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Abstract

Linear coupling is recently proposed to acceler-
ate first-order algorithms by linking gradient de-
scent and mirror descent together, which is able
to achieve an accelerated convergence rate. This
work focuses on the convergence analysis of linear
coupling for convex composite minimization when
a proximal operator cannot be exactly computed.
It is of particular interest to study the convergence
of linear coupling because it not only achieves
the accelerated convergence rate for first-order al-
gorithms but also works for generic norms. We
present convergence analysis of linear coupling by
allowing the proximal operator to be computed up
to a certain precision. Our analysis illustrates that
the accelerated convergence rate of linear coupling
with an inexact proximal operator can be preserved
if the error sequence of the inexact proximal oper-
ator decreases in a sufficiently fast rate. More im-
portantly, our analysis leads to better bounds than
existing works with inexact proximal operators.
Experiment results on several real-world datasets
verify our theoretical results.

1 INTRODUCTION

In this work, we consider convex composite minimization
problems in the form of

min
x∈Rd

f(x)
def
= g(x) + h(x), (1)

where g is convex or µ-strongly convex, and L-smooth,
and h is convex but possibly non-smooth [Nesterov, 2005].
Various machine learning problems can be formulated in
the form of (1), where g defines a convex loss function for

*Most of this work was performed while the first author worked
as a postdoc at NTU, Singapore.

training examples, and h regularizes the model to promote
a specified structure [Bach et al., 2011, Sra et al., 2012,
Jenatton et al., 2011]. For instance, it is well-known that
h(x) = ‖x‖1 can be used to induce a sparse structure for
x [Tibshirani, 1996]. In addition, constrained optimization
problems can also be formulated in the form of (1) through
reformulation. Specifically, for any convex optimization
problem with constraint x ∈ C, it can be reformulated as
(1) by defining h(x)

def
= IC(x) as the indicator function of

the convex set C, where IC(x) = 0 if x∈ C or IC(x) =∞
otherwise.

To solve (1), first-order algorithms are the most popular
choice due to their simplicity and generality [Sra et al.,
2012, Nesterov, 2013]. First-order algorithms generally as-
sume that the first-order gradient of a smooth function
can be queried by a black-box in constant time. There-
fore, the complexity for solving a smooth and convex func-
tion f is measured by the number of times that first-order
gradients are queried to produce a sequence {xk}Tk=1 s.t.
f(xT ) − f(x?) ≤ ε, where x? is the optimal solution. A
gradient descent algorithm has O(L/ε) iteration complexity
for L-smooth convex minimization problems, which can
be improved to O(L/µ log(1/ε)) when the function is µ-
strongly convex and L-smooth [Nesterov, 2013]. However,
these complexities are not optimal, which leaves big space
for improvement [Nemirovsky and Yudin, 1983]. In the
seminal work [Nesterov, 1983], Nesterov laid the founda-
tion of accelerated gradient methods (AGDs) for convex
and L-smooth functions (i.e. h(x) = 0 in (1)). Specifi-
cally, the method proposed in [Nesterov, 1983] successfully
improves the complexities of gradient descent methods to
O(
√
L/ε) andO(

√
L/µ log(1/ε)) for generally µ-strongly

convex and smooth functions, respectively, which are accel-
erated and optimal for first-order algorithms [Nemirovsky
and Yudin, 1983, Nesterov, 2013]. Since then, accelerated
first-order algorithms with the optimal convergence rate
have been further developed to solve convex composite min-
imization problems [Tseng, 2008, Lin et al., 2017].

However, the interpretation of the proof of acceleration and
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intuitions behind the convergence analysis in Nesterov’s
AGDs are not clear. Many efforts have been devoted to
present a clear interpretation for Nesterov’s AGDs, or alter-
natively to develop new accelerated and interpretable vari-
ants with the optimal convergence rate [Bubeck et al., 2015,
Su et al., 2014, Krichene et al., 2015, Diakonikolas and
Orecchia, 2018]. Recently, Allen Zhu and Orecchia [2017]
proved that the optimal convergence rate can be achieved
for smooth and convex optimization problems by linearly
coupling two fundamental first-order algorithms (namely
gradient descent and mirror descent). Later, Rodomanov
[2016] extended linear coupling to generally convex com-
posite minimization problems.

As a variant of Nesterov’s AGDs, linear coupling (LC)
elegantly extends AGDs to non-Euclidean norms, which
is important for many applications. In [Allen Zhu and
Orecchia, 2017, Appendix A.1], several concrete exam-
ples have been presented to illustrate the importance of
allowing non-Euclidean norms in first-order algorithms.
For example, one prefers to use the `1 norm instead of
the `2 norm gradient descent for the saddle point prob-
lem minx∈∆n maxy∈∆m y>Ax, where ∆n and ∆m de-
notes the unit simplex in Rn and Rm, respectively, and
A ∈ Rm×n with all the entries being in [−1, 1]. In this
problem, there are two reasons for choosing the `1 norm
gradient descent as follows.

1) In order to apply the `2 norm gradient descent, one
needs to further assume the square `2 norm of each row
of A is upper bounded by 1. Obviously, it is a stronger
condition and harder to satisfy than that of the `1 norm.

2) More importantly, even the stronger condition is satis-
fied, the `2 norm also leads to a larger value for L, thus the
`1 norm gradient descent has faster convergence [Nesterov,
2005]. Another example is near-linear time maximum flow
in which one need to apply `∞ gradient descent [Kelner
et al., 2014].

For convex composite optimization problems (1), the proxi-
mal gradient descent [Parikh and Boyd, 2014] performs the
following updates:

xk+1 = proxηk+1h

(
xk − ηk+1∇g(xk)

)
,

where proxηh(·) is the proximal operator [Combettes and
Pesquet, 2011] of ηh(x) defined for any scalar η > 0 as the
unique solution of

proxηh(y) = argmin
x∈Rd

{
ηh(x) +

1

2
‖x− y‖2

}
. (2)

If h is considerably simple (e.g., h(x) = ‖x‖1), there is an
analytical solution for xk+1 [Combettes and Pesquet, 2011].
However, in more general cases, it is challenging to obtain
the exact solution of the proximal operator possibly due to
the following two reasons.

• First, the proximal operator does not admit an analytical
solution. For example, there is no closed form solution for
the proximal operator if h is the isotropic total variation
regularization [Beck and Teboulle, 2009]. In this case, the
proximal operator can only be solved by employing some
optimization algorithm up to a certain precision. More
details of this example can be found in Experiments.

• Second, it may be computationally expensive to obtain
the exact solution. For instance, for optimization prob-
lems with an `1 norm ball constraint (e.g., h(x) =
I‖x‖1≤r(x), r ∈ R+), the complexity of exactly perform-
ing the proximal operator isO(d log d) [Duchi et al., 2008,
Liu and Ye, 2009]. Therefore, it is highly demanding in
computation for high-dimensional cases as d is consid-
erably large. We empirically compare the efficiency of
exact and inexact proximal operator of the `1 norm ball
constraint. The result suggests that the inexact proximal
operator outperforms the exact counterpart by carefully
controlling the error sequences in this application.

In [Allen Zhu and Orecchia, 2017], the objective is assumed
to be convex and smooth, i.e., h(x) = 0. Thus, the analysis
of linear coupling does not involve the computation of prox-
imal operator. However, it is well-known that many machine
learning problems can be formulated as a convex composite
minimization problem due to the non-smooth regularization.
Therefore, it is of particular interest to characterize the con-
vergence behavior of linear coupling, when the proximal
operator is not exactly solved. However, existing analyses
[Schmidt et al., 2011] on inexact proximal operators only
cover the `2 norm case, thus they are not applicable to lin-
ear coupling due to non-Euclidean norms. To this end, we
present a complete study for the convergence rate of linear
coupling with inexact proximal operators.

Compared with existing works [Schmidt et al., 2011, Lin
et al., 2017, Kulunchakov and Mairal, 2019], our focus is the
convergence analysis of linear coupling with inexact prox-
imal operators, which presents new challenges due to the
generic Bregman divergence (refer to Definition 3). In par-
ticular, the key step for analyzing inexact proximal operators
is to bound the subgradient of inexact solution. It is an easy
task in the case of squared Euclidean distance as the bound-
ing problem has an analytical solution [Schmidt et al., 2011].
In contrast, it does not admit an analytical form in our case
due to the generic Bregman divergence, e.g., the Kullback-
Leibler divergence. To address it, we present a relaxation
method for the bounding problem so that the subgradient
still can be bounded (see Lemma 1). More importantly, our
analysis leads to tighter bounds (refer to Remarks 2 and 5
for details) than previous works [Schmidt et al., 2011, Lin
et al., 2017, Kulunchakov and Mairal, 2019].



2 NOTATION AND PRELIMINARIES

Throughout this paper, vectors and matrices are denoted by
lower-case and upper-case boldface characters (e.g., x and
X), respectively. Let 0 be a vector or matrix with all its
entries equal to 0. For both x,y∈Rd, their inner product
is denoted by 〈x,y〉 =

∑d
i=1xiyi. Let ‖ · ‖ be a generic

norm and its dual norm is denoted by ‖ · ‖∗ that is defined
as ‖y‖∗ = supx

{
〈x,y〉 | ‖x‖ ≤ 1}. Let ‖ · ‖1 and ‖ · ‖2

denote the `1 and the `2 norm, respectively.

Definition 1. A function f is L-smooth w.r.t. ‖ · ‖, if

f(y) ≤ f(x) + 〈∇f(x),y − x〉+
L

2
‖y − x‖2, ∀x,y.

Definition 2. A function f is µ-strongly convex w.r.t. ‖ · ‖, if

f(y) ≥ f(x) + 〈∇f(x),y − x〉+
µ

2
‖y − x‖2, ∀x,y.

Definition 3. Let ψ : Q → R be a strictly convex and
continuously differentiable function. Then, the Bregman di-
vergence is

Vψ(y,x)
def
=ψ(y)− ψ(x)− 〈∇ψ(x),y − x〉,∀x,y ∈ Q.

Definition 3 implies Vψ(x,x) = 0, and Vψ(y,x) ≥ ρ
2‖x−

y‖2 if ψ is ρ-strongly convex w.r.t. ‖ · ‖. The Bregman
divergence includes many well-known examples.

• 1) If ψ(x)
def
= 1

2‖x‖
2
2, then Vψ(y,x) is the squared

Euclidean distance Vψ(y,x) = 1
2‖x− y‖22.

• 2) If Q def
=
{
x ∈ Rd+|

∑
i xi = 1

}
and ψ(x)

def
=∑

i xi log xi, then Vψ(y,x) becomes the Kullback-
Leibler divergence Vψ(y,x) =

∑
i yi log( yixi ) be-

tween two probability distributions x and y. In par-
ticular, ψ(x) in this case is 1-strongly convex w.r.t.
‖ · ‖1 that leads to Vψ(y,x) ≥ ‖x− y‖21. In this case,
one needs to employ optimization methods that are
applicable for the `1 norm. Therefore, this example
illustrates the importance of convergence analysis for
linear coupling with inexact proximal operators since
it works for a generic norm.

Definition 4. For function f(x), its convex conjugate is
defined as

f∗(y)
def
= sup

x

{
〈x,y〉 − f(x)

}
.

3 LINEAR COUPLING WITH INEXACT
PROXIMAL OPERATOR

For smooth and convex functions, the accelerated conver-
gence rate can be obtained by two non-accelerated algo-
rithms: linearly coupling gradient descent and mirror de-
scent [Allen Zhu and Orecchia, 2017]. In fact, it can also

Algorithm 1 LC with Inexact Proximal Operators

1: Input: x0, α0, µ, L
2: Initialization: y0 ← x0, z0 ← x0

3: for k = 0 to T−1 do
4: if µ = 0 then
5: Set ηk+1 ← k+2

2L and τk ← 1
Lηk+1

6: Set wk+1 ← zk
7: else
8: Set ηk+1← 1

Lαk+1
and τk← Lαk+1−µ

L−µ where αk+1

is obtained via α2
k+1 =(1− αk+1)α2

k + µ
Lαk+1

9: Set wk+1 ← τk
αk+1

zk +
(
1− τk

αk+1

)
yk

10: end if
11: xk+1 ← τkzk + (1− τk)yk
12: Find a ξk+1-suboptimal solution yk+1 for (3)
13: Find a ξk+1-suboptimal solution zk+1 for (4)
14: end for
15: Output: yT

be extended to solve convex composite minimization prob-
lem (1) [Rodomanov, 2016]. We assume that g is convex
(µ = 0) or µ-strongly convex (µ > 0), and L-smooth w.r.t.
‖ · ‖. Here, we present the extension of linear coupling (LC)
for (1) when g is either convex (µ = 0) or strongly convex
(µ > 0) and summarize the high-level idea in Algorithm 1.
Missing proofs can be found in Appendix.

Let yk and zk be the outputs of gradient descent and mirror
descent in the (k−1)-th iteration, respectively. The key idea
of linear coupling is to combine yk and zk together by a
linear coupling rate τk as the starting point for the next
iteration such that the accelerated convergence rate can be
achieved.

Define xk+1
def
= τkzk + (1− τk)yk. In linear coupling, the

gradient descent performs the following update:

yk+1 = argmin
y

Q̃k+1(y;xk+1), (3)

where Q̃k+1(y;xk+1) is define as

Q̃k+1(y;xk+1) = 〈∇g(xk+1),y〉+h(y)+
L

2
‖y−xk+1‖2.

Define ηk+1, τk and wk+1 as in Algorithm 1, the mirror
descent performs the following update:

zk+1 = argmin
x

Q̂k+1(z;wk+1), (4)

where

Q̂k+1(z;wk+1)
def
= 〈∇g(xk+1), z〉+h(z) +

Vψ(z,wk+1)

ηk+1
.

Unlike standard gradient descent and mirror descent, the
linear coupling takes the gradient at xk+1 instead of yk
or zk to obtain yk+1 and zk+1. In this way, the gradient



descent and mirror descent are coupled together to solve (1),
which is able to achieve the optimal convergence rate [Allen
Zhu and Orecchia, 2017].

3.1 THE ξk+1-SUBOPTIMAL SOLUTION

The proximal operator is involved in both (3) and (4) due
to the non-smooth function h. It is worth noting that the
proximal distance in both (3) and (4) are defined based a
generic norm ‖ · ‖ instead of ‖ · ‖2. Specifically, they are the
squared norm ‖ · ‖2 and the general Bregman divergence
Vψ(·, ·), respectively. In contrast, existing works mainly
focus on the case of the squared Euclidean distance (the
`2 norm). Therefore, (3) and (4) are more challenging to
solve than existing works. In other words, it is often the
case that (3) and (4) can only be solved up to a certain
precision. Therefore, it is critical to study the convergence
rate of Algorithm 1 by allowing the proximal operator of
the form (3) and (4) to be solved approximately.

For the case of inexact proximal operators, we introduce
ξk+1-suboptimal solution to analyze the convergence rate of
Algorithm 1. We assume that h is equipped with an oracle
such that the proximal operator can be computed up to a
certain precision. Specifically, given a non-negative ξk+1,
the oracle is able to produce yk+1 and zk+1 such that

Q̃k+1(yk+1;xk+1)−min
y
Q̃k+1(y;xk+1) ≤ ξk+1, (5)

Q̂k+1(zk+1;wk+1)−min
z
Q̂k+1(z;wk+1) ≤ ξk+1. (6)

If ξk+1 = 0, it implies that the proximal operator is exactly
solved for both (3) and (4). Otherwise, it means that the
proximal operator is solved up to a certain precision con-
trolled by ξk+1. Thus, yk+1 and zk+1 are referred to as
ξk+1-suboptimal solutions to (3) and (4), respectively.

Note that the inexactness criteria (5) and (6) are same as
those used in [Schmidt et al., 2011, Lin et al., 2017, Kulun-
chakov and Mairal, 2019]. Whereas such a type of criteria
has limitations, it remains the most standard one for conver-
gence analysis with inexact proximal operator.

Our analysis allows that the sub-problems (3) and (4) do
not admit closed-form solutions Therefore one needs to
compute an approximate solution up to a certain accuracy
with some iterative algorithmM. Note that both the sub-
problems (3) and (4) are strongly convex even the objective
f(x) is not strongly convex. The strong convexity allows us
to efficiently obtain a ξk+1-suboptimal solution viaM with
a linear convergence rate [Lin et al., 2017, Kulunchakov and
Mairal, 2019].

4 CONVERGENCE ANALYSIS

In this section, we present the convergence analysis for Al-
gorithm 1 when applying it to solve (1). Specifically, we first

present properties of a suboptimal solution in Section 4.1.
Then, in Sections 4.2 and 4.3, we present specific conver-
gence results of Algorithm 1 for µ = 0 and µ > 0, in
Theorems 1 and 2, respectively. For convenience, we also
assume that ψ(x) is 1-strongly convex and ρ-smooth w.r.t.
‖ · ‖. By introducing the Bregman divergence, our analy-
sis can include more cases than existing works. In other
words, it can recover many general cases. For example,
the counterpart considers the squared `2-norm that can be
easily obtained by setting ψ(x) = 1

2‖x‖
2
2 where ψ(x) is

1-strongly convex and 1-smooth w.r.t. the `2-norm.

4.1 PROPERTIES OF SUBOPTIMAL SOLUTION

For convergence analysis with inexact proximal operators,
the key is to bound the solution of inexact proximal operator
and the ξ-subgradient of the inexact solution. Thus, we
first introduce the definition of ξ-subgradient, which is a
generalization of subgradient.

Definition 5. [Bertsekas et al., 2003] For convex function
f : Rd → R and a non-negative scalar ξ, ∂ξf(x) is the
ξ-subgradient of f at x if it holds that, ∀v ∈ ∂ξf(x),

f(y) ≥ f(x) + 〈v,y − x〉 − ξ,∀y ∈ Rd. (7)

Definition 5 implies that 0 is a ξ-subgradient of f at x if x
is a ξ-suboptimal solution of f . In the case of the `2 norm,
Schmidt et al. [2011] showed that v in Definition 5 can
be easily bounded as the squared Euclidean distance in (2)
which leads to an analytical form for v. In contrast, our
case is more challenging as it involves (∇ψ)−1 which gen-
erally does not has an analytical form for generic Bregman
divergence. To address this problem, we present a relaxation
method by exploiting the strongly convexity of ψ so that it
still admits an analytical form. We define

Qk+1(z;wk+1)
def
= 〈∇g(xk+1), z−wk+1〉+ h(z).

If zk+1 is ξk+1-suboptimal to (4), Lemma 1 provides a
ξk+1-subgradient for Qk+1(·;wk+1) at zk+1.

Lemma 1. For ∀k ≥ 0, if zk+1 is a ξk+1-suboptimal solu-
tion to (4) in the sense of (6), then there exists βk+1 with
‖βk+1‖2∗ ≤ 2ρξk+1/ηk+1 such that

∇ψ(wk+1)−∇ψ(zk+1)

ηk+1
−βk+1 ∈ ∂ξk+1

Qk+1(zk+1;wk+1).

The proof of Lemma 1 is given in Appendix A.1. By us-
ing Lemma 1, the following lemma enables us to bound
the intermediate results of mirror descent with the inexact
proximal operator.

Lemma 2. Under the same setting as in Lemma 1, then
there exists βk+1 with ‖βk+1‖2∗ ≤ 2ρξk+1/ηk+1 such that

Q̂k+1(zk+1;wk+1) + Vψ
(
u, zk+1

)
/ηk+1 − ξk+1

≤ Q̂k+1(u;wk+1) +
〈
βk+1,u− zk+1

〉
,∀u, k ≥ 0.



The proof of Lemma 2 is given in Appendix A.2.

4.2 CONVERGENCE RATES OF CONVEX g

We first focus on the case when g is convex. The next lemma
derives a characteristic inequality for a specific Lyapunov
function for inexact linear coupling by considering the inex-
actness of yk+1 and zk+1.

Lemma 3. Under the same setting as in Lemma 1, for any
k ≥ 0, if g is convex and τk = 1/Lηk+1,

1

τ2
k

(f(yk+1)− f(x?)) + LVψ(x?, zk+1)

≤ 1− τk
τ2
k

(f(yk)− f(x?)) + LVψ(x?, zk)

+

√
2ρLξk+1

τk

∥∥x? − zk+1

∥∥+
1 + τk
τ2
k

ξk+1. (8)

The proof of Lemma 3 is given in Appendix B.1. From the
Lyapunov function, we obtain a general convergence result
for linear coupling with inexact proximal operator.

Theorem 1. Under the same setting as in Lemma 1, if g is
convex, ηk+1 = (k + 2)/2L and τk = 1/Lηk+1,∀k ≥ 0,
then ∀T ≥ 1:

f(yT )− f(x?) ≤
6
(
LVψ(x?,x0) + ẼT + ÊT

)
(T + 1)2

, (9)

where ẼT
def
=

∑T
k=1(k + 2)2ξk and ÊT

def
=(∑T

k=1

√
2ρ(k+1)ξk

)2

.

The proof of Theorem 1 is given in Appendix B.2.

Remark 1. If the proximal operator is exact (i.e., ξk =
0,∀k ≥ 1), it leads to ẼT = 0 and ÊT = 0. Then, Theo-
rem 1 recoveries the accelerated complexity O(

√
L/ε) for

convex objectives [Nesterov, 2013].

Corollary 1. Consider the same setting as Theorem 1, if
ξk ≤ ξ for all k ≥ 1, then ∀T ≥ 1:

f(yT )− f(x?) ≤ 6LVψ(x?,x0)

(T + 1)2
+
(
θ1T + θ2

)
ξ. (10)

where θ1 = (6 + 16ρ) and θ2 = 15 + 32ρ.

Remark 2. Under the same setting as Corollary 1, based
on [Schmidt et al., 2011, Proposition 4], we have

f(yT )−f(x?) ≤ 6L‖x0 − x?‖2

(T + 1)2
+
(
12T 2+ 4T + 2

)
ξ. (11)

Based on [Lin et al., 2017, Theorem 3], we have

f(yT )− f(x?) ≤ 4L‖x0 − x?‖2

(T + 1)2
+

9

2
(T + 2)2ξ. (12)

Based on [Kulunchakov and Mairal, 2019, Proposition 4],
we have

f(yT)−f(x?)≤2e1+γL‖x0 − x?‖2

(T + 1)2
+
e1+γ

2γ
(T+2)2ξ. (13)

Comparing (10) with (11), (12) and (13), our analysis
achieves better bound than existing works [Schmidt et al.,
2011, Lin et al., 2017, Kulunchakov and Mairal, 2019].
Specifically, our bound on the inexact proximal operator ξ
increases as O(Tξ) while it is O(T 2ξ) for existing works.

Theorem 1 suggests that the inexact proximal operator leads
to error accumulation in the convergence result. To preserve
the accelerated rate O( 1

T 2 ), Theorem 1 implies the error
sequence should decrease to 0 at a sufficiently fast rate.

Corollary 2. Under the same setting as Theorem 1, for any
δ > 0, if ξk is chosen as ξk

def
= f(x0)−f(x?)

(k+2)3+δ
, then ∀T ≥ 1,

f(yT )− f(x?) ≤ LVψ(x?,x0)

(T + 1)2

(
1 +

2

δ
+

8ρ

δ2

)
. (14)

Remark 3. To preserve the accelerated rate O(1/k2) for
convex objectives, existing works [Schmidt et al., 2011, Lin
et al., 2017, Kulunchakov and Mairal, 2019] requires the
error sequences decreases at the rate of O(1/k4+δ). In
contrast, our analysis suggestsO(1/k3+δ) is sufficient. This
is consistent with our tighter bound shown in Corollary 1.

As observed in (14), the objective value converges faster
with more accurate proximal operator (i.e., a larger value
for δ). However, a larger δ also requires more computation
time for each iteration.

Comparison with Alternating Direction Method of Mul-
tipliers (ADMM) Besides the accelerated proximal method,
ADMM is another popular method for solving (1) due to
its simplicity and applicability to broad applications [Boyd
et al., 2011]. It also allows inexact minimization of sub-
problem to some extent. However, it is well-known that
ADMM converges at the rate of O(1/T ) for convex objec-
tives [He and Yuan, 2012]. In contrast, the convergence rate
of accelerated proximal method is O(1/T 2), which is more
desirable for large-scale machine learning problems.

As discussed in [Boyd et al., 2011], ADMM will converge
even the when the subproblems of each iteration are not
solved exactly, as long as the approximate solutions satisfy
certain suboptimality measures. In other words, ADMM also
suffers from error accumulation if the sub-problems cannot
be exactly solved. For example, the proximal operator does
not admit a closed-form solution. We note our inexactness
conditions (5) and (6) are absolute criteria which are same
as the those used in [Schmidt et al., 2011, Lin et al., 2017,
Kulunchakov and Mairal, 2019]. In contrast, existing works
on convergence analysis of ADMM are mainly based on a
relative error accuracy [He et al., 2002, Eckstein and Yao,



2018, Alves et al., 2020] that is generally a stronger inexact-
ness condition than ours. If ADMM takes the inexactness
criterion as ours, under the same setting as Corollary 1, one
can show that the convergence rate of inexact ADMM is

f(yT )− f(x?) ≤ ν‖x− x?‖2

T
+ γTξ,

where ν and γ are some constants. Comparing it with
(10), we can observe that both ADMM and our result have
O(Tξ) error accumulation. However, our result achieves an
O(1/T 2) convergence rate while the rate is only O(1/T )
for ADMM.

4.3 CONVERGENCE RATES OF STRONGLY
CONVEX g

In this section, we present the convergence result of lin-
ear coupling with inexact proximal operators for convex g.
Next, we present the convergence result for strongly convex
g. In this setting we assume ‖ · ‖ = ‖ · ‖2 that follows the
customary [Nesterov, 2013] of convergence analysis of op-
timization algorithms for strongly convex objectives. It is
mainly used to simplify the proof of convergence analysis.
Note that by far, whether the same properties obtained by
the `2-norm can be generalized to other norms is still an
open question. However, even for the `2-norm, as we shall
see in Remark 4, our convergence rate is still better than
previously works.

We first introduce the analogue of Lemma 3 for strongly con-
vex g. By considering the inexactness of yk+1 and zk+1, the
next lemma derives a characteristic inequality for a specific
Lyapunov function for strongly convex objectives.

Lemma 4. Under the same setting as Lemma 1, if g is
strongly convex, τk = Lαk+1−µ

L−µ and ηk+1 = 1
Lαk+1

, then
∀k ≥ 0,

f(yk+1)− f(x?) + Lα2
k+1Vψ(x?, zk+1)

≤
(
1− αk+1

) (
f(yk)− f(x?) + Lα2

kVψ(x?, zk)
)

+
√

2ρLα3
k+1ξk+1‖x? − zk+1‖+

(
1 + αk+1

)
ξk+1.

(15)

The proof of Lemma 4 is given in Appendix A.8. From the
Lyapunov function, we obtain a general convergence result
for linear coupling with inexact proximal operators.

We define ∆k
def
= f(yk)−f(x?)+Lα2

kVψ (x?, zk) ,∀k ≥ 0.
Theorem 2 presents the convergence result of linear coupling
with inexact proximal operators for strongly convex g.

Theorem 2. Under the same setting as Lemma 1, if g is
strongly convex, τk = Lαk+1−µ

L−µ and ηk+1 = 1
Lαk+1

, then
∀T ≥ 1:

∆T ≤ ΓT

(
∆0 +

T∑
k=1

√
2ρLα3

kξk‖x? − zk‖+ 2ξk
Γk

)
, (16)

where Γk
def
=
∏k
i=1(1− αk). If α0 =

√
µ
L , then ∀T ≥ 1:

f(yT )−f(x?) ≤
(

1−
√
µ

L

)T (
3∆̃0 + R̃T + R̂T

)
, (17)

where ∆̃0
def
= f(x0) −f(x?), R̃T

def
= 3

∑T
k=1

(
1−
√

µ
L

)−k
ξk

and R̂T
def
= 6ρ

√
µ
L

(∑T
k=1

(
1−

√
µ
L

)−k/2√
ξk

)2

.

The proof of Theorem 2 is given in Appendix A.9.

Remark 4. If the proximal operator is exact (i.e., ξk =
0,∀k ≥ 1), it leads to R̃T = 0 and R̂T = 0. Then, (17)
recoveries the accelerated complexity O(

√
L/µ log(1/ε))

for µ-strongly convex objectives [Nesterov, 2013].

Corollary 3. Consider the same setting as Theorem 2, if
ξk ≤ ξ for all k ≥ 1, then ∀T ≥ 1:

f(yT )−f(x?) ≤ 3

(
1−

√
µ

L

)T
∆̃0+(3+24ρ)

√
L

µ
ξ. (18)

Remark 5. Under the same setting as Corollary 3, based
on [Schmidt et al., 2011, Proposition 4], we have

f(yT)−f(x?) ≤ 4

(
1−

√
µ

L

)T
∆̃0 +

(
64L2

µ2
+ 4

√
µ

L

)
ξ.

(19)
Based on [Lin et al., 2017, Theorem 3], we have

f(yT )− f(x?) ≤ 4

(
1−

√
µ

L

)T
∆̃0 +

72L

µ
ξ. (20)

Based on [Kulunchakov and Mairal, 2019, Proposition 4],
we have

f(yT )− f(x?) ≤ 2

(
1− 1

2

√
µ

L

)T
∆̃0 +

8L

µ
ξ. (21)

Comparing (18) with (19), (20) and (21), our analysis
achieves better bound than existing works. Specifically, our
error bound on ξ is O(

√
L
µ ξ), while that are O(L

2

µ2 ξ) for

[Schmidt et al., 2011] and O(Lµ ξ) for [Lin et al., 2017,
Kulunchakov and Mairal, 2019], respectively.

To preserve accelerated rate for Algorithm 1, Theorem 2
implies that the error sequence {ξk}k≥1 needs to decrease
to 0 at a linear rate.

Corollary 4. Under the same setting as in Theorem 2,
for any ϑ ∈ (0,

√
µ/L), if ξk is chosen as ξk ≤

1
1+2ρ∆̃0 (1− ϑ)

k, then ∀T ≥ 1

f(yT )− f(x?) ≤ (1− ϑ)T+1 12∆̃0

(
√
µ/L− ϑ)2

. (22)

Similar to the conclusion for convex g, the objective with
strongly convex g has a faster convergence speed when the
error of inexact proximal operators decreases at a faster rate
(i.e., a larger value for ρ).



0 50 100 150 200
10-11

10-9

10-7

10-5

10-3

10-1

k
  1/k

k
  1/k2

k
  1/k3

k
  1/k4

ADMM 
k
  1/k3

ADMM 
k
  1/k4

0 50 100 150 200
10-10

10-8

10-6

10-4

10-2

100

k
  1/k

k
  1/k2

k
  1/k3

k
  1/k4

ADMM 
k
  1/k3

ADMM 
k
  1/k4

0 50 100 150 200
10-10

10-8

10-6

10-4

10-2

100

k
  1/k

k
  1/k2

k
  1/k3

k
  1/k4

ADMM 
k
  1/k3

ADMM 
k
  1/k4

Figure 1: Results of linear coupling and ADMM with inexact proximal operator for CUR-like factorization. Objective
function values v.s. number of iterations for different qualities of approximate solution of the proximal operator. From left
to right: a1a, secom and mushroom. Better viewed on the screen with zooming-in as the difference of ADMM with
ξk ≤ O(1/k3) and ξk ≤ O(1/k4) becomes insignificant compared to the results of linear coupling.

5 EXPERIMENTS

In this section, we conduct two experiments to verify our
theoretical results.

5.1 CUR-LIKE FACTORIZATION

We first apply Algorithm 1 to solve the CUR-like factoriza-
tion optimization problem [Mairal et al., 2011]. For a given
matrix D ∈ Rm×n, the CUR-like factorization aims to ap-
proximate D by a matrix X with sparse rows and sparse
columns.

min
X∈Rm×n

1

2
‖DXD−D‖2F+λ1

m∑
i=1

‖Xi,·‖2+λ2

n∑
j=1

‖X·,j‖2 ,

where Xi· and X·,j denote the i-th row and the j-th column
of X, respectively. The last two terms impose the `2,1 norms
for both row and columns of X, that yields both sparse
rows and columns. However, the proximal operator of this
regularizer does not admit an analytical solution. There is
even no iterative algorithm that can exactly compute the
proximity operator.

Following [Schmidt et al., 2011], we approximately com-
pute the proximal operator by a block coordinate descent
(BCD) algorithm that is presented by Jenatton et al. [2011]
to efficiently obtain an approximate solution of the proximal
operator. The BCD alternates between computing the prox-
imal operator with respect to the rows and to the columns.
At each iteration, we employ the BCD to solve (3) and (4)
until (5) and (6) are satisfied that means both yk and zk are
ξk-suboptimal solutions.

Suggested by Corollary 2, we consider a decreased error
sequences {ξk}k≥1 where ξk ≤ 1/kα and the value of α
are set to α = 1, 2, 3, 4 in our experiments. As discussed
before, the accelerated convergence rate of linear coupling
can be preserved if α > 3.

We perform experiments on four data sets1: mushroom,
secom, a1a and musk. We set λ1 = 0.01 and λ2 = 0.01
for all four datasets. Rather than assume the Lipschitz con-
stant L is known, we estimate it by line search [Nesterov,
2013]. Specifically, we initialize the value of L as L = 0.5
and double it if the following inequality is not satisfied

g(yk) ≤ g(xk) + 〈∇g(xk),yk − xk〉+
L

2
‖yk − xk‖2.

In our experiments, we observed that this strategy always
performs better than a fixed but conservative value for L.

To demonstrate the accelerated convergence rate of linear
coupling, we compare it with ADMM. It is well-know that
the performance of ADMM is highly dependent on the
choice of penalty parameter %. To show the best perfor-
mance of ADMM, we perform a grid search to find the best
value of % and fixed it for all iterations.

Fig. 1 shows the objective function values versus the num-
ber of iterations of inexact linear coupling on the three data
sets: a1a, secom and mushroom. For linear coupling, the
choice of ξk ≤ 1/k4 achieves the fastest convergence rate
according to our analysis (refer to Corollary 2), provides the
best empirical performance across all three data sets. How-
ever, as the iteration goes, the performance gap between
the choices of ξk ≤ 1/k3 and ξk ≤ 1/k4 becomes smaller.
This is consistent with our theoretical results that the er-
ror sequences only need to decrease faster than O(1/k3)
instead of O(1/k4) [Schmidt et al., 2011, Lin et al., 2017,
Kulunchakov and Mairal, 2019].

Furthermore, as observed from Fig. 1, the linear coupling
clearly outperforms the ADMM on this task. Here, we show
the results of ADMM with ξk ≤ 1/k3 and ξk ≤ 1/k4. In
fact, we observed the result of ADMM when α ≥ 2 are very
close to each other, that is consistent with the theoretical

1The datasets can be downloaded at https://archive.
ics.uci.edu/ml/datasets.php.
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Figure 2: Results of linear coupling with inexact proximal operator for image deblurring with isotropic total variation.
Objective function values v.s. number of iterations for different qualities of approximate solution of the proximal operator.
From left to right: Lena, Boat and Football.

result. Specifically, the error sequences should decrease
faster than O(1/k2) if the convergence rate of the algorithm
is O(1/k), for example, non-accelerated proximal method.

5.2 IMAGE DEBLURRING WITH ISOTROPIC
TOTAL VARIATION

For the second experiment, we consider image deblurring
with isotropic total variation regularization [Chambolle,
2004, Beck and Teboulle, 2009], which does not admit an
analytical solution for the proximal operator [Chambolle
and Pock, 2011, Beck and Teboulle, 2009]. For X ∈ Rm×n,
the discrete gradient operator is

(∇X)ij =

(Xij−Xi+1,j , Xij−Xi,j+1) if i < m, j < n
(0, Xij−Xi,j+1) if i = m, j < n
(Xij−Xi+1,j , 0) if i < m, j = n

Then, image deblurring with isotropic total variation reg-
ularization can be written as [Chambolle and Pock, 2016,
Beck and Teboulle, 2009]

min
X∈C

1

2

∥∥A(X)−B‖2F + λ

m∑
i=1

n∑
j=1

‖(∇X)ij‖,

whereA : Rm×n → Rm×n is a linear operator representing
some blurring processing, B ∈ Rm×n is the blurred and
noisy image, and λ > 0 denotes a regularization parame-
ter. Unlike the `1 total variation, the proximal operator of
isotropic total variation regularization does not admit an
analytical solution. Same as before, we employ the BCD
algorithm to compute an approximate solution.

We conducted this experiment on three images Lena, Boat
and Football from MATLAB image processing toolbox.
We first resize each image to 128× 128 pixels. To obtain B,
the clean image was first blurred by a 5× 5 kernel matrix:
S = 1

25I5×5, where I5×5 ∈ R5×5 is an identify matrix,
followed by additive Gaussian noise with zero mean and

standard deviation 10−1. The regularization parameter λ
was set to 0.1 for all three images.

Fig. 2 shows the objective function values versus the number
of iterations of inexact linear coupling on Lena, Boat and
Football. Similar trends as the first experiments are ob-
served for this experiment except the performance between
ξk ≤ 1/k3 and ξk ≤ 1/k4 are very close to each other.

In this experiment, we did not perform the experiments
of ADMM due to it solves the subproblem associated with
1
2

∥∥A(X)−B‖2F is computationally expensive. Nevertheless,
the experiment in Section 5.1 already clearly shows the
advantages of linear coupling over ADMM.

6 CONCLUSION

Non-smooth regularizations have played irreplaceable roles
in machine learning. However, many of them do not admit
an analytical solution for proximal operator. As a variant of
Nesterov’s AGDs, the linear coupling can efficiently solve
convex composite minimization with accelerated conver-
gence rates if the proximal operator is exactly computed. In
this work, we present a complete convergence analysis for
linear coupling with inexact proximal operators. Our anal-
ysis suggests that inexact linear coupling still achieves the
accelerated convergence rate if the error sequence of inexact
proximal operator decreases at a sufficiently fast rate. More
importantly, our theoretical results are better than previous
works. We empirically verify our theoretical analysis by
employing linear coupling with inexact operators to solve
CUR-like factorization and image deblurring with isotropic
total variation on different datasets.
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A MISSING PROOFS OF SECTION 4.1

A.1 PROOF FOR LEMMA 1

Proof. By Definition 5, ∂ξk+1

(
Vψ(zk+1,wk+1)

ηk+1

)
is

∂ξk+1

(
Vψ (zk+1,wk+1)

ηk+1

)
=

{
v
∣∣∣ Vψ(z,wk+1)

ηk+1
≥ Vψ(zk+1,wk+1)

ηk+1
+
〈
v, z− zk+1

〉
− ξk+1,∀z

}
. (23)

Substituting the Bregman divergence into (23),

∂ξk+1

(
Vψ (zk+1,wk+1)

ηk+1

)
=

{
v
∣∣∣ ψ(z)− ψ(zk+1)

ηk+1
−
〈
∇ψ(wk+1)

ηk+1
+ v, z− zk+1

〉
≥ −ξk+1,∀z

}
.

It is equivalent to

∂ξk+1

(
Vψ (zk+1,wk+1)

ηk+1

)
=

{
v
∣∣∣ ξk+1 ≥ max

z

{
ψ(zk+1)− ψ(z)

ηk+1
+

〈
∇ψ(wk+1)

ηk+1
+ v, z− zk+1

〉}}
. (24)

Unlike the case of squared Euclidean distance (i.e., ψ(x) = 1
2‖x‖

2
2) [Schmidt et al., 2011], the minimization problem (24)

generally does not admit an analytical form solution for generic Bergman divergence, as it involves the computation of
(∇ψ)−1. Thus, we propose to relax the maximization problem in (24) so that it has an analytical form solution. Note that ψ
is ρ-smooth w.r.t. to ‖ · ‖. Applying this to the left-hand side of (24), it leads to

∂ξk+1

(
Vψ (zk+1,wk+1)

ηk+1

)
⊆
{
v
∣∣∣ ξk+1 ≥ max

z

{
− ρ

2ηk+1
‖z− zk+1‖2 +

〈
v − ∇ψ(zk+1)−∇ψ(wk+1)

ηk+1
, z− zk+1

〉}}
.

(25)
Next, we bound the objective of maximization problem in (25).

− ρ

2ηk+1
‖z− zk+1‖2 +

〈
v − ∇ψ(zk+1)−∇ψ(wk+1)

ηk+1
, z− zk+1

〉
≤ − ρ

2ηk+1
‖z− zk+1‖2 + ‖z− zk+1‖

∥∥∥∥v − ∇ψ(zk+1)−∇ψ(wk+1)

ηk+1

∥∥∥∥
∗

≤ − ρ

2ηk+1
‖z− zk+1‖2 +

ρ

2ηk+1
‖z− zk+1‖2 +

ηk+1

2ρ

∥∥∥∥v − ∇ψ(zk+1)−∇ψ(wk+1)

ηk+1

∥∥∥∥2

∗

=
ηk+1

2ρ

∥∥∥∥v − ∇ψ(zk+1)−∇ψ(wk+1)

ηk+1

∥∥∥∥2

∗
,

where the first inequality follows by applying 〈x,y〉 ≤ ‖x‖‖y‖∗ (by the duality of norms) and the second inequality follows
from 2ab ≤ a2 + b2. Plugging this into (25), we obtain

∂ξk+1

(
Vψ (zk+1,wk+1)

ηk+1

)
⊆

{
v
∣∣∣ ξk+1 ≥

ηk+1

2ρ

∥∥∥∥v − ∇ψ(zk+1)−∇ψ(wk+1)

ηk+1

∥∥∥∥2

∗

}
.

Thus, there exists βk+1 with ‖βk+1‖2∗ ≤ 2ρξk+1/ηk+1 and

v
def
=
∇ψ(zk+1)−∇ψ(wk+1)

ηk+1
+ βk+1.

For convenience, we defineHk(z;wk+1)
def
= Qk(z;wk+1)+Vψ(z,wk+1)/ηk+1. By Definition 5, zk+1 is a ξk+1-suboptimal

solution of Hk(z) if and only if Hk(zk+1;wk+1) ≤ infzHk(z;wk+1) + ξk+1. This is equivalent to 0 belonging to the
ξk+1-subgradient of Hk(z;wk+1), Combining this with [Bertsekas et al., 2003, Proposition 4.3.1 ], we come up with

0 ∈ ∂ξk+1
Qk(zk+1;wk+1) + ∂ξk+1

(
Vψ (zk+1,wk+1)

ηk+1

)
.

Thus, there exists βk+1 with ‖βk+1‖2∗ ≤ 2ρξk+1/ηk+1 such that

∇ψ(wk+1)−∇ψ(zk+1)

ηk+1
− βk+1 ∈ ∂ξk+1

Qk(zk+1;wk+1).

This completes the proof.



A.2 PROOF FOR LEMMA 2

Proof. By the convexity of Qk(·;wk+1), Definition 5 implies

Qk(u;wk+1) ≥ Qk(zk+1;wk+1) + 〈v,u− zk+1〉 − ξk+1,∀v ∈ ∂ξk+1
Qk(zk+1;wk+1),u ∈ Rd.

By using Lemma 1, we come up with

Qk(u;wk+1)

≥ Qk(zk+1;wk+1) +

〈
1

ηk+1
(∇ψ(wk+1)−∇ψ(zk+1))− βk+1,u− zk+1

〉
− ξk+1

= Qk(zk+1;wk+1) +
1

ηk+1

〈
∇ψ(wk+1),u− zk+1

〉
− 1

ηk+1
〈∇ψ(zk+1),u− zk+1〉 − 〈βk+1,u− zk+1〉 − ξk+1

= Qk(zk+1;wk+1)− 1

ηk+1
Vψ (u,wk+1) +

1

ηk+1
Vψ (zk+1,wk+1) +

1

ηk+1
Vψ (u, zk+1)−

〈
βk+1,u− zk+1

〉
− ξk+1.

By rearranging both sides, we obtain

Qk (zk+1;wk+1)+
1

ηk+1
Vψ (u, zk+1)+

1

ηk+1
Vψ (zk+1,wk+1)−

〈
βk+1,u−zk+1

〉
−ξk+1 ≤ Qk (u;wk+1)+

1

ηk+1
Vψ (u,wk+1) .

Substituting the definition of Q̂k+1(·;wk+1), it becomes

Q̂k+1(zk+1;wk+1) +
1

ηk+1
Vψ (u, zk+1)−

〈
βk+1,u− zk+1

〉
− ξk+1 ≤ Q̂k+1(u;wk+1).

This completes the proof.

B MISSING PROOFS OF SECTION 4.2

B.1 PROOF FOR LEMMA 3

Proof. Note that zk+1 is a ξk+1-suboptimal solution to (4). Applying Lemma 2 with u = x?, we obtain〈
∇g(xk+1), zk+1 − zk

〉
+ h(zk+1) +

1

ηk+1
Vψ(x?, zk+1) +

1

ηk+1
Vψ(zk+1, zk)−

〈
βk+1,x

? − zk+1

〉
− ξk+1

≤
〈
∇g(xk+1),x? − zk

〉
+ h(x?) +

1

ηk+1
Vψ(x?, zk).

Multiplying both sides by −ηk+1, we obtain

ηk+1

〈
∇g(xk+1), zk − x?

〉
− ηk+1h(x?)− ηk+1

(〈
βk+1,x

? − zk+1

〉
+ ξk+1

)
≤ ηk+1

〈
∇g(xk+1), zk − zk+1

〉
− ηk+1h(zk+1)− Vψ(x?, zk+1)− Vψ(zk+1, zk) + Vψ(x?, zk).

Since ψ is 1-strongly convex, it implies Vψ(zk+1, zk) ≥ 1
2‖zk − zk+1‖2. Thus,

ηk+1

〈
∇g(xk+1), zk − x?

〉
− ηk+1h(x?)− ηk+1

(〈
βk+1,x

? − zk+1

〉
+ ξk+1

)
≤ −

(
ηk+1

〈
∇g(xk+1), zk+1 − zk

〉
+

1

2
‖zk+1 − zk‖2

)
+ Vψ(x?, zk)− Vψ(x?, zk+1)− ηk+1h(zk+1).

Let us define v as v def
= τkzk+1 + (1− τk)yk. Combining it with xk+1 = τkzk + (1− τk)yk, we come up with

zk+1 − zk =
1

τk
(v − xk+1).

Substituting this into the above inequality, we obtain

ηk+1

〈
∇g(xk+1), zk − x?

〉
− ηk+1h(x?)− ηk+1

(〈
βk+1,x

? − zk+1

〉
+ ξk+1

)



≤ −
(
ηk+1

τk

〈
∇g(xk+1),v − xk+1

〉
+

1

2τ2
k

‖v − xk+1‖2
)

+ Vψ(x?, zk)− Vψ(x?, zk+1)− ηk+1h(zk+1)

= −
(
Lη2

k+1

〈
∇g(xk+1),v − xk+1

〉
+
L2η2

k+1

2
‖v − xk+1‖2

)
+ Vψ(x?, zk)− Vψ(x?, zk+1)− ηk+1h(zk+1)

= − Lη2
k+1

(〈
∇g(xk+1),v − xk+1

〉
+
L

2
‖v − xk+1‖2

)
+ Vψ(x?, zk)− Vψ(x?, zk+1)− ηk+1h(zk+1)

= − Lη2
k+1

(〈
∇g(xk+1),v − xk+1

〉
+
L

2
‖v − xk+1‖2 + h(v)

)
+ Lη2

k+1h(v)− ηk+1h(zk+1) + Vψ(x?, zk)− Vψ(x?, zk+1).

Note that yk+1 is ξk+1-suboptimal solution to (3), thus

ηk+1

〈
∇g(xk+1), zk − x?

〉
− ηk+1h(x?)− ηk+1

(〈
βk+1,x

? − zk+1

〉
+ ξk+1

)
≤ − Lη2

k+1

(〈
∇g(xk+1),yk+1 − xk+1

〉
+
L

2
‖yk+1 − xk+1‖2 + h(yk+1)− ξk+1

)
+ Lη2

k+1h(v)− ηk+1h(zk+1) + Vψ(x?, zk)− Vψ(x?, zk+1)

≤ − Lη2
k+1f(yk+1) + Lη2

k+1g(xk+1) + Lη2
k+1ξk+1 + Lη2

k+1h(v)− ηk+1h(zk+1) + Vψ(x?, zk)− Vψ(x?, zk+1),

where the last inequality follows by g is L-smooth. Re-arranging both sides, it becomes

ηk+1

〈
∇g(xk+1), zk − x?

〉
− ηk+1h(x?)− ηk+1

〈
βk+1,x

? − zk+1

〉
−
(
Lη2

k+1 + ηk+1

)
ξk+1

≤ − Lη2
k+1f(yk+1) + Lη2

k+1g(xk+1) + Lη2
k+1h(v)− ηk+1h(zk+1) + Vψ(x?, zk)− Vψ(x?, zk+1).

Applying the convexity of h for v = τkzk+1 + (1− τk)yk, we obtain

ηk+1

〈
∇g(xk+1), zk − x?

〉
− ηk+1h(x?)− ηk+1

〈
βk+1,x

? − zk+1

〉
−
(
Lη2

k+1 + ηk+1

)
ξk+1

≤ − Lη2
k+1f(yk+1) + Lη2

k+1g(xk+1) +
(
Lη2

k+1 − ηk+1

)
h(yk) + Vψ(x?, zk)− Vψ(x?, zk+1). (26)

Note that ηk+1

〈
∇g(xk+1), zk − x?

〉
can be bounded as following.

ηk+1

〈
∇g(xk+1), zk − x?

〉
= ηk+1

〈
∇g(xk+1), zk − xk+1

〉
+ ηk+1

〈
∇g(xk+1),xk+1 − x?

〉
=

(1− τk)ηk+1

τk

〈
∇g(xk+1),xk+1 − yk

〉
+ ηk+1

〈
∇g(xk+1),xk+1 − x?

〉
≤ Lη2

k+1g(xk+1)−
(
Lη2

k+1 − ηk+1

)
g(yk)− ηk+1g(x?),

where the second equality follows by zk − xk+1 = 1−τk
τk

(xk+1 − yk) as xk+1 = τkzk + (1− τk)yk. The last inequality
obtained by applying the convexity of g. Plugging this into (26), we obtain

Lη2
k+1 (f(yk+1)− f(x?)) + Vψ(x?, zk+1)

≤
(
Lη2

k+1 − ηk+1

)
(f(yk)− f(x?)) + Vψ(x?, zk) + ηk+1

〈
βk+1,x

? − zk+1

〉
+ (Lη2

k+1 + ηk+1)ξk+1.

Relaxing the left-hand side, it becomes

Lη2
k+1 (f(yk+1)− f(x?)) + Vψ(x?, zk+1)

≤
(
Lη2

k+1 − ηk+1

)
(f(yk)− f(x?)) + Vψ(x?, zk) + ηk+1

〈
βk+1,x

? − zk+1

〉
+ (Lη2

k+1 + ηk+1)ξk+1

¬
≤
(
Lη2

k+1 − ηk+1

)
(f(yk)− f(x?)) + Vψ(x?, zk) + ηk+1

∥∥βk+1

∥∥
∗

∥∥x? − zk+1

∥∥+ (Lη2
k+1 + ηk+1)ξk+1


≤
(
Lη2

k+1 − ηk+1

)
(f(yk)− f(x?)) + Vψ(x?, zk) +

√
2ρηk+1ξk+1

∥∥x? − zk+1

∥∥+ (Lη2
k+1 + ηk+1)ξk+1,

where ¬ follows by applying 〈x,y〉 ≤ ‖x‖‖y‖∗ and  follows from
∥∥βk+1

∥∥2

∗ ≤ 2ρξk+1/ηk+1. Multiplying both sides by
L, it becomes

L2η2
k+1 (f(yk+1)− f(x?)) + LVψ(x?, zk+1)



≤
(
L2η2

k+1 − Lηk+1

)
(f(yk)− f(x?)) + LVψ(x?, zk) + L

√
2ρηk+1ξk+1

∥∥x? − zk+1

∥∥+ (L2η2
k+1 + Lηk+1)ξk+1.

Substituting ηk+1 = 1
Lτk

, we obtain

1

τ2
k

(f(yk+1)− f(x?)) + LVψ(x?, zk+1)

≤ 1− τk
τ2
k

(f(yk)− f(x?)) + LVψ(x?, zk) +

√
2ρLξk+1

τk

∥∥x? − zk+1

∥∥+
1 + τk
τ2
k

ξk+1.

This completes the proof.

B.2 PROOF FOR THEOREM 1

Proof. It can be proved by applying Lemma 3. Since ηk+1 = k+2
2L and τk = 1

Lηk+1
= 2

k+2 , it is straightforward to show

1

τ2
k−1

≥ 1− τk
τ2
k

.

This result implies we can telescope (8). Summing (8) for k = 0 to T − 1, we come up with

1

τ2
T−1

(f(yT )− f(x?)) + LVψ(x?, zT )

≤ 1− τ0
τ2
0

(f(y0)− f(x?)) + LVψ(x?, z0) +

T−1∑
k=0

√
2ρLξk+1

τk

∥∥x? − zk+1

∥∥+

T−1∑
k=0

1 + τk
τ2
k

ξk+1.

Since ψ is 1-strongly convex, it implies Vψ(x?, zT ) ≥ 1
2‖x

? − zT ‖2. Thus, we come up with

1

τ2
T−1

(f(yT )− f(x?)) +
L

2
‖x? − zT ‖2

≤ 1− τ0
τ2
0

(f(y0)− f(x?)) + LVψ(x?, z0) +

T−1∑
k=0

1

τk

√
2ρLξk+1

τk

∥∥x? − zk+1

∥∥+

T−1∑
k=0

1 + τk
τ2
k

ξk+1.

Substituting the value of τk, it becomes

(T + 1)2

4
(f(yT )− f(x?))+

L

2
‖x?−zT ‖2 ≤ LVψ(x?, z0)+

T−1∑
k=0

√
ρL(k + 2)ξk+1

∥∥x?−zk+1

∥∥+

T−1∑
k=0

(k+2)(k+4)ξk+1.

It can be rewritten as

(T + 1)2

4
(f(yT )− f(x?))+

L

2
‖x?−zT ‖2 ≤ LVψ(x?, z0)+

T∑
k=1

√
ρL(k + 1)ξk

∥∥x?−zk∥∥+

T∑
k=1

(k+1)(k+3)ξk. (27)

Note that f(yT )− f(x?) ≥ 0, it implies

L

2
‖x? − zT ‖2 ≤ LVψ(x?, z0) +

T∑
k=1

(k + 1)(k + 3)ξk +

T∑
k=1

√
L

2

∥∥x? − zk
∥∥√2ρ(k + 1)ξk. (28)

Applying [Schmidt et al., 2011, Lemma 1] with uk, ST and λk as following:

uk
def
=

√
L

2

∥∥x? − zk
∥∥, ST def

= LVψ(x?, z0) +

T∑
k=1

(k + 1)(k + 3)ξk, and λk
def
=
√

2ρ(k + 1)ξk,

we come up with√
L

2

∥∥x? − zT
∥∥ ≤ 1

2

√
2(k + 1)ξk +

(
LVψ(x?, z0) +

T∑
k=1

(k + 1)(k + 3)ξk +

(
1

2

√
2ρ(k + 1)ξk

)2
)1/2

.



It implies √
L

2

∥∥x? − zT
∥∥ ≤

√√√√LVψ(x?, z0) +

T∑
k=1

(k + 1)(k + 3)ξk +
√

2ρ(k + 1)ξk.

For any k ≤ T , it is easy to show

√
L

2

∥∥x? − zk
∥∥ ≤

√√√√LVψ(x?, z0) +

T∑
k=1

(k + 1)(k + 3)ξk +
√

2ρ(k + 1)ξk.

Substituting this into (28), we obtain

LVψ(x?, z0) +

T∑
k=1

(k + 1)(k + 3)ξk +

T∑
k=1

√
L

2

∥∥x? − zk
∥∥√2ρ(k + 1)ξk

≤ LVψ(x?, z0) +

T∑
k=1

(k + 1)(k + 3)ξk +

√√√√LVψ(x?, z0) +

T∑
k=1

(k + 1)(k + 3)ξk

T∑
k=1

√
2ρ(k + 1)ξk +

(
T∑
k=1

√
2ρ(k + 1)ξk

)2

≤ 3

2

LVψ(x?, z0) +

T∑
k=1

(k + 1)(k + 3)ξk +

(
T∑
k=1

√
2ρ(k + 1)ξk

)2
 ,

where the last inequality obtained by using the fact 2ab ≤ a2 + b2. Substituting this into the right-hand side of (27), we
come up with

(T + 1)2

4
(f(yT )− f(x?)) ≤ 3

2

LVψ(x?, z0) +

T∑
k=1

(k + 1)(k + 3)ξk +

(
T∑
k=1

√
2ρ(k + 1)ξk

)2
 .

It can be rewritten as

f(yT )− f(x?) ≤ 6

(T + 1)2

(
LVψ(x?,x0) + ẼT + ÊT

)
,

where ẼT
def
=
∑T
k=1(k + 2)2ξk and ÊT

def
=
(∑T

k=1

√
2ρ(k + 1)ξk

)2

. This completes the proof.

B.3 PROOF FOR COROLLARY 1

Proof. If ξk ≤ ξ for all k ≥ 1, we have

6ẼT
(T + 1)2

≤ 6ξ

(T + 1)2

T+2∑
k=1

k2 ≤ (T + 2)(T + 3)(2T + 5)

(T + 1)2
ξ =

(T 2 + 5T + 6)(6T + 15)

(3T 2 + 6T + 3)
ξ ≤ (6T + 15)ξ.

Similarly,

6Ê2
T

(T + 1)2
≤ 12ρξ

(T + 1)2

(
T+1∑
k=1

√
k

)2

≤ 12ρξ

(T + 1)2

(
2

3

(
T + 1 +

1

2

)3/2
)2

≤ 16

3

(T + 2)3

(T + 1)2
ρξ ≤ (16T + 32) ρξ.

Substituting them into (9), we obtain

f(yT )− f(x?) ≤ 6LVψ(x?,x0)

(T + 1)2
+
(
(6 + 16ρ)T + 15 + 32ρ

)
ξ.

This completes the proof.



B.4 DETAILS ABOUT (11), (12), AND (13)

If ξk ≤ ξ for all k ≥ 1, the [Schmidt et al., 2011, Proposition 2] leads to

f(xT )− f(x?) ≤ 2L

(T + 1)2

‖x0 − x?‖+ 2

T∑
k=1

k

√
2ξk
L

+

√√√√2

T∑
k=1

k2ξk
L

2

≤ 2L

(T + 1)2

(
‖x0 − x?‖+ T (T + 1)

√
2ξ

L
+

√
ξ

3L
T (T + 1)(2T + 1)

)2

≤ 6L

(T + 1)2

(
‖x0 − x?‖2 + T 2(T + 1)2 2ξ

L
+

ξ

3L
T (T + 1)(2T + 1)

)
≤ 6L‖x0 − x?‖2

(T + 1)2
+ (12T 2 + 4T + 2)ξ.

If ξk ≤ ξ for all k ≥ 1, the [Lin et al., 2017, Theorem 3] leads to

f(xT )− f(x?) ≤ 4

(T + 1)2

(√
L

2
‖x0 − x?‖2 + 3

T∑
k=1

√
ξk

(k + 1)2

4

)2

≤ 4

(T + 1)2

(√
L

2
‖x0 − x?‖2 +

3

2

√
ξ

T+1∑
k=1

k

)2

≤ 4

(T + 1)2

(√
L

2
‖x0 − x?‖2 +

3

4
(T + 1)(T + 2)

√
ξ

)2

≤ 4L‖x0 − x?‖2

(T + 1)2
+

9

2
(T + 2)2ξ.

If ξk ≤ ξ for all k ≥ 1, the [Kulunchakov and Mairal, 2019, Proposition 4] leads to

f(xT )− f(x?) ≤ 2e1+γ

(T + 1)2

(
L‖x0 − x?‖2 +

T∑
k=1

(k + 1)3

γ
ξ

)
≤ 2e1+γL‖x0 − x?‖2

(T + 1)2
+
e1+γ

2γ
(T + 2)2ξ.

B.5 PROOF FOR COROLLARY 2

Proof. If ξk ≤ (f(x0)− f(x?))/(k + 2)3+δ , then

ẼT ≤
T∑
k=1

f(x0)− f(x?)

(k + 2)1+δ
≤ 2 (f(x0)− f(x?))

δ
≤ 2LVψ(x?,x0)

δ
,

where the first inequality follows from

T∑
k=1

1

(k + 2)1+δ/2
=

T+2∑
k=3

1

k1+δ/2
≤
∫ ∞
z=1

1

z1+δ/2
dz = −2

δ
z−δ/2

∣∣∞
1

=
2

δ
.

In addition, the last inequality follows from f is L-smooth and ψ is 1-strongly convex. Similarly,

Ê2
T ≤

(
T∑
k=1

√
2ρ(f(x0)− f(x?))

(k + 2)1+δ/2

)2

≤ 8ρ(f(x0)− f(x?))

δ2
≤ 8ρLVψ(x?,x0)

δ2
.

Substituting the upper bounds of ẼT and Ê2
T into (9), we obtain

f(yT )− f(x?) ≤ LVψ(x?,x0)

(T + 1)2

(
1 +

2

δ
+

8ρ

δ2

)
.

This completes the proof.



C MISSING PROOFS OF SECTION 4.3

C.1 PROOF FOR LEMMA 4

Proof. Note zk+1 is a ξk+1-suboptimal solution to (4). Applying Lemma 2 with u = x?, we obtain

Qk(zk+1;wk+1) +
1

ηk+1
Vψ(zk+1,wk+1) +

1

ηk+1
Vψ(x?, zk+1)−

(〈
βk+1,x

? − zk+1

〉
+ ξk+1

)
≤ Qk(x?;wk+1) +

1

ηk+1
Vψ(x?,wk+1)

It can be rewritten as〈
∇g(xk+1), zk+1 −wk+1

〉
+ h(zk+1) +

1

ηk+1
Vψ(zk+1,wk+1) +

1

ηk+1
Vψ(x?, zk+1)− 1

ηk+1
Vψ(x?,wk+1)

≤
〈
∇g(xk+1),x? −wk+1

〉
+ h(x?) +

(〈
βk+1,x

? − zk+1

〉
+ ξk+1

)
.

Multiplying both sides by −ηk+1, it becomes

ηk+1

〈
∇g(xk+1),wk+1 − x?

〉
− ηk+1h(x?)− ηk+1

(〈
βk+1,x

? − zk+1

〉
+ ξk+1

)
≤ ηk+1

〈
∇g(xk+1),wk+1 − zk+1

〉
− ηk+1h(zk+1)− Vψ(zk+1,wk+1)− Vψ(x?, zk+1) + Vψ(x?,wk+1)

Since ψ is 1-strongly convex, it implies Vψ(zk+1,wk+1) ≥ 1
2‖zk+1 −wk+1‖2. Applying this, we obtain

ηk+1

〈
∇g(xk+1),wk+1 − x?

〉
− ηk+1h(x?)− ηk+1

(〈
βk+1,x

? − zk+1

〉
+ ξk+1

)
≤ −

(
ηk+1

〈
∇g(xk+1), zk+1 −wk+1

〉
+

1

2
‖zk+1 −wk+1‖2

)
− ηk+1h(zk+1)− Vψ(x?, zk+1) + Vψ(x?,wk+1)

Let us define v as v def
= αk+1zk+1 + (1− αk+1)yk. Combining it with the definition of xk+1, we come up with

zk+1 −wk+1 =
1

αk+1

(
v − xk+1

)
.

Substituting this into the above inequality, we obtain

ηk+1

〈
∇g(xk+1),wk+1 − x?

〉
− ηk+1h(x?)− ηk+1

(〈
βk+1,x

? − zk+1

〉
+ ξk+1

)
≤ −

(
ηk+1

αk+1

〈
∇g(xk+1),v − xk+1

〉
+

1

2α2
k+1

‖v − xk+1‖2
)
− ηk+1h(zk+1)− Vψ(x?, zk+1) + Vψ(x?,wk+1)

= −
(
Lη2

k+1

〈
∇g(xk+1),v − xk+1

〉
+
L2η2

k+1

2
‖v − xk+1‖2

)
− ηk+1h(zk+1)− Vψ(x?, zk+1) + Vψ(x?,wk+1)

= − Lη2
k+1

(〈
∇g(xk+1),v − xk+1

〉
+
L

2
‖v − xk+1‖2

)
− ηk+1h(zk+1)− Vψ(x?, zk+1) + Vψ(x?,wk+1)

= − Lη2
k+1

(〈
∇g(xk+1),v − xk+1

〉
+
L

2
‖v − xk+1‖2 + h(v)

)
+ Lη2

k+1h(v)− ηk+1h(zk+1)− Vψ(x?, zk+1) + Vψ(x?,wk+1)

Note that yk+1 is ξk+1-suboptimal solutions to (3), thus

ηk+1

〈
∇g(xk+1),wk+1 − x?

〉
− ηk+1h(x?)− ηk+1

(〈
βk+1,x

? − zk+1

〉
+ ξk+1

)
≤ − Lη2

k+1

(〈
∇g(xk+1),yk+1 − xk+1

〉
+
L

2
‖yk+1 − xk+1‖2 + h(yk+1)− ξk+1

)
+ Lη2

k+1h(v)− ηk+1h(zk+1)− Vψ(x?, zk+1) + Vψ(x?,wk+1)

≤ − Lη2
k+1f(yk+1) + Lη2

k+1g(xk+1) + Lη2
k+1ξk+1 + Lη2

k+1h(v)− ηk+1h(zk+1)− Vψ(x?, zk+1) + Vψ(x?,wk+1),

where the last inequality follows by g is L-smooth. Re-arranging both sides, it becomes

ηk+1

〈
∇g(xk+1),wk+1 − x?

〉
− ηk+1h(x?)− ηk+1

〈
βk+1,x

? − zk+1

〉
−
(
Lη2

k+1 + ηk+1

)
ξk+1



≤ − Lη2
k+1f(yk+1) + Lη2

k+1g(xk+1) + Lη2
k+1h(v)− ηk+1h(zk+1) + Vψ(x?,wk+1)− Vψ(x?, zk+1).

Applying the convexity of h for v = αk+1zk+1 + (1− αk+1)yk, we obtain

ηk+1

〈
∇g(xk+1),wk+1 − x?

〉
− ηk+1h(x?)− ηk+1

〈
βk+1,x

? − zk+1

〉
−
(
Lη2

k+1 + ηk+1

)
ξk+1

≤ − Lη2
k+1f(yk+1) + Lη2

k+1g(xk+1) +
(
Lη2

k+1 − ηk+1

)
h(yk) + Vψ(x?,wk+1)− Vψ(x?, zk+1).

It can be rewritten as

Lη2
k+1f(yk+1)−

(
Lη2

k+1 − ηk+1

)
f(yk)− ηk+1f(x?) + Vψ(x?, zk+1)− Vψ(x?,wk+1)− ηk+1

〈
βk+1,x

? − zk+1

〉
≤ Lη2

k+1g(xk+1)−
(
Lη2

k+1 − ηk+1

)
g(yk)− ηk+1g(x?) + ηk+1

〈
∇g(xk+1),x? −wk+1

〉
+
(
Lη2

k+1 + ηk+1

)
ξk+1.

(29)

Note that ηk+1

〈
∇g(xk+1),x? −wk+1

〉
can be bounded as following.

ηk+1

〈
∇g(xk+1),x? −wk+1

〉
= ηk+1

〈
∇g(xk+1),x? − xk+1

〉
+ ηk+1

〈
∇g(xk+1),xk+1 −wk+1

〉
= ηk+1

〈
∇g(xk+1),x? − xk+1

〉
+

(1− αk+1)ηk+1

αk+1

〈
∇g(xk+1),yk − xk+1

〉
≤ ηk+1g(x?) +

(
Lη2

k+1 − ηk+1

)
g(yk)− Lη2

k+1g(xk+1)− µηk+1

2
‖x? − xk+1‖2 −

µ(Lη2
k+1 − ηk+1)

2
‖yk − xk+1‖2,

where the second equality follows by xk+1 −wk+1 = (1− αk+1)(yk − xk+1)/αk+1 due to the definitions of xk+1 and
wk+1. The last inequality obtained by the fact that g is µ-strongly convex. Plugging this into (29), we obtain

Lη2
k+1f(yk+1)−

(
Lη2

k+1 − ηk+1

)
f(yk)− ηk+1f(x?)

≤ Vψ(x?,wk+1)− Vψ(x?, zk+1)− µηk+1

2
‖x? − xk+1‖2 −

µ(Lη2
k+1 − ηk+1)

2
‖yk − xk+1‖2

+ ηk+1

〈
βk+1,x

? − zk+1

〉
+
(
Lη2

k+1 + ηk+1

)
ξk+1.

Dividing both sides by Lη2
k+1, we obtain

f(yk+1)−
(
1− αk+1

)
f(yk)− αk+1f(x?) + Lα2

k+1Vψ(x?, zk+1)−
(
1 + αk+1

)
ξk+1

≤ Lα2
k+1Vψ(x?,wk+1)− µαk+1

2
‖x? − xk+1‖2 −

µ(1− αk+1)

2
‖yk − xk+1‖2 + αk+1

〈
βk+1,x

? − zk+1

〉
.

Note that Vψ(x,y) = 1
2‖x− y‖2 as ‖ · ‖ = ‖ · ‖2 for strongly convex g. Thus, one can show that

Lα2
k+1Vψ(x?,wk+1)− µαk+1

2
‖x? − xk+1‖2 −

µ(1− αk+1)

2
‖yk − xk+1‖2 = (1− αk+1)Lα2

kVψ(x?, zk).

Applying this result, we obtain

f(yk+1)−
(
1− αk+1

)
f(yk)− αk+1f(x?) + Lα2

k+1Vψ(x?, zk+1)−
(
1 + αk+1

)
ξk+1

≤ (1− αk+1)Lα2
kVψ(x?, zk) + αk+1

〈
βk+1,x

? − zk+1

〉
.

It can be rewritten as

f(yk+1)− f(x?) + Lα2
k+1Vψ(x?, zk+1)

≤
(
1− αk+1

) (
f(yk)− f(x?) + Lα2

kVψ(x?, zk)
)

+ αk+1

〈
βk+1,x

? − zk+1

〉
+
(
1 + αk+1

)
ξk+1

≤
(
1− αk+1

) (
f(yk)− f(x?) + Lα2

kVψ(x?, zk)
)

+ αk+1‖βk+1‖∗‖x? − zk+1‖+
(
1 + αk+1

)
ξk+1

≤
(
1− αk+1

) (
f(yk)− f(x?) + Lα2

kVψ(x?, zk)
)

+
√

2ρLα3
k+1ξk+1‖x? − zk+1‖+

(
1 + αk+1

)
ξk+1

where the first inequality follows by applying 〈x,y〉 ≤ ‖x‖‖y‖∗ and the second inequality follows from
∥∥βk+1

∥∥2

∗ ≤
2ρξk+1/ηk+1. This complete the proof.



C.2 PROOF FOR THEOREM 2

Proof. It is easy to show αk ≤ 1 holds for ∀k ≥ 1, thus (1 + αk+1)ξk ≤ 2ξk. Then, (15) can be rewritten as

∆k+1 ≤
(
1− αk+1

)
∆k +

√
2ρLα3

k+1ξk+1‖x? − zk+1‖+ 2ξk+1. (30)

Define Γk
def
=
∏k
i=1(1 − αk) and Ωk

def
=
√

2ρLα3
kξk‖x? − zk‖ + 2ξk for ∀k ≥ 1. Applying (30) for k = 0 to T − 1

recursively, we obtain

∆T ≤ ΓT

(
∆0 +

T∑
k=1

Ωk
Γk

)
.

This completes the proof of (16).

Next, we prove (17). Without loss of generality, we assume αk = α,∀k ≥ 0. Then, (16) becomes

f(yT )− f(x?) + Lα2Vψ (x?, zT ) ≤ (1− α)
T

(
∆0 +

T∑
k=1

(1− α)
−k
(√

2ρLα3ξk‖x? − zk‖+ 2ξk

))
. (31)

Since ψ is 1-strongly convex, it implies Vψ(x?, zT ) ≥ 1
2‖x

? − zT ‖2. Thus, (31) can be rewritten as

Lα2

2
(1− α)

−T ‖x? − zT ‖2 ≤ ∆0 +

T∑
k=1

(1− α)
−k

2ξk +

T∑
k=1

(1− α)
−k

2
√
ραξk

√
Lα2

2
‖x? − zk‖. (32)

Applying [Schmidt et al., 2011, Lemma 1] with uk, ST and λk as following:

uk
def
= (1− α)

−k/2
√
Lα2

2

∥∥x? − zk
∥∥, ST def

= ∆0 +

T∑
k=1

(1− α)
−k

2ξk, and λk
def
= (1− α)

−k/2
2
√
ραξk,

we come up with

(1− α)
−T/2

√
Lα2

2

∥∥x? − zT
∥∥

≤ 1

2

T∑
k=1

(1− α)
−k/2

2
√
ραξk +

∆0 +

T∑
k=1

(1− α)
−k

2ξk +

(
1

2

T∑
k=1

(1− α)
−k/2

2
√
ραξk

)2
1/2

.

It implies

(1− α)
−k/2

√
Lα2

2

∥∥x?−zk∥∥ ≤ (1− α)
−T/2

√
Lα2

2

∥∥x?−zT∥∥ ≤
√√√√∆0 +

T∑
k=1

(1− α)
−k

2ξk+

T∑
k=1

(1− α)
−k/2

2
√
ραξk.

Substituting this into (32), we obtain

∆0 +

T∑
k=1

(1− α)
−k

2ξk +

T∑
k=1

(1− α)
−k

2
√
ραξk

√
Lα2

2
‖x? − zk‖

≤∆0 +

T∑
k=1

(1− α)
−k

2ξk +


√√√√∆0 +

T∑
k=1

(1− α)
−k

2ξk +

T∑
k=1

(1− α)
−k/2

2
√
ραξk

( T∑
k=1

(1− α)
−k/2

2
√
ραξk

)

≤ 3

2

∆0 +

T∑
k=1

(1− α)
−k

2ξk +

(
T∑
k=1

(1− α)
−k/2

2
√
ραξk

)2
 .



where the last inequality obtained by using the fact that 2ab ≤ a2 + b2. Plugging this into the right-hand side of (31) , we
come up with

f(yT )− f(x?) +Lα2Vψ (x?, zT ) ≤ (1− α)
T

3

2
∆0 + 3

T∑
k=1

(1− α)
−k
ξk + 6ρα

(
T∑
k=1

(1− α)
−k/2√

ξk

)2
 . (33)

If α0 =
√

µ
L , then it is easy to see that αk =

√
µ
L ,∀k ≥ 1. Submitting αk =

√
µ
L into (33), it becomes

∆T ≤
(

1−
√
µ

L

)T 3

2
∆0 + 3

T∑
k=1

(
1−

√
µ

L

)−k
ξk + 6ρ

√
µ

L

(
T∑
k=1

(
1−

√
µ

L

)−k/2√
ξk

)2
 .

Since f is µ-strongly convex, it is straightforward to show ∆0 ≤ 2(f(x0)− f(x?)) = 2∆̃0. Thus,

f(yT )− f(x?) ≤
(

1−
√
µ

L

)T (
3∆̃0 + R̃T + R̂T

)
.

This completes the proof.

C.3 PROOF FOR COROLLARY 4

Proof. In view of Theorem 2, we have

∆T ≤ 3

(
1−

√
µ

L

)T ∆̃0 +

T∑
k=1

(
1−

√
µ

L

)−k
ξk + 2ρ

√
µ

L

(
T∑
k=1

(
1−

√
µ

L

)−k/2√
ξk

)2
 .

Note that
√
µ/L ≤ 1, it implies

∆T ≤ 3

(
1−

√
µ

L

)T ∆̃0 + (1 + 2ρ)

(
T∑
k=1

(
1−

√
µ

L

)−k/2√
ξk

)2


≤ 3

(
1−

√
µ

L

)T (√
∆̃0 +

T∑
k=1

(
1−

√
µ

L

)−k/2√
(1 + 2ρ)ξk

)2

.

If ξk ≤ 1
1+2ρ∆̃0(1− ϑ)k, then

∆T ≤ 3

(
1−

√
µ

L

)T (√
∆̃0 +

T∑
k=1

(
1−

√
µ

L

)−k/2√
∆̃0(1− ϑ)k

)2

= 3

(
1−

√
µ

L

)T
∆̃0

 T∑
k=0

(
1− ϑ

1−
√
µ/L

)k/22

.

For the ease of notation, we define η as

η =

√
1− ϑ

1−
√
µ/L

.

Then, we come up with

∆T ≤ 3

(
1−

√
µ

L

)T
∆̃0

(
1− ηT+1

1− η

)2

≤ 3

(
1−

√
µ

L

)T
η2T

(
η

η − 1

)2

= 3(1−ϑ)T ∆̃0

 √
1− ϑ

√
1− ϑ−

√
1−

√
µ/L

2

.

Note that
√

1− x+ x/2 is monotoned decreasing in (0, 1) that implies
√

1− ϑ−
√

1−
√
µ/L ≥ (

√
µ/L− ϑ)/2. Thus,

f(yT )− f(x?) ≤ (1− ϑ)T+1 12∆̃0

(
√
µ/L− ϑ)2

.

This completes the proof.


