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Abstract

Recent work on neuroimaging has demonstrated significant benefits of using population
graphs to capture non-imaging information in the prediction of neurodegenerative and
neurodevelopmental disorders. These non-imaging attributes may not only contain demo-
graphic information about the individuals, e.g. age or sex, but also the acquisition site, as
imaging protocols and hardware might significantly differ across sites in large-scale studies.
The effect of the latter is particularly prevalent in functional connectomics studies, where
it remains unclear how to sufficiently homogenise fMRI signals across the different sites.
In addition, recent studies have highlighted the need to investigate potential biases in the
classifiers devised using large-scale datasets, which might be imbalanced in terms of one
or more sensitive attributes. This can be exacerbated when employing these attributes in
a population graph to explicitly introduce inductive biases to the machine learning model
and lead to disparate predictive performance across sub-populations. This study scruti-
nises such a system and aims to uncover potential biases of a semi-supervised classifier
that relies on a population graph. We further explore the effect of the graph structure
and stratification strategies, as well as methods to mitigate such biases and produce fairer
predictions across the population.

1. Introduction

Issues related to fairness and equity in healthcare decision-making have been the focus of
intense scholarly debate (Obermeyer et al., 2019; Rajkomar et al., 2018; Seyyed-Kalantari
et al., 2020; Wiens et al., 2019). Even though computer-aided diagnosis (CAD) systems have
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integrated significant advances to assist clinicians in various tasks, including segmentation,
classification, phenotype prediction, and treatment efficacy, these systems have rarely been
scrutinised enough for their potential for discrimination against certain population sub-
groups by their deployment or adoption in clinical practice. Disparate treatment concerns
can arise solely due to the composition of the training data (Larrazabal et al., 2020; Puyol-
Antén et al., 2021), meaning that certain population subgroups might be underrepresented
or completely missing during training of a machine learning CAD system. In healthcare
applications, condition scarcity for specific subgroups can impede the curation of a balanced
dataset across all sensitive attributes of interest. Similarly, the disease prevalence may vary
across population subgroups (Werling and Geschwind, 2013), e.g. autism spectrum disor-
ders (ASD) are more prevalent in males compared to females. At the same time, the clinical
presentation of a disease might be completely different across subgroups. In ASD, in partic-
ular, differences have been established between neurodiverse males and females in terms of
the interactions between key functional brain networks (Alaerts et al., 2016). Furthermore,
a clinical decision-making system can be trained on data capturing certain demographics
(e.g. young males) and then be deployed on a population with a different demographic dis-
tribution. Lastly and most importantly, these systems can perpetuate or exacerbate biases
already present in the ground truth decisions used during their development.

Extensive work has been carried out to uncover fairness issues of computer vision sys-
tems that operate in the Euclidean domain and use inductive learning — that is, models
trained on labeled training samples and evaluated on an unseen test dataset. However,
these are still under-explored for approaches that operate in irregular domains in a trans-
ductive setting, in which models have access to the entire database while optimized on
a subset of labeled samples. These have been shown to lead to significant performance
improvements in neuroimaging tasks, like ASD and Alzheimer’s disease prediction, by em-
ploying graph-based label propagation (Zhao et al., 2014) or equivalent techniques from
graph representation learning (Parisot et al., 2018). One such example is the application
of graph neural networks for semi-supervised learning on population graphs that leverage
demographic or other auxiliary information (see Figure 1). Such approaches have demon-
strated stark improvements compared to alternatives that do not rely on these sensitive
attributes, because they capture the interactions and similarities between subjects or their
individual scans, unlike more traditional classifiers (Abraham et al., 2017). However, these
studies often only report overall performance metrics, such as prediction accuracy and area
under the receiver-operating characteristic (AUC-ROC) curve. Therefore, there is a lim-
ited understanding of whether these methods and training strategies inadvertently improve
predictive performance in one subgroup of the population at the expense of another.

Generalizable Insights about Machine Learning in the Context of Healthcare

We address this important gap in the fairness literature and explore how the population
graph structure and stratification strategies during the training of graph neural networks
affect the fairness of the devised semi-supervised classifier. Beyond presenting the short-
comings of existing design decisions, we further explore mitigation strategies that improve
fairness in these classifiers, as defined in Hardt et al. (2016). The challenges of the ABIDE
database (Di Martino et al., 2014) that we focus on in this work are two-fold: (a) it con-
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Figure 1: In a system that explicitly uses sensitive attributes to introduce inductive biases
how do we ensure that the final predictions are fair across subgroups?

tains a heterogeneous set of neuroimaging data from neurodiverse and neurotypical study
participants from 20 different imaging sites, while (b) within the same acquisition site the
demographic and diagnostic distribution of individuals is highly imbalanced. We develop
a rigorous and thorough evaluation framework that can be employed in multi-site studies
to deal with challenges arising from imbalanced and highly heterogeneous consortia. This
framework ensures that potential biases and disparate mistreatment can be uncovered, both
for demographic subgroups as well as geographical locations, and should be adopted in the
clinical evaluation of such approaches. We further report results with different mitigation
strategies, i.e. fine-tuning and Just Train Twice, and discuss their applicability in the trans-
ductive setting. Due to the multifaceted challenges pertinent to this clinical database, we
also show results with these mitigations on a simplified simulated dataset that is spared
from the multi-site heterogeneity.

In brief, we found that the stratification strategy and the composition of the training
set resulting from that had no significant effect on model fairness, when that is measured
in terms of true positive rate differences. This contradicts most findings from prior studies
that highlight the importance of the training set composition for the downstream fairness
evaluation. We believe this difference is due to our experimental setting, i.e., the transduc-
tive setting. While most (if not all) previous studies have focused on the inductive setting,
our model has access to and learns from the features of all samples, rather than only those
of the training set alone.
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2. Background

2.1. Graph neural networks for neuroimaging

Graph neural networks (GNNs) have been adopted in various neuroimaging studies for node-
and graph-level predictive tasks. These approaches employ purely spatial (Ribeiro et al.,
2021) or spectrally-inspired (Parisot et al., 2018) GNNs to devise convolutional filters that
can be applied in irregular domains (e.g. brain connectivity or population graphs). Here,
we focus on transductive learning approaches wherein the features of all subjects (training,
validation, and testing) are present during training, while only the labels of the training
set are available. This type of setting is useful for node-level predictive tasks like the one
presented in Parisot et al. (2018), the earliest work applying GNNs on population graphs.
The main advantage of this approach is that auxiliary information, e.g. the acquisition site,
can be captured in the graph structure itself to introduce desired inductive biases to the
model. This so-called phenotypic graph was shown to yield the highest overall performance
(in terms of accuracy and AUC-ROC) in two different tasks, ASD and Alzheimer’s disease
prediction, compared to random, k-nn, and complete graphs, highlighting that incorporating
information relevant to the disease in the population graph structure can be highly beneficial
for the overall performance. Alternative graph-learning methods have since been proposed
instead of hand-picking the non-imaging attributes (Cosmo et al., 2020). Other works
(Vivar et al., 2020; Hett et al., 2021) explored multi-graph settings and data imputation for
missing features, but we consider those less relevant to our setting.

2.2. Fairness metrics in medical applications

Different notions of fairness (or lack thereof) have been discussed in the expanding literature
on algorithmic fairness. These focus on different aspects of potential discrimination in a
decision-making system. Disparate treatment indicates that a system yields different
outputs for different subgroups of people with the same (or very similar) features except
for the sensitive feature (Barocas and Selbst, 2016). This is often referred to as direct
discrimination and arises when the decision essentially relies on the sensitive attribute.
Disparate impact characterises the scenario where a system provides outputs that benefit
/ hurt people sharing a sensitive attribute more frequently than others. Mitigating disparate
impact is equivalent to striving for statistical (Corbett-Davies et al., 2017) or demographic
parity (Dwork et al., 2012). Disparate mistreatment, in turn, describes the failure of a
system to achieve the same classification accuracy (or conversely, error rate) for subgroups of
people sharing different values of a sensitive attribute. Equality of opportunity (Hardt et al.,
2016) and predictive equality strive to address these limitations in a decision-making system.
The key differences between these three notions lie in whether the decision-making system
intentionally or inadvertently discriminates against a group characterised by a particular
sensitive attribute. Disparate impact and disparate mistreatment both account for indirect
unfairness, but their application scenarios differ. Disparate impact is unaware of the ground
truth information about the decision (e.g. diagnosis), while that is not the case for disparate
mistreatment. In the clinical setting, we do have access to the ground truth (at least for
the training data) and for the aforementioned reasons, we consider equality of opportunity
the most relevant to the application explored in this work.
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Various approaches have been proposed in the literature to evaluate classifier disparities
across subgroups in the context of binary classification. In this setting we aim to find a map-
ping function f(x) between individual feature vectors x € R? and class labels y € {0,1}
based on a training dataset D = {x;,1;},. In Hardt et al. (2016), authors introduced
a simple, interpretable, and easily verifiable notion of nondiscrimination to specified pro-
tected attributes that guarantees equal true positive rate (TPR) across the values of these
protected attributes. In particular, Pr(y = lla = 0,y = 1) = Pr(y = lla = 1,y = 1),
where a is the protected attribute, y is the desired outcome label and ¢ the predicted
class. For y = 0, the constraint equalizes the false positive rate (FPR) between the two
groups. The same metric was previously used to measure discrimination between the two
sexes in different contexts by De-Arteaga et al. (2019) and Seyyed-Kalantari et al. (2020).
In Seyyed-Kalantari et al. (2020), TPR disparities were investigated in relation to differ-
ent sensitive attributes for classifying respiratory conditions from chest X-rays. Sensitive
attributes were: sex, age, race, and insurance policy. They were able to identify disparities
that could pose serious barriers to the effective deployment of these models and proposed
additional changes in either dataset design and/or modeling techniques to ensure more eq-
uitable models. In Puyol-Antén et al. (2021), a cardiac segmentation task was considered
instead, and fairness issues were investigated regarding gender and race. They found that
the accuracy of the baseline segmentation model for each racial sub-group was correlated
with its representation in the training set. In other contexts, parity in terms of overall
misclassification rate (OMR), false omission rate (FOR) and false discovery rates (FDR)
have been considered to evaluate the fairness of a system (Zafar et al., 2019).

Other definitions of fairness focus on calibration (Kleinberg et al., 2016) and demo-
graphic parity (Corbett-Davies and Goel, 2018). Mainly, demographic parity is the equality
of outcomes for different groups, i.e., parity in the proportion of some decision D (Corbett-
Davies and Goel, 2018; Olfat and Mintz, 2020). However, demographic parity is a stricter
measure when there is a strong correlation between the sensitive attribute and the predic-
tion target (Olfat and Mintz, 2020), which is the case for ASD (higher prevalence within
the male population). Given the growing recognition that not all conditions can be simul-
taneously satisfied (Chouldechova and Roth, 2018), we focus on the TPR gap (or equality
of odds) as, arguably, the most relevant to the application scenario.

2.3. Bias mitigation

Different approaches have been proposed to mitigate potential fairness issues and model bias.
As these often arise from data imbalance in the training set and the underrepresentation of
certain groups, pre-processing approaches play an important role here. In particular, under-
sampling the prevalent class or over-sampling the underrepresented class (Larrazabal et al.,
2020) can prove to be effective strategies, similarly to inverse propensity weighting (Robins
et al., 2000). Along the same lines, generative models can be leveraged to fill parts of
the distribution where there is missing or only limited data is available. In-processing
approaches include implicit and explicit regularisation (Olfat and Mintz, 2020), as well
as introducing adversarial components to the model (Madras et al., 2018; Dai and Wang,
2021) or fairness constraints (Zafar et al., 2019). Researchers have also discussed making
sensitive attributes available as a means to improve fairness (Dwork et al., 2012), as well as
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Table 1: Descriptive statistics from the 8 largest acquisition sites, including the number
of neurotypical and neurodiverse, male and female participants. These constitute
65% of all subjects in the ABIDE study.

Male participants Female participants
Acquisition site || Neurodiverse Neurotypical | Neurodiverse Neurotypical | Total
NYU 64 72 10 26 172
UM 26 35 8 17 86
USM 43 24 0 0 67
UCLA 31 24 6 3 64
PITT 21 22 3 4 50
MAX_MUN 16 26 3 1 46
TRINITY 19 25 0 0 44
YALE 14 11 8 8 41

different ways to leverage these attributes (Dwork et al., 2018). Post-processing mitigation
strategies, on the other hand, include classification with rejection, classifier calibration (e.g.,
adjusting the threshold of classification for each group), and equalized odds as proposed
in Hardt et al. (2016).

3. Materials and Methods

3.1. Dataset & Descriptive Statistics

Our study focuses on the ABIDE database described in Di Martino et al. (2014) — a con-
sortium of several international acquisition sites comprising functional neuroimaging and
phenotypic data from 1112 participants. Out of those, 871 participants met the imaging
quality and phenotypic information criteria (Abraham et al., 2017), totaling 403 neurodi-
verse and 468 neurotypical individuals. The number of individuals participating in each
acquisition site varies significantly, with the most prominent site contributing data from
172 individuals and the least prominent one from 11 individuals. Furthermore, there is sig-
nificant variation in terms of the demographic and diagnosis distribution across acquisition
sites (see Table 1), i.e. some sites only provide data from males and have a higher prevalence
of neurodiverse participants (e.g. USM). In contrast, for other sites, diagnosis imbalance is
starker for females than for males (e.g. NYU). These statistics are important to understand
the challenges of this dataset, while the multi-site setting allows to test the generalisability
of the approaches across sites. Table 1 reports the overall statistics describing the data of
the eight most prevalent acquisition sites, regarding sex and diagnosis. Equivalent statistics
for the remaining sites are provided in the Appendix.

It is important to consider that scanner and imaging protocol variations introduce addi-
tional challenges, especially when considering resting-state fMRI (rs-fMRI) sequences and
their derivatives, in the form of connectivity matrices. For each individual participating
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in this study, their rs-fMRI data were preprocessed with the Configurable Pipeline for the
Analysis of Connectomes (C-PAC) (Craddock et al., 2013). Subsequently, the mean time-
series were extracted for a set of brain regions delineated by the Harvard-Oxford anatomical
atlas, which comprises R = 110 cortical and subcortical regions of interest (Desikan et al.,
2006), and normalised to zero mean and unit variance. The Fisher’s transformed correlation
matrix was then used to specify x; € REX(i=1) i e  the vectorised connectivity matrix for
each individual.

In summary, this database presents a particularly challenging setting in which we can
explore the propensity of GNN models to be biased against underrepresented populations.

3.2. Population graph construction

As defined in Parisot et al. (2018), the phenotypic population graph is constructed by
weighting the connectome similarity matrix with a phenotypic graph that captures the
agreement of pairs of participants in terms of phenotypic features, i.e.,

H
W (i, j) = sim(xi, x;) Y _ 8(an(i), an(5)), (1)
h=1
where x;, x; are the vectorised functional connectomes and A = {ap} the set of phe-
notypic attributes we consider (i.e. sex and acquisition site). sim(x;,x;) corresponds to a
similarity metric between connectomic feature vectors. § is the Kronecker delta function
for a pair of nodes (7, j) and a non-imaging feature h:

1 if ah(i) = ah(j)
0 if ah(i) 7& ah(j)

We consider four different graph structures to understand the impact of the population
graph on the fairness of the target predictions: (1) a weighted graph based on the subjects’
sex alone, (2) the acquisition site alone, (3) both sex and acquisition site, and (4) a complete
graph that does not leverage phenotypic information. It is worth noting that manipulating
the graph structure in this setting can be perceived as a pre-processing approach to mitigate
bias, as it does not introduce additional constraints / regularisation during the training
process.

d(an(i), an(j)) = { (2)

3.3. Stratification strategy

In prior work, k-fold stratified cross-validation was used to evaluate the performance of the
proposed method (Abraham et al., 2017; Parisot et al., 2018). However, stratification based
on diagnosis can lead to a significantly imbalanced training set with respect to the sensitive
attribute of interest, given that for certain sites no female participants were recruited. We
therefore investigate the impact of stratification strategies on fairness metrics, considering
sex as the sensitive attribute (a). As previous studies have shown (De-Arteaga et al., 2019;
Larrazabal et al., 2020; Puyol-Antén et al., 2021), the composition of the training data can
significantly impact the bias of the devised classifier. Hence, the training data bias with
respect to the sensitive attribute can be further accentuated by a stratification based solely
on diagnosis, as often seen in cross-validation settings, due to the demographic shift between
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acquisition sites. As summarised in Table 1 and Table 2, the number of individuals with
specific diagnoses and sensitive attribute values varies significantly across acquisition sites.
The impact of this demographic and diagnosis shift on the downstream task was previously
demonstrated when reporting classifier performance on samples from unseen sites (Abraham
et al., 2017).

To test for the robustness of our GNN model to distribution shifts, we consider four
different stratification strategies: (1) based on the target variable — diagnosis, (2) based on
diagnosis and the sensitive attribute (i.e., sex), (3) based on diagnosis and the acquisition
site, and (4) based on the sensitive attribute and the acquisition site.

3.4. Model

Beyond the different stratification strategies and graph structures, we compare the GNN
model employed in Parisot et al. (2018) and originally proposed in Defferrard et al. (2016)
to a ridge classifier. The GNN model learns the parameters 6; of the polynomial filters
go(L) = Zleo 0,£', with £ being the normalized Laplacian matrix of the affinity graph
defined as £ = Iy — D"Y2WD~Y/2 and D is the degree matrix. This corresponds to the
reparametrization introduced by Defferrard et al. (2016) yielding filters that are strictly L-
localized (i.e. capture the L-hop neighbourhood around the central node) and significantly
reduces the computational complexity of the convolution operator in the Fourier domain.

Without the use of this polynomial reparametrization, one would need to decompose the
Laplacian matrix corresponding to the adjacency matrix W and learn an orthonormal basis
of eigenvectors U = [ug, ...uny—1] corresponding to real, eigenvalues A = diag([Ao, ...An—1])
with £ = UAUT. This operation is O(N?) with respect to the number of nodes in the graph.
A spectral convolution of a signal defined on the nodes x (in our case, the connectivity
profile of an individual) with a filter g9 = diag(f) defined in the Fourier domain can then
be defined as a multiplication in the Fourier domain, i.e. gg*x = gg(L) - x, which allows us
to convolve the node feature vectors with the polynomial filters and “diffuse” information
from neighbouring nodes. In our experiments we use L = 3 layers for the GNN, which is the
optimal depth identified empirically by Parisot et al. (2018). The remaining list of values
for the model and training hyperparameters are presented in the Supplementary Material.

We consider the ridge classifier as a baseline that does not capture the sensitive attribute
and site information explicitly, i.e. the model only has access to the vectorised connectivity
matrices, {x;}Y, and the affinity matrix W is not used. The GNN model learns the
parameters 0; of the polynomial filters defined as a function of the Laplacian matrix of the
population graph, i.e. gg(A).

3.5. Mitigation techniques

Finally, we experiment with transfer learning, an in-processing mitigation strategy. In our
experiments, we first train the GNN model for 150 epochs and then fine-tune the model
for each sensitive group for 50, 100, and 150 epochs, generating two sensitive group models
for each setting, similarly to Puyol-Antén et al. (2021). We further employ the Just Train
Twice (Liu et al., 2021) method, which upweights the misclassified samples after one round
of training and has been shown to improve robustness of models to distribution shifts. We
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apply JTT for 30 and 50 epochs while we explore the effect of the weighting for each of
these settings.

3.6. Code availability

All accompanying Python source code will be made available on GitHub (https://github.
com/tomogwen/population-gecn). Moreover, an executable code notebook hosted on Google
Colab will be made available, allowing reproducibility of our experiments.

4. Results
4.1. Impact of stratification strategy

The stratification strategy inherently impacts the distribution of labels, sensitive attributes
and acquisition sites in a k-fold cross-validation setup, which would render the comparison
across different stratification strategies challenging and, potentially, unfair. To address
this issue, we randomly select approximately 10% of the individuals as a held-out test set.
We sample two male and two female participants completely at random — one diagnosed
as neurotypical and one as neurodiverse of each sex — from all acquisition sites (wherever
available). These individuals’ labels are then excluded from all training and validation folds.
This setup is very similar to bootstrapping, with the difference that we do not sample the
test set with replacement for a single cross-validation seed/random state.

For each configuration, we train models with 10 different cross-validation random states
to capture possible noise in our experimental observations. Overall, we obtained 100 models
for each combination of model (GNNs vs. Ridge classifier — the latter being our baseline
model), graph structure (as described in 3.2), and stratification strategy (described in 3.3),
which were evaluated using the same held-out test set. Figure 2 illustrates the distributions
of true positive rate differences between males and females across these 100 models for each
combination.

We perform a repeated measures two-way ANOVA to assess the effect of the stratification
strategy and the selected model (including all GNNs trained on different graph structures)
on TPR differences. We found a main effect of model [F'(4,396) = 291.005,p < 0.001],
but not stratification strategy [F'(3,297) = 0.441, p = 0.724]. Post-hoc test (using the Bon-
ferroni correction to adjust p) indicated that all TPR difference distributions significantly
differed from one another (p < 0.001), with the GNN trained on a population graph weighted
by sex information having the smallest TPR difference (mean TPR difference ranges from
0.069 to 0.087 across stratification strategies). In summary, the sex graph leads to the
lowest true positive rate difference. Most importantly, it significantly improves on fairness
with respect to the baseline as well as the complete graph.

4.2. Impact of graph structure

Since stratification strategies did not seem to directly affect TPR differences, all experiments
reported in this section were carried out with stratification based on the diagnosis to align
with prior work (Parisot et al., 2018). In order to assess the robustness of our previous
finding, we trained 10 different models (using 10 different parameter initialisation seeds) for
10 different held-out test sets, selected with a different random seed in a similar manner
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as above (i.e. ensuring an as balanced as possible test set with respect to site and sex
distribution). Thus, we trained and tested 10 different models on each held-out test set,

10
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totaling 100 models. Figure 3 shows the TPR differences (left) and AUC-ROC (right). Even
though we found that all population graphs resulted in higher average AUC-ROC than the
baseline model (Ridge classifier), the absolute difference in TPRs substantially improved
(decreased) when phenotypic information was used. Therefore, the higher performance
of GNNs employed on population graphs did not come at the cost of the higher
difference in TPRs. It is worth noting that leveraging phenotypic information in the
population graph construction, including the sensitive attribute, did not disproportionately
impact model performance for the under-represented group (see also Figure 8). This result
aligns with prior findings in the inductive setting that highlight the benefits of fairness
through awareness of the sensitive attribute (Dwork et al., 2012).

4.3. Impact of transfer learning

Finally, we investigate the potential of transfer learning for bias mitigation. Although
the absolute TPR difference, our proxy of model unfairness, was not as acute as in other
applications, there is room for improvement to reach an absolute TPR difference of 0 (fair
model with respect to this fairness metric). Therefore, our goal in this section is to mitigate
disparate performance across males and females and push true positive rate different towards
0.

4.3.1. FINE-TUNING ON SYNTHETIC DATA

In order to disentangle the effect of the multi-site heterogeneity from that of sensitive at-
tribute imbalance, we generate a synthetic dataset that is spared from the complexity of
the multi-site setting. The generated data is depicted in Fig. 4 (left), while the proportion
of males and females characterised as neurotypical and neurodiverse matches that of the
original dataset. After training a baseline GNN model with a complete graph and a sex
graph, we subsequently fine-tuned the respective models on the male and female popula-
tions separately, yielding two specialised models for each value of the sensitive attribute in
the dataset. We observe that, similar to prior findings by Puyol-Antén et al. (2021), the
models fine-tuned on the male samples lead to higher AUC-ROC compared to the original
model, while the same holds for the models fine-tuned on the female training samples when
evaluated on the female samples in the test set. For completeness, we further evaluated the
specialised models on the samples of the opposite sex that they have not been fine-tuned
on.

4.3.2. FINE-TUNING ON THE ABIDE DATABASE

We further assessed whether fine-tuning pretrained models for each sensitive group sepa-
rately can generate group-specific models that perform better for a protected group than
the original model trained on both groups in the ABIDE database. In this section, we
show the results of such experiments for a population graph that does not rely on sensi-
tive attributes. Figure 5 shows the TPR differences (top left), AUC-ROC (bottom left),
sensitivity (top right), and specificity (bottom right). Fine-tuning on the male population
did not change the results considerably across the board compared to the pretrained model
(complete graph), regardless of the number of epochs. Conversely, fine-tuning the model on
the female sample reduced the mean difference in TPRs (overall performance is comparable

11
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Figure 4:

to the population graph leveraging sex and site information). However, this improvement
resulted in reduced AUC and sensitivity for both groups.

4.3.3. JusT TRAIN TWICE ON THE ABIDE DATABASE

Finally, we explored the potential of Just Train Twice (JTT) on the ABIDE database, which
upweights samples that have been misclassified by the model after one round of training.
This can be considered as an alternative form of fine-tuning without explicitly focusing on
a specific subgroup or sensitive attribute. Our hypothesis, however, is that the model is
more likely to misclassify under-represented subgroups in the training set. Results with this
technique are summarised in Figure 6. We observe that, unlike fine-tuning on a population
characterised by a specific attribute, JTT marginally improves sensitivity for the sensitive
group without hurting specificity after 30 epochs. Upon post-hoc analysis of the model’s
predictions at the end of the first round of training, we observe that the original model tends
to misclassify neurotypical females at a higher rate than neurotypical males. Although we
did not observe noticeable improvements in the model’s specificity, JTT holds the potential
to improve the model’s sensitivity.

5. Discussion

In this work, we thoroughly explored different mitigation strategies to improve the fairness
of ASD predictions in a multi-site cohort using publicly available data from the ABIDE
study. This is the first study focusing on the impact of relying on sensitive attributes to
construct the population graph in a semi-supervised setting. Our results align with other
works that have shown that leveraging the sensitive attribute is important to improving
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Figure 5: Absolute difference in true positive rates, sensitivity, AUC-ROC, and specificity
for males (purple) and females (green) groups. The purple shaded area shows
models fine-tuned on the male samples (FT-male) of the training set for 50, 100,
and 150 epochs, whereas the green shaded area shows models fine-tuned on the
female samples (FT-female). All fine-tuned models used the complete graph.
Baselines are the pre-trained models. CG - complete graph; SSG - sex and
acquisition site weighted population graph.

model fairness (Dwork et al., 2012, 2018) instead of discarding this information. We observe
that the stratification strategy does not impact the differences in true positive rate between
male and female participants (considering sex as the sensitive attribute). This shows that
the impact of the underlying graph structure is more important than the composition of
the training set, at least with such a small dataset. At the same time, the different patterns
of functional connectivity (hyper-connectivity in females vs. hypo-connectivity in males) in
individuals diagnosed with ASD (Alaerts et al., 2016) hint that it can be beneficial to learn
different latent representations for the two subgroups, which is what we achieve by relying
on sex for the graph construction that yields two disconnected graphs one for each sex.
Overall, our results suggest that there is no one-size-fits-all metric for evaluating po-
tential biases in a CAD system. Even though the difference in TPRs is reduced after
fine-tuning models on the female population, the fine-tuned models end up being biased
towards positive predictions (hence, have lower specificity). This pattern is not observed
on the synthetic data and can be attributed to the heterogeneity of the ABIDE database
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in conjunction with our evaluation setup, which makes it harder to generalise to new un-
seen sites. As we showed through the dataset statistics, there are multiple acquisition sites
without female participants or, when those are available they might solely be part of the
test set and, hence, never be encountered during training. Additionally, fine-tuning the pre-
trained models on each demographic group separately did not yield group-specific models
that outperformed the pretrained model (in contrast to previous findings in cardiac MR
image classification (Puyol-Antén et al., 2021)). This discrepancy may also stem from the
fact that our models are trained in a transductive setting, in which models still have access
to all data samples while they are only optimized on a subset of labeled samples. It is also
worth considering that the multi-site nature of the ABIDE database makes our training
and test sets highly heterogeneous. At the same time, it poses a more realistic challenge
compared to other studies that focus on clinical data from a single geographical location or
acquisition site. Our results suggest that transfer learning in the multi-site transductive set-
ting might not be as effective, while techniques such as JTT that fine-tune on misclassified
samples from either subgroup hold more promise.

Limitations An important limitation of the ABIDE database that we perform our ex-
periments on is the binary nature of the sensitive attribute, i.e. sex. Even though recent
studies have explored the clinical phenotype of autism in gender minority adults (Kung,
2020), fMRI data for such participants have not been made available. Another limitation is
considering the prediction of diagnosis as a binary classification problem, given that ASD is
inherently a spectrum disorder. Even though the same approach has been adopted in prior
studies (Abraham et al., 2017; Parisot et al., 2018), reducing this to a classification prob-
lem does not consider the heterogeneity across individuals with DSM-IV-TR, (fourth and
text revised edition of the Diagnostic and Statistical Manual of Mental Disorders), autis-
tic disorder, Asperger syndrome, pervasive developmental disorder-not otherwise specified
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(PDD-NOS) and individuals identified as ASD but not further differentiated into specific
DSM-IV-TR subtypes (Di Martino et al., 2014).

Future work should focus on replicating these observations on a different dataset and
clinical classification task to verify the generalisability of our findings. Furthermore, depend-
ing on the application, as mentioned in Section 2.2 other fairness metrics can be explored
and reported as these can shed light on different aspects of bias in the devised classifier.
Finally, other mitigation strategies could be investigated in a similar transductive setting,
such as training the classifier as multi-objective optimization problem (Martinez et al., 2020)
or using augmentation techniques (Beinecke and Heider, 2021).
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Appendix A.
Dataset statistics

In this section we provide the summary statistics for the remaining sites that recruited 35%
of the participants in the ABIDE database.

Table 2: Descriptive statistics from the remaining 12 acquisition sites. These constitute 35%
of all subjects in the ABIDE study. These include the number of neurotypical and
neurodiverse, male and female participants.

Male participants Female participants
Acquisition site || Neurodiverse Neurotypical | Neurodiverse Neurotypical | Total
KKI 9 15 3 6 33
UM_2 12 20 1 1 34
LEUVEN_1 14 14 0 0 28
LEUVEN_2 9 12 3 4 28
OLIN 11 12 3 2 28
SDSU 8 13 0 6 27
SBL 12 14 0 0 26
STANFORD 9 9 3 4 25
OHSU 12 13 0 0 25
UCLA2 11 8 0 2 21
CALTECH 4 6 1 4 15
CMU 4 3 1 4 11
Hyperparameters

Table 3 provides the set of hyperparameter values for our experiments on the ABIDE
database. For the synthetic data experiments we reduced the learning rate to 0.002.

Table 3: Hyperparameters for GNN model.

Parameter name parameter value
learning rate 0.005
weight decay 5e~4
number of epochs 150
dropout 0.3
number of hidden units 16
number hidden layers 1
polynomial degree 3
number of input features 2000
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