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Abstract

Domain Generalization (DG) aims to learn a model from a labeled set of source domains
which can generalize to an unseen target domain. Although an important stepping stone
towards building general purpose models, the reliance of DG on labeled source data is a
problem if we are to deploy scalable ML algorithms in the wild. We thus propose to study
a novel and more challenging setting which shares the same goals as that of DG, but with-
out source labels. We name this setting as Unsupervised Domain Generalization (UDG),
where the objective is to learn a model from an unlabeled set of source domains that can
semantically cluster images in an unseen target domain. We investigate the challenges
involved in solving UDG as well as potential methods to address the same. Our experi-
ments indicate that learning a generalizable feature representation using self-supervision is
a strong baseline for UDG, even outperforming sophisticated methods explicitly designed
to address domain shift and clustering.
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1. Introduction

There is a growing need for generalizable models that learn with limited supervision. Safety-
critical systems such as self-driving cars require robust models that are invariant to changes
between train and test distributions such as weather (Volk et al., 2019), illumination (Dai
and Gool, 2018) and location Varma et al. (2019). To this end, considerable research has
been conducted in domain generalization (DG) (Blanchard et al., 2021; Li et al., 2017;
Carlucci et al., 2019; Ghifary et al., 2015; Li et al., 2018b; Muandet et al., 2013; Gulrajani
and Lopez-Paz, 2020) in recent years. DG has been formulated as learning a model from
a labeled set of source domains that can generalize to an unseen target domain. While an
important step towards deploying machine learning algorithms in the wild, the necessity of
labeled source data in the formulation of DG is a bottleneck. Data labeling can be a time-
consuming process — and in certain niche applications like healthcare that require subject
matter experts, it can quickly get infeasible, especially on multiple source domains. There
is clearly tremendous incentive to build models which obviate the need of labeling images
in the source domain (even if partially on some of the source domains) and can generalize
to unseen target domains (Blanchard et al., 2021).
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We thus propose in this work to study a new problem setting which we name Unsu-
pervised Domain Generalization (UDG), where the objective is to learn a model from an
unlabeled set of source domains such that it can semantically cluster images in an unseen
target domain. A mathematical formulation of our problem setting is provided in Section
2.1. Despite the potential applicability of the problem setting in real-world scenarios, there
surprisingly has not been a principled approach to study it. To the best of our knowledge,
ours is the first such effort.

Considering the nature of the constraints in the UDG problem, we have preliminarily
identified two key challenges to be addressed herein — unsupervised learning under domain
shift and cluster imbalance (see Figure 1). Existing DG methods (which require labeled
source domains) address the domain shift problem. We investigate in this work whether
the ideas in existing DG solutions can be translated and adapted to tackling UDG. We
expand on this in the next section. UDG is also related to Unsupervised Clustering under
Domain Shift (UCDS) (Menapace et al., 2020), a slightly relaxed setting where in addition
to unlabeled source images for, access to unlabeled images in the target domain is also
allowed. Zhang et al. (2021) propose a setting that shares the same name as ours but assume
availability of labeled source data for fine-tuning. Various related settings in domain shift
literature are summarized in Table 1.

The second challenge that needs we recognize is that of cluster imbalance. An implicit
assumption among contemporary deep clustering methods (Niu and Wang, 2021; Deshmukh
et al., 2021; Li et al., 2021; Regatti et al., 2020; Van Gansbeke et al., 2020) that are designed
for a single domain is that the clusters ought to be balanced. This is, in part, to avoid trivial
(or empty) clusters, and also due to the nature of existing clustering benchmark datasets
which are all balanced: CIFAR-10 & CIFAR-100 (Krizhevsky et al., 2009), STL-10 (Coates
et al., 2011), ImageNet-10 (Howard, 2019) and ImageNet-Dogs (Deng et al., 2009). While
important for making initial forays, this is too strong an assumption for real-world datasets.
For example, Figure 1 illustrates the strong imbalance present inside each domain in the
PACS (Li et al., 2017) dataset (this is one of the simpler DG datasets, to put this in context).

The main contributions of this proposal can be summarized as follows: (i) We introduce
a new problem setting of Unsupervised Domain Generalization, where we are provided with
an unlabeled set of source domains and we aim to learn a model that semantically clusters
images on an unseen target domain; (ii) We outline the challenges in solving UDG — in par-
ticular, unsupervised learning under domain shift and imbalanced clustering and propose
solutions to address these challenges as a first effort; and (iii) We conduct empirical evalu-
ation on standard benchmark datasets in the domain shift literature and seek to establish
a solid baseline for the UDG problem.

2. Addressing Challenges in UDG

In this section, we give a mathematical formulation for UDG, describe how solutions from
existing literature on domain generalization and clustering can transfer to our problem
setting, and propose a potential methodology to tackle UDG.
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Table 1: Comparison with other related settings in literature. U: Unlabeled, PL: Partially
Labeled, L: Labeled

Setting Source Target

U PL L U PL L
Domain Adaptation (DA) (Wang and Deng, 2018) x x v x x V
Semi-supervised DA (Saito et al., 2019) X x v x v X
Unsupervised DA (Wilson and Cook, 2020) X x v v x X
Domain Generalization (Blanchard et al., 2021) X X v o x x X
CDS (Kim et al., 2020) x v x v x X
UCDS (Menapace et al., 2020) v X x v x X
UDG (Ours) v X X X X X

2.1. Problem Formulation

Let X € RHXWXCh he the input space of images (where H and W are the height and
width of the images, Ch denotes the number of channels), and F € R? be the hidden
representation space. We assume access to M source domains {D; ij\il where the i*" source
domain D7 contains NN; unlabeled instances {a:;};vzll Using {D3}M,, we learn a feature
extractor fp : X — F and a cluster classifier fy : F — C, where C € {1,...C} and
C is the number of desired clusters. fys(fp) can then be used to cluster images for an
unseen target domain D!. We call this setting following recent work (Niu and Wang, 2021;
Deshmukh et al., 2021; Li et al., 2021; Regatti et al., 2020; Van Gansbeke et al., 2020) as
semantic clustering due to the evaluation procedure at test time, which involves checking for
correct assignment to class labels. We do not make any assumptions about the underlying
distribution for either the source or the target domain. The number of classes are assumed

to be the same across all domains for evaluation purposes.

2.2. Can Existing Solutions Transfer to UDG?

Based on preliminary studies, we identified two major challenges that we need to address
to solve UDG - domain shift and cluster imbalance. In this section, we look at how existing
methods in DG and clustering could help us in addressing these challenges.

Domain Generalization Multiple approaches have been considered to handle domain
shift (Zhou et al., 2021) - domain alignment, meta-learning, data augmentation, self-supervision
and learning disentangled representations. Based on the success of meta-learning methods

in DG (Li et al., 2018a; Dou et al., 2019; Li et al., 2019b,a; Zhao et al., 2021; Choi et al.,
2021; Du et al., 2020; Liu et al., 2020), we propose to examine it for our use case. The
key idea behind using meta-learning for DG is that domain shift is simulated by dividing
the source domains into meta-train and meta-test domains. The model is trained on the
meta-source domains and optimized for performance on the meta-test domain. By training

in this fashion across epochs, the model is expected to generalize to an unseen domain.
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Figure 1: Imbalance across domains; Relative frequency for a particular class inside each
domain

Clustering A plethora of deep learning-based methods have been proposed in clustering
for datasets with no domain shift. The general norm in prevalent clustering methods is to
train and test on the same dataset. UDG presents an additional challenge where a model
is trained on one domain and tested on a completely different domain. Clustering methods
broadly fall into two categories: (i) directly output a distribution over clusters, or (ii) learn
a representation space that is amenable to being clustered using a simple technique like
K-means. We plan to study methods from both categories (Tao et al., 2021; Van Gansbeke
et al., 2020; Deshmukh et al., 2021; Niu and Wang, 2021; Han et al., 2020; Li et al., 2021).

Algorithm 1: Meta-Clustering for UDG

Input: fy: Backbone network, k: Number of clusters
Output: f¥: Backbone network trained on % clusters
P(D): Distribution over domains
f9 . RHxWxCh. N Rd
Clustering Head: f4 : R - RF
fn+ fo(fo)
while convergence criteria not satisfied do
Sample meta-train domains S; ~ P(D)
Sample meta-test domain T' ~ P(D) | T # S;
forall S; do

Sample a batch B; = {z\ Yol ~ S

Evaluate V, Leiuster (fn) on B;

Compute adapted parameters: 77; =1 — aVyLeuster (fn)
end
Sample a batch By = {mf}?le ~T
Update n :=n — 8V, Zsi chuster(fn;) using Br

end
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2.3. Curriculum Learning-based Meta-Learning Methodology for UDG

Hypothesis 1: Can existing methods to handle domain shift in DG be translated and adapted
to tackle UDG?

Meta-learning, by design of ‘learning to learn’, provides a natural way to generalize
across domains. Hence, on the back of the success of meta-learning methods in DG (Li
et al., 2018b; Dou et al., 2019), we ask whether a meta-learning approach can be used for
handling domain shift in UDG. As given in Algorithm 1, during training, we split the source
domains into meta-source domains and meta-target domains, which are disjoint. We train
a separate model for each meta-source domain and jointly optimize for domain shift by
maximizing performance on a meta-target domain. We propose to experiment with and
modify multiple state-of-the-art clustering objectives (Van Gansbeke et al., 2020; Niu and
Wang, 2021; Tao et al., 2021; Han et al., 2020; Li et al., 2021; Deshmukh et al., 2021).
Unlike prevalent deep clustering algorithms, we do not plan to add an entropy term to our
objective as it encourages uniformly distributed clusters. Specific experiments are discussed
below.

Algorithm 2: Curriculum Learning for Handling Cluster Imbalance

C: No. of classes in the dataset
¢ =[2,4,8,...,C]
Randomly initialized neural network fp : REXW*xCh. _, R4
Initialize f3° « fo
forall ¢; do
‘ feci) +— MetaClusteringUDG(féci’1), ci)
end

Hypothesis 2: Can a curriculum learning strateqy address cluster imbalance in UDG?

In order to address cluster imbalance, we propose to examine a curriculum based strat-
egy, summarized in Algorithm 2 inspired from Dogan et al. (2020). We first run the the
algorithm described in 1 with two clusters and train until convergence. Then, we train with
four clusters with the model trained on two clusters as an initialization, converge it. We
do this till the number of clusters is equal to the number of classes. Our hypothesis is that
at the highest level of two clusters, the imbalance would be minimal. This is equivalent to
clustering the data into two superclasses. Once the representations are refined at this level,
we train our model with more clusters and eventually train it with C' clusters. Thus at
each level, by refining the representation for that level, we expect the model to counteract
cluster imbalance.

3. Experimental Protocol & Planned Implementation

In this section, we discuss about (i) baseline methods for UDG, (ii) datasets & metrics we
plan to use (iii) evaluation protocol and (iv) implementation details

3.1. Baselines

We aim to explore and establish multiple baselines for our problem setting.
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e Random + K-Means: The simplest baseline is to get the representations from a
randomly initialized convolutional neural network (CNN) (He et al., 2015) and perform
K-Means clustering on those representations. The random baseline is a sensible lower
bound.

e SSL 4+ K-Means: A second baseline is to use a self-supervised (SSL) (Jing and Tian,
2020) method to train on a dataset formed by aggregating all the source domains and
test it on the target domain.

e Deep Clustering: Following the previous two relatively simple baselines, we then
propose to use a state-of-the-art deep clustering method which has been designed for
a single domain (Van Gansbeke et al., 2020; Niu and Wang, 2021; Tao et al., 2021).
We will follow the same evaluation strategy as that of the SSL baseline.

e ACIDS w/o0 TA: We will consider a modification to the UCDS setting from (Mena-
pace et al., 2020). (Menapace et al., 2020) proposes a two-stage approach where a
CNN is first trained on source domains and in the second stage is fine-tuned on the

target domain. By discarding the target fine-tuning step, we obtain a strong baseline
for UDG.

e ImageNet + K-Means: We extract representations from an ImageNet pre-trained
ResNet18 model for the target domain and cluster them using K-Means.

3.2. Datasets & Metrics

Datasets We propose to perform our experiments on three datasets which are commonly
used in the domain shift literature for evaluation - PACS (Li et al., 2017), OfficecHome
(Venkateswara et al., 2017) and Office31 (Saenko et al., 2010). PACS comprises 9,991
images divided in 7 classes across 4 different domains: Photo, Art, Cartoon and Sketch.
The Office-Home dataset contains about 15,500 images across 4 domains: Product, Art,
Clipart and Real World. Each domain is divided into 65 different classes. The Office31
dataset contains 4,110 images divided into 31 classes across 3 different domains: Amazon,
DSLR, and Webcam. Each of these datasets contain visually disparate domains across
a wide spectrum and scale, thus providing an ideal benchmark for testing any method
developed for UDG.

Metrics We plan on evaluating our proposed method on four metrics commonly used in
clustering literature: clustering accuracy (ACC), normalized mutual information (NMI),
Adjusted Rand Index (ARI) (Regatti et al., 2020) and Silhouette score (SIL) (Rousseeuw,
1987). ACC, NMI and ARI metrics require ground truth labels, while SIL doesn’t. SIL
measures how similar an image is to its own cluster compared to other clusters based on
distances in the representation space. Thus, a conjunction of all 4 metrics would give us a
fair estimate of the quality of the clustering achieved.

Evaluation Protocol For our experiments, we will perform leave-one-domain-out eval-
uation where one domain is held-out as target, commonly done in DG literature. Multiple
source domains may or may not be used during training. Due to the unavailability of la-
beled data anywhere in the UDG setting, we cannot perform validation. We thus train all
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models until convergence on the source data and use the trained model as a fixed feature
extractor for the target domain.

Implementation Details We used a randomly initialized ResNet-18 (He et al., 2016)
model as our backbone network for all experiments. We performed a grid search for hy-
perparameters until we found a plateau in the training loss. We searched in the following
ranges — {SGD, Adam} optimizer with learning rate {le™3, 1le™*, 1e75} and mini-batch
size of {128, 256}, parameters a and 3 to {le™*, 1le=®} and {0.1, 1.0} respectively. We also
randomly crop the images, flip them horizontally and apply colour jitter. We run all our
experiments across three seeds and report the mean.

4. Additional Experiments

We plan to conduct additional experiments to ascertain the robustness of the proposed
algorithm as well as gain useful insight into the method. (i) To test whether the proposed
curriculum strategy is useful, we will train and test on a single domain so that domain shift
is controlled for. (ii) We also plan to test whether the proposed method is able to discover
clusters for novel classes in the target domain that are not present in the source domain
(iii) We could extend our work to settings where labeled data is available for a few domains
by adding a cross-entropy loss term for those domains.

Best Practices Along with the basic meta-learning based solution that we propose, we
expect to use the following best practices common in the domain shift literature. (i)
Domain-specific Batch Normalization (Maria Carlucci et al., 2017): We will com-
pute batch statistics separately for each domain. The motivation is that the domain-shift
can be reduced by aligning the different source feature distributions to a Gaussian reference
distribution. (ii) Domain Randomization (Volpi et al., 2021): Meta-learning approaches
usually work better when there is a diverse range of tasks to learn from. In the same
vein, we propose to use domain randomization (DR) to artificially increase the number of
meta-source domains.

Visualizations We plan to visualize the representation space using t-SNE embeddings
across training to monitor whether the model is getting progressively better as well as
compare the final clustering after convergence with baseline methods. Another plot that
might provide some insight into the method is to plot the meta-loss versus the clustering
accuracy of the target domain per epoch similar to the one provided in (Wu et al., 2018).

5. Results

In this section, we (i) summarize our experimental results, (ii) discuss our findings in the
context of our proposed hypothesis on handling domain shift and cluster imbalance, and
(iii) document the modifications to the original protocol.

5.1. Main Experiments

Table 2 compares the clustering accuracy on three benchmark datasets for the baseline
methods and our method. For the self-supervised learning (SSL) baseline, we used Sim-
CLR (Chen et al., 2020). We observed that training a SimCLR model on the aggregated
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source domains, and then using this trained model as a feature extractor for the target
domain along with running K-means on these feature representations gave the best results.
This relatively simple baseline performed better than the ACIDS w/o TA baseline which is
specifically designed for learning to cluster under domain shift. We experimented with two
state-of-the-art deep clustering methods, one from each category — (i) Instance Discrimi-
nation & Feature Decorrelation (IDFD) (Tao et al., 2021), which learns a representation
space that is amenable to being clustered using a simple technique like K-means (ii) SCAN
(Van Gansbeke et al., 2020), which directly outputs a probability distribution over clusters.
Both methods performed worse than SimCLR. by significant margins. For SCAN, we did
not perform the self-labeling step for fair comparison with our meta-learning algorithm, as
it cannot be easily incorporated in an end-to-end fashion in our proposed method. We do
however initialize the weights of the model with SimCLR as in the original paper. We ran
our proposed meta-clustering (Algorithm 1) on top of each of the above two deep cluster-
ing methods, denoted as Meta-Clustering (IDFD) and & Meta-Clustering (SCAN) in our
results. For both methods, using meta-learning did not lead to an improvement over the
base clustering methods or the SimCLR baseline on average.

Our proposed curriculum learning strategy (Algorithm 2) can be tested only on deep
clustering algorithms which directly output a probability distribution over clusters, therefore
we test it with SCAN. The results indicate that the curriculum learning strategy is not
improving over meta-clustering across the experiments too.

We train models on source domains until convergence and use that model as a fixed
feature extractor for retrieving the target domain embeddings for the Photo class in the
PACS dataset and visualize them using t-SNE in Figure 2. The visualization for SimCLR
indicates that it is doing a better job of semantically clustering the target domain images
into their respective classes, whereas no clear pattern is observed for other methods. We
provide results on additional metrics in Appendix A.

5.2. Findings

Our experiments suggest that having good, generalizable features is more important than
learning to cluster or explicitly handle domain shift in the UDG setting. Sophisticated deep
clustering algorithms which were designed without keeping domain shift in mind did not
fare well. In fact, algorithms such as ACIDS w/o TA and our proposed learning-to-learn
method, which were specifically designed for learning to cluster under domain shift also
performed worse than the relatively simpler SimCLR baseline. It is worth noting that
SimCLR doesn’t have any components that explicitly handle domain shift or clustering.
However, its capability of learning effective representations is valuable for this task. In the
light of our hypotheses, the results seem to indicate that learning a good, general-purpose
feature representation is more valuable than explicitly addressing domain shift or clustering
as the end objective. It is possible that however better methods to handle domain shift and
clustering, perhaps aligned with the SimCLR methodology, could further improve upon the
representations learned through such an approach.

Our findings are similar to recent studies in Unsupervised Domain Adaptation (UDA)
(Shen et al., 2022) and Domain Generalization (DG) (Gulrajani and Lopez-Paz, 2020).
Shen et al. (2022) observe that contrastive pre-training on unlabeled source and target data
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Table 2: Clustering Accuracy on PACS (Li et al., 2017), OfficecHome (Venkateswara et al.,
2017) & Office (Saenko et al., 2010) averaged across three runs. The best results
for each dataset are highlighted in bold, the second best results are underlined.

PACS Photo Art Cartoon  Sketch  Average
Uniform 14.3 14.3 14.3 14.3 14.3
Random + K-Means 26.2 21.9 24.7 30.8 25.9
SimCLR + K-Means 62.6 30.1 38.1 43.5 43.6
IDFD 27.5 22.9 25.0 36.0 27.9
Modified SCAN 45.4 29.8 27.9 29.1 33.1
ACIDS w/o TA 44.2 34.8 36.5 40.8 39.1
Meta-Clustering (IDFD) 25.9 21.9 28.0 31.0 26.7
Meta-Clustering (SCAN) 31.4 25.6 22.0 23.8 25.7
Curriculum + Meta-Clustering 23.8 26.7 20.8 26.9 24.5
OfficeHome Product  Art Clipart Real Average
Uniform 1.5 1.5 1.5 1.5 1.5
Random + K-Means 11.5 9.0 9.0 9.0 9.6
SimCLR + K-Means 26.7 12.6 14.7 14.6 17.1
IDFD 12.7 9.2 9.5 9.3 10.2
Modified SCAN 14.1 11.2 10.5 6.4 10.6
ACIDS w/o TA 9.3 8.8 7.8 74 8.3
Meta-Clustering (IDFD) 10.1 9.2 7.1 7.2 8.4
Meta-Clustering (SCAN) 9.1 8.1 7.3 6.7 7.8
Curriculum + Meta-Clustering 7.1 8.7 6.8 6.9 7.4
Office Amazon DSLR  Webcam Average
Uniform 3.2 3.2 3.2 3.2

Random + K-Means 15.1 26.1 25.1 22.1

SimCLR + K-Means 29.7 36.2 35.4 33.8

IDFD 15.4 37.6 34.0 29.0

Modified SCAN 14.9 21.0 19.1 18.3

ACIDS w/o TA 19.3 22.5 19.0 20.2
Meta-Clustering (IDFD) 16.6 25.7 24.3 22.2
Meta-Clustering (SCAN) 18.3 18.7 18.0 18.3
Curriculum + Meta-Clustering 18.0 17.6 17.8 17.8
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Figure 2: t-SNE visualizations for the Photo domain in PACS dataset

and then fine-tuning on labeled source data, is competitive with strong UDA methods. A
similar conclusion is drawn by Gulrajani and Lopez-Paz (2020) where they find that training
a simple empirical risk minimization (ERM) model over the aggregated source domains is
competitive with state-of-the-art in DG.

5.3. Documented Modifications

(i) We discarded the ImageNet baseline as it is the only method that has access to ImageNet
weights which made it an unfair comparison; (ii) We subsumed the curriculum learning
additional experiment in Table 2; (iii) Given the sub-par performance of our proposed
curriculum learning method, we didn’t expect to gain additional insights and hence didn’t
perform the novel class discovery and the labeled domain additional experiments.

6. Conclusion

In this paper, we proposed a novel and practical problem setting of Unsupervised Domain
Generalization (UDG). We identified and analyzed two key challenges in this setting —
unsupervised learning under domain shift and cluster imbalance. We proposed a curriculum
learning based meta-learning strategy to address the challenges in UDG. Results suggest
that our proposed algorithm is not the state-of-the-art for the considered UDG setting. We
conclude that learning general purpose features using self-supervision is a strong baseline,
even outperforming sophisticated methods explicitly designed to address domain shift and
clustering. We hope that this work spurs further research in this exciting area.
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Table 3: NMI on PACS (Li et al., 2017), OfficecHome (Venkateswara et al., 2017) and Office
(Saenko et al., 2010). The best results for each dataset are highlighted in bold,
the second best results are underlined.

PACS Photo Art Cartoon Sketch Average
Random + K-Means 0.07 0.05 0.06 0.14 0.08
SimCLR + K-Means 0.49 0.13 0.19 0.25 0.27
IDFD 0.09 0.05 0.07 0.18 0.10
Modified SCAN 0.28 0.08 0.11 0.12 0.15
ACIDS w/o TA 0.27 0.14 0.17 0.23 0.20
Meta-Clustering (IDFD) 0.09 0.02 0.13 0.14 0.10
Meta-Clustering (SCAN) 0.11 0.05 0.02 0.01 0.05
Curriculum + Meta-Clustering 0.08 0.03 0.05 0.06 0.06
OfficeHome Product  Art Clipart  Real World Average
Random + K-Means 0.26 0.23 0.20 0.20 0.22
SimCLR + K-Means 0.43 0.29 0.3 0.26 0.32
IDFD 026 023 021 0.21 0.23
SCAN 027 024 021 0.11 0.21
ACIDS w/o TA 0.19 0.22 0.13 0.14 0.17
Meta-Clustering (IDFD) 0.20 0.19 0.23 0.19 0.20
Meta-Clustering (SCAN) 0.21 0.21 0.17 0.10 0.17
Curriculum + Meta-Clustering 0.19 0.21 0.13 0.13 0.16
Office Amazon DLSR Webcam Average

Random + K-Means 0.19 0.44 0.41 0.35

SimCLR + K-Means 0.33 0.52 0.54 0.46

IDFD 0.18 0.55 0.50 0.41

Modified SCAN 0.17 0.36 0.29 0.26

ACIDS w/o TA 0.24 0.38 0.27 0.30
Meta-Clustering (IDFD) 0.22 0.42 0.39 0.34
Meta-Clustering (SCAN) 0.23 0.32 0.30 0.28

Curriculum + Meta-Clustering 0.21 0.33 0.31 0.29
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Table 4: ARI on PACS (Li et al., 2017), OfficecHome (Venkateswara et al., 2017) and Office
(Saenko et al., 2010). The best results for each dataset are highlighted in bold,
the second best results are underlined.

PACS Photo Art Cartoon Sketch Average
Random + K-Means 0.05 0.03 0.03 0.08 0.05
SimCLR + K-Means 0.54 0.09 0.13 0.18 0.24
IDFD 0.07 0.02 0.04 0.11 0.06
Modified SCAN 0.23 0.04 0.05 0.07 0.11
ACIDS w/o TA 026 000 011 017 016
Meta-Clustering (IDFD) 0.05 0.01 0.10 0.07 0.06
Meta-Clustering (SCAN) 0.07 0.02 0.01 0.01 0.02
Curriculum + Meta-Clustering 0.06 0.03 0.01 0.03 0.03
OfficeHome Product  Art Clipart  Real World Average
Random + K-Means 0.03 0.01 0.02 0.02 0.02
SimCLR + K-Means 0.14 0.03 0.05 0.05 0.07
IDFD 0.03 0.01 0.02 0.02 0.02
SCAN 0.04 002 003 0.01 0.02
ACIDS w/o TA 0.04 0.01 0.02 0.02 0.02
Meta-Clustering (IDFD) 0.03 0.01 0.01 0.01 0.02
Meta-Clustering (SCAN) 0.02 0.01 0.01 0.01 0.01
Curriculum 4+ Meta-Clustering 0.02 0.01 0.01 0.01 0.01
Office Amazon DSLR Webcam Average

Random + K-Means 0.05 0.10 0.11 0.09

SimCLR + K-Means 0.15 0.18 0.24 0.19

IDFD 0.04 0.21 0.19 0.15

SCAN 0.04 0.07 0.05 0.05

ACIDS w/o TA 0.09 0.11 0.09 0.10
Meta-Clustering (IDFD) 0.06 0.10 0.10 0.09
Meta-Clustering (SCAN) 0.06 0.03 0.05 0.05

Curriculum + Meta-Clustering 0.06 0.03 0.01 0.03
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Appendix A. Additional Metrics

Table 3 and 4 provide results on additional performance metrics. Across all datasets, we
observe the same pattern as that of clustering accuracy with SImCLR giving the best results
on average.
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