Xj in the causal ordering,
Xj is qualified as the next in the ordering and Var(Xj |XS) is not a function of Z. Otherwise, our assumption states that the
covariate-dependent heterogeneous total causal effects from ancestors of Xj in [p]\S to Xj do not accidentally become
homogeneous (i.e., the conditional variance is constant in Z). The variance dynamic allows us to identify the true causal
ordering.

The additional assumption pa(j)∩ds(j) = ∅ for causal graph identification is required to separate the heterogeneous effects
from parents and districts (inherit from their patents). In fact, Maeda and Shimizu [2020] showed that their proposed method
is only able to recover causal direction between pair of variables that are not affected by the same confounder. Wang and
Drton [2020] proposed to learn causal graphs with unobserved confounders and non-Gaussian data, where the graphs are
assumed to be simple acyclic mixed graphs. Our assumption is stronger but we believe it is due to the proof technique
rather than the method itself which can be seen from good performance of CHOD in the simulations where the assumption
pa(j) ∩ ds(j) = ∅ was not enforced in generating the data or fitting the model. Theoretically relaxing this assumption will
be our future work.

S3.3 PROOF OF THEOREM 3

We say that C ⊆ V is a cyclic component if it is a singleton or forms a directed cycle. A maximal cyclic component is a
cyclic component such that none of its superset is a cyclic component. Let C = {C1, . . . , Ck} be the set of all maximal cyclic
components. Since cycles are disjoint, it forms a partition of V . We define the collapsed graph G̃ = (Ṽ , Ẽ) with Ṽ = C
(collapsing each maximal cyclic component to a single node) and Cℓ → Cj ∈ Ẽ if and only if cℓr → cjt for some cℓr ∈ Cℓ

and cjt ∈ Cj . Then by construction, G̃ is acyclic. We assume without loss of generality that (C1, . . . , Ck) is a topological
ordering of G̃ and cℓ1 → · · · → cℓ|Cℓ| → cℓ1 forms the maximal cyclic component Cℓ. Denote C+

ℓ = Cℓ+1 ∪ · · · ∪ Ck. For
any (ordered) sets C = (cℓ) and D = (dk) ⊆ V , letBD,D(Z) be the submatrix ofB(Z) with rows and columns indexed
by D,AD,D(Z) = (I −BD,D(Z))−1, ED,C = (eT1 , . . . , e

T
|D|)

T with ek,ℓ = 1 if dk = cℓ and ek,ℓ = 0 otherwise.



We first constructively prove that the ordering of maximal cyclic components and the edge directions within each maximal
cyclic component are identifiable. Suppose we have identified the first ℓ− 1 maximal cyclic components for ℓ = 1, . . . , k,
and we are looking for the next candidate D ⊆ C+

ℓ−1 : d1 → · · · → d|D| → d1 in the ordering. Because of causal sufficiency,
D is a valid candidate (i.e., it complies with a true ordering and the edge direction in D matches the truth) if there exists a
transformation matrix

A
′−1
D,D(Z) = I −B′

D,D(Z) =


1 0 · · · 0 −b′d1,d|D|

(Z)

−b′d2,d1
(Z) 1 · · · 0 0

...
...

. . .
...

...
0 0 · · · −b′d|D|,d|D|−1

(Z) 1


such that Cov(A

′−1
D,D(Z)XD|XC1

, . . . ,XCℓ−1
) = diag(σ′

d1
, . . . , σ′

d|D|
). Therefore, we formulate the following condition:

Condition (⋆): for any D that cannot be the next maximal cyclic component in the ordering, there does not exist a
transformationA

′−1
D,D(Z) such that Cov(A

′−1
D,D(Z)XD|XC1

, . . . ,XCℓ−1
) is a diagonal matrix.

Notice that when D = Cℓ which is a validate candidate, we can choose A
′−1
D,D(Z) = A−1

Cℓ,Cℓ
(Z) which leads to

Cov(A
′−1
D,D(Z)XD|XC1 , . . . ,XCℓ−1

) = Cov(ϵCℓ
) = diag(σcℓ1

, . . . , σcℓ|Cℓ|
); hence Cℓ is a valid next maximal cyclic

component.

For any set D = (d1, . . . , d|D|) ⊆ C+
ℓ−1, we have

XD∩Cℓ
= ED∩Cℓ,Cℓ

ACℓ,Cℓ
(Z)ϵCℓ

+ F (XC1 , . . . ,XCℓ−1
),
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= ED∩C+
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ℓ
AC+

ℓ ,C+
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ℓ ,Cℓ
(Z)ACℓ,Cℓ
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+ ϵC+

ℓ
] + F (XC1 , . . . ,XCℓ−1

),

where ϵC+
ℓ−1

⊥ XC1 , . . . ,XCℓ−1
and F (·) is some deterministic function which will become zero when taking the

conditional covariance later on (its complex functional form is irrelevant here and hence not shown). Therefore,

[A
′−1
D,D(Z)XD]k = m(XC1
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where m(·) is some deterministic function (its functional form is omitted for the same reason as above). Eliminating
b′dk,dk−1

(Z) from the set of equations induced by Cov(A
′−1
D,D(Z)XD|XC1 , . . . ,XCℓ−1

) = diag(σ′
d1
, . . . , σ′

d|D|
) for any

invalid candidate D introduces a peculiar constraint on the causal effect functions:

f(ACℓ,Cℓ
(Z),AC+

ℓ ,C+
ℓ
(Z),BC+

ℓ ,Cℓ
(Z)) = 0

for certain f(·). The condition (⋆) then rules out such peculiar situation.

Next, given the ordering of the maximal cyclic components, we have

Cov(XCℓ+1
,XCℓ

|XC1
, . . . ,XCℓ−1

) = ACℓ+1,Cℓ+1
BCℓ+1,Cℓ

Var(XCℓ
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,XCℓ
|XC1 , . . . ,XCℓ−1

)Var−1(XCℓ
|XC1 , . . . ,XCℓ−1

),

and hence the directed edges from component Cℓ to Cℓ+1 can be recovered fromBCℓ+1,Cℓ
. □
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Figure S1: A demonstrative example of Theorem 3.

Discussion of Theorem 3 We illustrate the condition (⋆) in the proof of Theorem 3 with a toy example. Consider the
graph G in Figure S1. The maximal cyclic components are C1 = {1, 2, 3} and C2 = {4, 5}. The collapsed graph G̃ is simply
C1 → C2.

If D = {3}, we have

X3 = [b31(Z)ϵ1 + b31(Z)b12(Z)ϵ2 + ϵ3]/[1− b12(Z)b23(Z)b31(Z)].

Therefore, Var(X3) is in general not constant in Z.

If D = {3, 4}, we have

X4 = {b43(Z)[b31(Z)ϵ1 + b31(Z)b12(Z)ϵ2 + ϵ3]/[1− b12(Z)b23(Z)b31(Z)]

+ [ϵ4 + b45(Z)ϵ5]}/[1− b45(Z)b54(Z)].

The violation of condition (⋆), i.e., there exists someA
′−1
D,D such Cov(A

′−1
D,D(Z)XD) is a diagonal matrix, gives rise to the

following three conditions:

Var(X3 − b′34(Z)X4) is constant in Z,

Var(X4 − b′43(Z)X3) is constant in Z,

Cov(X3 − b′34(Z)X4, X4 − b′43(Z)X3) = 0,

which reduces to one condition after eliminating b′34(Z) and b′43(Z),

0 = Cov(X3, X4)− Cov(X3, X4)[Cov(X3, X4)± (Cov2(X3, X4)−Var(X4)(Var(X3)− a))1/2]

× [Cov(X3, X4)± (Cov2(X3, X4)−Var(X3)(Var(X4)− b))1/2]/[Var(X3)Var(X4)]

± (Cov2(X3, X4)−Var(X4)(Var(X3)− a))1/2 ± (Cov2(X3, X4)−Var(X3)(Var(X4)− b))1/2,

where a, b are constants, and

Var(X3) = [b231(Z)σ1 + b231(Z)b212(Z)σ2 + σ3]/[1− b12(Z)b23(Z)b31(Z)]2,

Var(X4) = {b243(Z)[b231(Z)σ1 + b231(Z)b212(Z)σ2 + σ3]/[1− b12(Z)b23(Z)b31(Z)]2

+ σ4 + b245(Z)σ5}/[1− b45(Z)b54(Z)]2 = [b243(Z)Var(X3) + σ4 + b245(Z)σ5]/[1− b45(Z)b54(Z)]2,

Cov(X3, X4) = b43(Z)[b231(Z)σ1 + b231(Z)b212(Z)σ1 + σ3]/{[1− b12(Z)b23(Z)b31(Z)]2

[1− b45(Z)b54(Z)]} = b43(Z)Var(X3)/[1− b45(Z)b54(Z)].

Hence, unless the covariate-dependent direct causal effects satisfy this peculiar equation, one will not mistakenly identify
D = {3, 4} as a valid maximal cyclic component.

If D = {1, 2, 3}, but the cycle direction is reversed: 1 → 2 → 3 → 1. Then condition (⋆) implies that there do not exist
constants a, b, c, d such that

b12(Z) = a · b23(Z) + b = c · b31(Z) + d.

Therefore, unless b12(Z), b23(Z), b31(Z) happen to be linear transformation of each, one will not mistakenly identify the
reversed cycle direction.



S3.4 PROOF OF PROPOSITION 1

According to our assumption, given the graph structure G the following transformations

ϕ :m(Z) 7→ P(X|m(Z),S), m : Z 7→m(Z)

are continuous and injective. Therefore, the composite mapping ψ := ϕ ◦m : Z 7→ P(X|m(Z),S) is continuous and
injective, so do its univariate marginals. Then the monotonicity of ψ follows. □

S4 MCMC ALGORITHM

The proposed MCMC algorithm repeats the following five steps until convergence.

1. We generate the covariance matrix S of noises from the full conditional distribution

S ∼ IW (Ψ′, v′), Ψ′ = Ψ+
∑n

i=1{xi −B(zi)xi}{xi −B(zi)xi}T , v′ = v + n.

2. We sample each edge by a reversible jump (birth-death) step. For each j ̸= ℓ = 1, . . . , p, we propose a new state
r′jℓ = 1− rjℓ. If r′jℓ = 0 (death move), set β′

jℓ = 0. Otherwise (birth move), sample β′
jℓ ∼ N(0, τI). Accept the new

(r′jℓ,β
′
jℓ) with probability min(α, 1), where

logα = (−1)r
′
jℓ log 1−π

π +
∑n

i=1

{
logP(xi|zi,B′(zi),S)− P(xi|zi,B(zi),S)

}
,

withB′(z) = B(z) except for the entry being updated, b′jℓ(z) =
∑K

k=1 β
′
jℓkϕk(z).

3. We sample non-zero spline coefficients by a Metropolis-Hasting step. For each j ̸= ℓ = 1, . . . , p and k = 1, . . . ,K,
we propose non-zero βjℓk (corresponds to rjℓ = 1) by a random walk proposal density centered at the current value
β′
jℓk ∼ N(βjℓk, σ). Accept the new β′

jℓk with probability min(α, 1), where

logα = logP(β′
jℓk|rjℓ = 1, τ)− logP(βjℓk|rjℓ = 1, τ)

+
∑n

i=1

{
logP(xi|zi,B′(zi),S)− P(xi|zi,B(zi),S)

}
,

withB′(z) = B(z) except for the entry currently being updated, b′jℓ(z) = β′
jℓkϕk(z) +

∑
h̸=k βjℓhϕh(z).

4. We generate the variance of non-zero coefficients τ from the full conditional distribution

τ ∼ IG(α′, β′), α′ = α+ 1
2

∑
j,ℓ,k I(βjℓk ̸= 0), β′ = β + 1

2

∑
j,ℓ,k β

2
jℓk.

5. We generate the edge inclusion probability π from the full conditional distribution

π ∼ beta(a′, b′), a′ = a+
∑

j ̸=ℓ rjℓ, b
′ = b+

∑
j ̸=ℓ(1− rjℓ).

S4.1 IMPLEMENTATION OF CHOD WITH LATENT COVARIATES

Suppose Z is univariate and latent. Our Bayesian formulation can be easily adapted for the joint estimation of Z and causal
graphs. Without loss of generality, we assume Z ∈ [0, 1]. We assign independent uniform prior zi ∼ U(0, 1) or the Coulomb
repulsive prior [Wang and Dunson, 2015] for better separation

P(z1, . . . , zn) ∝
∏n

j=i+1 sin
2γ{π(zi − zj)}, ∀zi ∈ [0, 1]

with the repulsive parameter γ. For MCMC implementation, we add the following step to sample z1, . . . , zn independently

• We propose z′i ∼ Q(z′i|zi) and accept it with probability min(1, α), where

logα = log{Q(zi|z′i)P(z′i, z−i)P(xi|z′i,B(z′i),S)}
− log{Q(z′i|zi)P(zi, z−i)P(xi|zi,B(zi),S)}.

In the above, Q(z′i|zi) is a random walk proposal density truncated at [0, 1].



(a) p = 10. (b) p = 25. (c) p = 50.

Figure S2: Simulation true graphs in Scenario 1 (cyclic graphs with confounders).

(a) p = 10. (b) p = 25. (c) p = 50.

Figure S3: Simulation true graphs in Scenario 2 (acyclic graphs with confounders).

S5 ADDITIONAL DETAILS OF THE EXPERIMENTS

Figures S2–S4 show the randomly generated simulation true causal graphs in Scenarios 1–3.

S5.1 ADDITIONAL DETAILS OF SIMULATION SCENARIO 2 AND 3

Table S3 and S4 respectively show summaries for simulation scenario 2 and 3. Clearly, CHOD outperformed others by a
significant amount. Further, we compared our method with CAM, RESIT, IGCI, EMD, bQCD, NOTEARS, and DAG-GNN
in the acyclic graphs without confounders scenario. The result is shown in Table S5. However, the performance of these
methods did not improve much compared to the scenario with confounders, and the proposed CHOD still significantly
outperformed them. We suspect this is because the simulated data are heterogeneous and these methods were not designed
to handle data heterogeneity. Additionally, we used p = 10 and n ∈ {125, 500} in the acyclic graph with confounders case
to illustrate the comparison with alternative methods (RFCI, RICA, CAM, GDS, RESIT, IGCI, EMD, and bQCD as in the
main text), where Z was included as a graph node. Results are shown in Table S6. The conclusion stays the same: CHOD
outperforms the alternatives with larger TPR and smaller FDR.

S5.2 ADDITIONAL DETAILS OF MODEL MISSPECIFICATION

Misspecification 1 Figure S5 showed the result of model misspecification 1.

Misspecification 2 We considered a dataset with n = 250 observations which were assigned to K = 10 clusters uniformly
at random. We considered the two causal graphs previously used in model misspecification 1, of which the structures were



(a) p = 10. (b) p = 25. (c) p = 50.

Figure S4: Simulation true graphs in Scenario 3 (cyclic graphs without confounders).

assumed to be the same across clusters but the causal effects were different. Within each cluster, we generated Zk uniformly
from [−k/10,−(k − 1)/10] ∪ [(k − 1)/10, k/10] andXk from the following SEM for k = 1, . . . ,K,

Xk =D(Zk) +BkXk + Ek, Ek ∼ N(0, I),

whereD(Z) = [dj(Z)] andBk = [bjℓk]. We set dj(Z) = Z,∀j and non-zero coefficients bjℓk = k/10. Confounders were
again discarded at the model fitting stage and Z was unobserved.

For CHOD, we first imputed Z by UMAP. Then the mean effects of Z were regressed out. We compared CHOD with RICA
and CAM. The results are shown in Figure S6. Despite the fact the data were partially homogeneous, the confounding
effects were non-constant (vary across clusters), and exogenous covariates were unknown, CHOD combined with UMAP
substantially outperformed the competing methods with AUC 0.980 and 0.957 for the three-node and the four-node graphs,
respectively.

S5.3 ADDITIONAL RESULTS FOR THE APPLICATION

The estimated networks from CHOD are shown in Figure S7. CHOD performed especially well on the PTEN/AKT/MDM-2
loop (Network E).
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Table S3: Simulation Scenario 2. Average operating characteristics over 50 repetitions. The standard deviation for each
statistic is given within parentheses. The best performance is shown in boldface.

n = 125
p = 10 p = 25 p = 50

TPR FDR MCC TPR FDR MCC TPR FDR MCC

CHOD 0.659 (0.114) 0.258 (0.103) 0.656 (0.080) 0.625 (0.076) 0.243 (0.093) 0.644 (0.078) 0.541 (0.055) 0.274 (0.089) 0.572 (0.060)
RFCI 0.314 (0.097) 0.393 (0.165) 0.373 (0.127) 0.288 (0.044) 0.524 (0.063) 0.332 (0.050) 0.093 (0.031) 0.849 (0.049) 0.097 (0.039)
RICA 0.569 (0.091) 0.754 (0.041) 0.223 (0.077) 0.435 (0.053) 0.889 (0.014) 0.089 (0.033) 0.436 (0.053) 0.945 (0.010) 0.080 (0.021)
CAM 0.436 (0.157) 0.899 (0.036) 0.029 (0.101) 0.323 (0.073) 0.940 (0.014) 0.058 (0.036) 0.199 (0.037) 0.959 (0.017) 0.042 (0.018)
GDS 0.214 (0.134) 0.769 (0.139) 0.148 (0.139) 0.368 (0.119) 0.706 (0.132) 0.257 (0.087) 0.335 (0.079) 0.750 (0.042) 0.255 (0.035)

RESIT 0.058 (0.065) 0.827 (0.199) 0.057 (0.110) 0.018 (0.033) 0.941 (0.110) 0.013 (0.060) 0.058 (0.040) 0.829 (0.131) 0.085 (0.072)
IGCI 0.107 (0.039) 0.540 (0.138) 0.188 (0.074) 0.150 (0.084) 0.570 (0.302) 0.166 (0.092) 0.063 (0.033) 0.900 (0.051) 0.062 (0.042)
EMD 0.004 (0.022) 0.980 (0.100) 0.018 (0.051) 0.108 (0.069) 0.634 (0.339) 0.113 (0.075) 0.075 (0.036) 0.881 (0.054) 0.078 (0.044)
bQCD 0.004 (0.022) 0.990 (0.050) 0.016 (0.074) 0.058 (0.056) 0.707 (0.381) 0.050 (0.069) 0.050 (0.021) 0.920 (0.033) 0.046 (0.027)

NOTEARS 0.785 (0.033) 0.819 (0.026) 0.252 (0.028) 0.839 (0.021) 0.933 (0.028) 0.175 (0.024) 0.267 (0.029) 0.948 (0.043) 0.045 (0.011)
DAG-GNN 0.801 (0.029) 0.773 (0.021) 0.311 (0.023) 0.837 (0.041) 0.824 (0.038) 0.203 (0.035) 0.462 (0.035) 0.897 (0.048) 0.175 (0.039)

n = 250
p = 10 p = 25 p = 50

TPR FDR MCC TPR FDR MCC TPR FDR MCC

CHOD 0.718 (0.118) 0.237 (0.094) 0.695 (0.086) 0.696 (0.081) 0.205 (0.070) 0.705 (0.060) 0.659 (0.086) 0.216 (0.061) 0.713 (0.065)
RFCI 0.425 (0.081) 0.407 (0.127) 0.433 (0.091) 0.369 (0.034) 0.536 (0.051) 0.372 (0.037) 0.148 (0.030) 0.836 (0.034) 0.130 (0.033)
RICA 0.574 (0.114) 0.757 (0.046) 0.209 (0.088) 0.547 (0.070) 0.879 (0.015) 0.127 (0.041) 0.565 (0.044) 0.946 (0.004) 0.093 (0.017)
CAM 0.533 (0.246) 0.893 (0.049) 0.053 (0.156) 0.351 (0.059) 0.945 (0.013) 0.059 (0.031) 0.164 (0.051) 0.960 (0.013) 0.037 (0.027)
GDS 0.243 (0.093) 0.767 (0.087) 0.159 (0.099) 0.325 (0.134) 0.713 (0.121) 0.225 (0.066) 0.286 (0.103) 0.751 (0.082) 0.214 (0.090)

RESIT 0.129 (0.083) 0.738 (0.162) 0.128 (0.116) 0.033 (0.059) 0.869 (0.095) 0.078 (0.075) 0.092 (0.061) 0.852 (0.097) 0.076 (0.075)
IGCI 0.111 (0.064) 0.783 (0.117) 0.094 (0.085) 0.135 (0.039) 0.847 (0.057) 0.112 (0.051) 0.099 (0.038) 0.868 (0.047) 0.097 (0.042)
EMD 0.111 (0.091) 0.784 (0.174) 0.091 (0.131) 0.167 (0.068) 0.815 (0.075) 0.144 (0.074) 0.107 (0.033) 0.857 (0.036) 0.106 (0.034)
bQCD 0.127 (0.099) 0.793 (0.167) 0.104 (0.129) 0.125 (0.068) 0.863 (0.077) 0.098 (0.074) 0.079 (0.022) 0.893 (0.023) 0.074 (0.021)

NOTEARS 0.792 (0.024) 0.825 (0.031) 0.291 (0.027) 0.761 (0.067) 0.948 (0.041) 0.139 (0.052) 0.538 (0.029) 0.919 (0.038) 0.149 (0.030)
DAG-GNN 0.808 (0.051) 0.792 (0.043) 0.322 (0.047) 0.763 (0.036) 0.902 (0.027) 0.167 (0.030) 0.573 (0.053) 0.827 (0.058) 0.192 (0.055)

n = 500
p = 10 p = 25 p = 50

TPR FDR MCC TPR FDR MCC TPR FDR MCC

CHOD 0.801 (0.117) 0.232 (0.101) 0.759 (0.100) 0.818 (0.086) 0.196 (0.068) 0.793 (0.074) 0.854 (0.050) 0.160 (0.111) 0.843 (0.082)
RFCI 0.469 (0.051) 0.529 (0.063) 0.383 (0.060) 0.430 (0.028) 0.548 (0.031) 0.397 (0.028) 0.195 (0.020) 0.834 (0.019) 0.151 (0.019)
RICA 0.683 (0.109) 0.748 (0.033) 0.254 (0.077) 0.598 (0.060) 0.884 (0.011) 0.127 (0.033) 0.701 (0.032) 0.945 (0.003) 0.113 (0.012)
CAM 0.471 (0.179) 0.906 (0.036) 0.013 (0.113) 0.345 (0.059) 0.926 (0.031) 0.073 (0.045) 0.158 (0.018) 0.968 (0.014) 0.023 (0.028)
GDS 0.230 (0.030) 0.791 (0.029) 0.137 (0.031) 0.378 (0.025) 0.673 (0.052) 0.281 (0.068) 0.326 (0.063) 0.671 (0.081) 0.311 (0.058)

RESIT 0.194 (0.103) 0.787 (0.091) 0.129 (0.099) 0.030 (0.039) 0.864 (0.051) 0.074 (0.043) 0.274 (0.134) 0.799 (0.075) 0.213 (0.106)
IGCI 0.167 (0.059) 0.640 (0.109) 0.193 (0.076) 0.191 (0.075) 0.784 (0.092) 0.171 (0.085) 0.096 (0.021) 0.862 (0.038) 0.098 (0.029)
EMD 0.111 (0.052) 0.770 (0.127) 0.105 (0.083) 0.200 (0.081) 0.774 (0.099) 0.181 (0.093) 0.079 (0.015) 0.889 (0.021) 0.076 (0.017)
bQCD 0.100 (0.035) 0.795 (0.086) 0.087 (0.052) 0.175 (0.080) 0.807 (0.102) 0.151 (0.093) 0.070 (0.016) 0.900 (0.026) 0.066 (0.021)

NOTEARS 0.899 (0.013) 0.827 (0.020) 0.343 (0.018) 0.783 (0.033) 0.918 (0.029) 0.179 (0.031) 0.572 (0.024) 0.913 (0.046) 0.145 (0.033)
DAG-GNN 0.923 (0.022) 0.804 (0.029) 0.379 (0.025) 0.815 (0.035) 0.891 (0.037) 0.224 (0.035) 0.590 (0.028) 0.906 (0.029) 0.166 (0.029)

n = 1000
p = 10 p = 25 p = 50

TPR FDR MCC TPR FDR MCC TPR FDR MCC

CHOD 0.884 (0.109) 0.196 (0.082) 0.826 (0.098) 0.861 (0.065) 0.185 (0.043) 0.830 (0.052) 0.867 (0.044) 0.160 (0.082) 0.861 (0.065)
RFCI 0.489 (0.048) 0.567 (0.039) 0.365 (0.041) 0.469 (0.025) 0.546 (0.025) 0.418 (0.025) 0.222 (0.032) 0.848 (0.023) 0.152 (0.027)
RICA 0.703 (0.079) 0.759 (0.023) 0.243 (0.056) 0.714 (0.031) 0.884 (0.005) 0.147 (0.017) 0.828 (0.021) 0.945 (0.002) 0.129 (0.008)
CAM 0.468 (0.132) 0.906 (0.026) 0.012 (0.083) 0.392 (0.077) 0.909 (0.038) 0.096 (0.082) 0.123 (0.046) 0.963 (0.014) 0.027 (0.027)
GDS 0.296 (0.064) 0.773 (0.039) 0.175 (0.054) 0.332 (0.079) 0.756 (0.071) 0.195 (0.084) 0.313 (0.085) 0.673 (0.077) 0.319 (0.023)

RESIT 0.216 (0.094) 0.778 (0.044) 0.150 (0.069) 0.032 (0.039) 0.861 (0.045) 0.076 (0.042) 0.375 (0.071) 0.836 (0.032) 0.183 (0.058)
IGCI 0.111 (0.117) 0.750 (0.264) 0.119 (0.183) 0.183 (0.059) 0.813 (0.063) 0.149 (0.064) 0.115 (0.021) 0.836 (0.091) 0.119 (0.045)
EMD 0.111 (0.117) 0.750 (0.264) 0.119 (0.183) 0.204 (0.029) 0.793 (0.033) 0.170 (0.033) 0.110 (0.009) 0.865 (0.036) 0.101 (0.018)
bQCD 0.111 (0.117) 0.750 (0.764) 0.119 (0.183) 0.246 (0.088) 0.749 (0.095) 0.214 (0.096) 0.113 (0.020) 0.849 (0.080) 0.114 (0.041)

NOTEARS 0.964 (0.025) 0.738 (0.031) 0.426 (0.030) 0.836 (0.037) 0.913 (0.042) 0.172 (0.035) 0.678 (0.022) 0.903 (0.029) 0.126 (0.024)
DAG-GNN 0.952 (0.037) 0.722 (0.031) 0.433 (0.033) 0.802 (0.039) 0.822 (0.041) 0.251 (0.045) 0.699 (0.028) 0.857 (0.032) 0.149 (0.030)



Table S4: Simulation Scenario 3. Average operating characteristics over 50 repetitions. The standard deviation for each
statistic is given within parentheses. The best performance is shown in boldface.

n = 125
p = 10 p = 25 p = 50

TPR FDR MCC TPR FDR MCC TPR FDR MCC

CHOD 0.719 (0.063) 0.281 (0.081) 0.657 (0.079) 0.712 (0.058) 0.326 (0.043) 0.628 (0.032) 0.688 (0.068) 0.329 (0.039) 0.616 (0.048)
LiNG 0.873 (0.090) 0.864 (0.006) 0.031 (0.038) 0.875 (0.082) 0.917 (0.011) 0.021 (0.043) 0.752 (0.094) 0.928 (0.014) 0.009 (0.031)
ANM 0.128 (0.021) 0.866 (0.049) 0.029 (0.030) 0.031 (0.046) 0.855 (0.042) 0.016 (0.024) 0.018 (0.033) 0.863 (0.048) 0.011 (0.031)

n = 250
p = 10 p = 25 p = 50

TPR FDR MCC TPR FDR MCC TPR FDR MCC

CHOD 0.813 (0.033) 0.252 (0.072) 0.753 (0.068) 0.751 (0.049) 0.322 (0.055) 0.727 (0.058) 0.745 (0.056) 0.322 (0.041) 0.725 (0.044)
LiNG 0.842 (0.073) 0.866 (0.009) 0.025 (0.048) 0.856 (0.072) 0.920 (0.008) 0.013 (0.042) 0.768 (0.833) 0.953 (0.010) 0.006 (0.039)
ANM 0.133 (0.043) 0.851 (0.027) 0.029 (0.048) 0.029 (0.020) 0.917 (0.048) 0.007 (0.033) 0.028 (0.032) 0.855 (0.048) 0.022 (0.044)

n = 500
p = 10 p = 25 p = 50

TPR FDR MCC TPR FDR MCC TPR FDR MCC

CHOD 0.891 (0.031) 0.234 (0.069) 0.782 (0.065) 0.885 (0.045) 0.257 (0.052) 0.754 (0.037) 0.786 (0.041) 0.319 (0.029) 0.748 (0.027)
LiNG 0.809 (0.072) 0.867 (0.010) 0.015 (0.049) 0.823 (0.098) 0.915 (0.014) 0.014 (0.030) 0.743 (0.086) 0.947 (0.012) 0.005 (0.038)
ANM 0.138 (0.026) 0.827 (0.021) 0.027 (0.036) 0.021 (0.039) 0.847 (0.040) 0.016 (0.041) 0.022 (0.045) 0.853 (0.042) 0.019 (0.038)

n = 1000
p = 10 p = 25 p = 50

TPR FDR MCC TPR FDR MCC TPR FDR MCC

CHOD 0.953 (0.028) 0.219 (0.071) 0.844 (0.063) 0.947 (0.033) 0.247 (0.039) 0.839 (0.031) 0.939 (0.029) 0.251 (0.018) 0.835 (0.023)
LiNG 0.805 (0.073) 0.855 (0.012) 0.021 (0.037) 0.784 (0.075) 0.916 (0.010) 0.011 (0.046) 0.766 (0.087) 0.933 (0.010) 0.008 (0.045)
ANM 0.167 (0.028) 0.856 (0.042) 0.016 (0.037) 0.031 (0.023) 0.849 (0.039) 0.018 (0.021) 0.021 (0.033) 0.877 (0.054) 0.011 (0.029)

Table S5: Simulation acyclic graph without confounders. n = 500 and p = 10. Average operating characteristics over 50
repetitions. The standard deviation for each statistic is given within parentheses. The best performance is shown in boldface.

CHOD CAM RESIT IGCI EMD bQCD NOTEARS DAG-GNN

TPR 0.759 (0.141) 0.068 (0.061) 0.078 (0.054) 0.178 (0.099) 0.055 (0.008) 0.112 (0.009) 0.843 (0.021) 0.855 (0.019)
FDR 0.224 (0.142) 0.811 (0.207) 0.697 (0.308) 0.468 (0.298) 0.921 (0.003) 0.678 (0.011) 0.692 (0.033) 0.652 (0.028)
MCC 0.743 (0.152) 0.066 (0.105) 0.107 (0.121) 0.272 (0.183) 0.002 (0.001) 0.149 (0.009) 0.475 (0.027) 0.481 (0.029)

Table S6: Simulation with Z included. Average operating characteristics over 50 repetitions. The standard deviation for each
statistic is given within parentheses. The best performance is shown in boldface.

n = 125 CHOD RFCI RICA CAM GDS RESIT IGCI EMD bQCD

TPR 0.659 (0.114) 0.183 (0.065) 0.003 (0.017) 0.003 (0.017) 0.143 (0.074) 0.040 (0.060) 0.013 (0.052) 0.083 (0.042) 0.080 (0.029)
FDR 0.258 (0.103) 0.745 (0.079) 0.917 (0.289) 0.993 (0.033) 0.823 (0.086) 0.863 (0.232) 0.960 (0.138) 0.690 (0.100) 0.700 (0.093)
MCC 0.656 (0.080) 0.112 (0.074) -0.017 (0.091) -0.061 (0.020) 0.057 (0.084) 0.009 (0.103) -0.042 (0.084) 0.107 (0.062) 0.102 (0.050)

n = 500 CHOD RFCI RICA CAM GDS RESIT IGCI EMD bQCD

TPR 0.801 (0.117) 0.266 (0.057) 0.000 (0.000) 0.208 (0.102) 0.195 (0.072) 0.257 (0.096) 0.190 (0.051) 0.202 (0.071) 0.178 (0.061)
FDR 0.232 (0.101) 0.738 (0.051) 1.000 (0.000) 0.703 (0.139) 0.789 (0.065) 0.833 (0.061) 0.719 (0.078) 0.709 (0.063) 0.822 (0.078)
MCC 0.759 (0.100) 0.142 (0.058) -0.053 (0.020) 0.166 (0.128) 0.100 (0.070) 0.068 (0.086) 0.147 (0.067) 0.159 (0.071) 0.081 (0.073)
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(a) Direct causal effect functions. (b) The three-node graph. (c) The four-node graph.
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(d) Three-node graph with uniform noises.
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(e) Four-node graph with uniform noises.
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(f) Three-node graph with Gaussian noises.
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(g) Four-node graph with Gaussian noises.

Figure S5: Misspecification 1. (a) Simulation true direct causal effect functions. (b)-(c) Simulation true graphs. Solid red
nodes are latent (discarded at model fitting stage). (d)-(g) Receiver operating characteristics curves for recovering causal
relationships between observed variables under varying degrees of heterogeneity are represented by the same line types as
shown in (a).
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(a) Three-node graph.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

FPR

TP
R

FPR

TP
R

(b) Four-node graph.

Figure S6: Misspecification 2. Receiver operating characteristics curves for CHOD, RICA, and CAM are represented by
solid, dashed, and dotted lines, respectively.
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Figure S7: Estimated feedback loops using the proposed CHOD. Solid arrows are true positives, dashed arrows are false
negatives, and dotted arrows are false positives.
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