
Proceedings of Machine Learning Research 183:139–150, 2022 Short Paper - LIDTA 2022

Integrating and reporting full multi-view supervised learning
experiments using SuMMIT

Baptiste Bauvin baptiste.bauvin.1@ulaval.ca
Jacques Corbeil jacques.corbeil@crchudequebec.ulaval.ca
2705, boulevard Laurier,
Québec, Québec,
Canada G1V 4G2

Dominique Benielli dominique.benielli@univ-amu.fr

Sokol Koço sokol.koco@emse.fr

Cecile Capponi cecile.capponi@lis-lab.fr

52 Av. Escadrille Normandie Niemen,

13397 Marseille Cedex 20,

France

Editor: Nuno Moniz, Paula Branco, Lúıs Torgo, Nathalie Japkowicz, Micha l Woźniak and Shuo

Wang.

Abstract

SuMMIT (Supervised Multi Modal Integration Tool) is a software offering many
functionalities for running, tuning, and analyzing experiments of supervised classification
tasks specifically designed for multi-view data sets. SuMMIT is part of a platform 1 that
aggregates multiple tools to deal with multiview datasets such as scikit-multimodallearn
(Benielli et al., 2021) or MAGE (Bauvin et al., 2021). This paper presents use cases of
SuMMIT, including hyper-parameters optimization, demonstrating the usefulness of such
a platform for dealing with the complexity of multi-view benchmarking on an imbalanced
dataset. SuMMIT is powered by Python3 and based on scikit-learn, making it easy to
use and extend by plugging one’s own specific algorithms, score functions or adding new
features2. By using continuous integration, we encourage collaborative development.

Keywords: Multimodal, Supervised, Classification, Benchmarking, Python, Reproducible
Research, Modularity, Explainability, Interpretability

1. Introduction

The presented software deals with learning multiple multi-view supervised classification
models from a dataset S = {(xi, yi)}ni=1, xi ∈ X , yi ∈ Y, i.i.d. from an unknown distribu-
tion D over X × Y. In Python’s world, there exists many valuable libraries for handling
experimental studies in supervised classification, such as scikit-learn (Pedregosa et al.,
2011) on mono-view datasets, where each sample x must range in one description space
x ∈ X . These libraries come with tools for performing a wide range of model selection
through dedicated pipelines.

1. https://github.com/multi-learn/
2. The full documentation is available at https://multi-learn.github.io/summit/

© 2022 B. Bauvin, J. Corbeil, D. Benielli, S. Koço & C. Capponi.

https://github.com/multi-learn/
https://multi-learn.github.io/summit/


Bauvin Corbeil Benielli Koço Capponi

In the multi-view setting, X is actually divided in V ≥ 2 description spaces (or views;
modalities): X = X (1) × · · · × X (v). Simply merging the views (early fusion) may in
certain cases be used to deal with multi-view learning problems. On the opposite, one may
perform late fusion (Snoek et al., 2005) by learning one model h(v) from each view v, then
combining them, usually through majority vote. In contrast to the fusion approaches, the
last decades have produced multi-view supervised learning algorithms for taking advantages
of diversity and complementarity among views, such as kernel-based MVML (Huusari et al.,
2018); boosting-based Mumbo (Koço and Capponi, 2011), or tensor-based, such as Multi-
View Machines (Cao et al., 2016), and many more reviewed by (Baltrušaitis et al., 2018).
While there exists unsupervised multi-view libraries (Perry et al., 2021), to the best of our
knowledge no multi-view supervised classification benchmarking tool is available.

Interestingly, the no free lunch theorem implies that choosing the right model with
the right hyper-parameters for a learning task is crucial to obtain relevant results. It is
all the more critical in a multi-view context because its nature drastically increases the
combinatorics, compared to the mono-view setting. Indeed, some tasks require specific
multi-view algorithms, while others are well handled by either naive early or late fusion,
complexified by the hyper-parameter optimization in every configuration. Moreover, in
some extreme cases, including all the views may actually lower the performance of the
models. Indeed, multi-view learning on imbalanced tasks induces more complexity as the
information is not uniformly distributed among the views and the classes.

To solve this problem, we propose SuMMIT as an integration tool that allows the users
to fine tune and run many mono- and multi-view models at once, together with first-
level hyper-parameter optimization, and visual comparison of user-selected performance
measures. Moreover, if the desired model is not available in the built-in pool, SuMMIT
has been developed to ease the addition of plugins and new algorithms to its workflow,
as it is designed to be compatible with other open source multi-view projects such as
scikit-multimodal-learn (Benielli et al., 2021) and MAGE (Bauvin et al., 2021).

This paper focuses on the main functionalities of SuMMIT by covering its basic usage
and some complex features. Technical aspects of SuMMIT’s implementation are presented.
A perspective of promising potential work and collaborative development then is given.

2. A multi-view approach to supervised learning

In this section, we introduce the basic definitions and concepts of multi-view learning in a
classification context. As an introductory example, let us consider the task of classifying
different species of birds, for which the available descriptions are (1) images, (2) audio
recording of several individuals, and (3) textual annotation of the place where these infor-
mation were acquired. Naturally, each description represents a different view on the data.
In order to understand each view, one has to choose the right model to extract as much
information as possible from each data type, and then combine them to build a classifier
that takes into account the strengths and weaknesses of the views, and ultimately inte-
grates them all. Thus, to differentiate two bird species that are endemic to the same area
but look and sound different, the textual view will be confusing, while the other two should
be useful. Similarly, we can suppose that combining as-is a pixel matrix and a bag-of-words
representation might confuse a mono-view algorithm, and will not lead to acceptable results.

140



SuMMIT

X (1) X (2) X (3) X (4)

X̂

B̂

ŷ

(a) Early fusion

X (1) X (2) X (3) X (4)

B(1) B(2) B(3) B(4)

V

ŷ

(b) Naive late fusion

Figure 1: Basic multi-view methods that adapt mono-view approaches.

This type of examples demonstrates the complexity of multi-view learning and provides an
insight into the importance of using multi-view specific tools to deal with multi-view tasks.

2.1. Defining a multi-view dataset

In this work, we focus on the supervised classification framework, in which the dataset S is
made of samples x̃i and their associated labels yi, i.e. S = {(x̃i, yi)

m
i=1|x̃i ∈ X̃ and yi ∈ Y}.

In our case, the labels are positive integers, as we work with potentially multi-class datasets
yi ∈ {1, . . . , k, . . . ,K}. Moreover, in multi-view context, we consider that each sample
x̃i has been observed thanks to V ≥ 2 different methods (projections, sensors) and that

therefore, we have V observation, or views of x̃i = {x(1)i , . . . , x
(v)
i , . . . , x

(V )
i } with x

(v)
i ∈ X (v)

and X̃ = X (1)×· · ·×X (V ). All these views have their own dimensions d(1), . . . , d(v), . . . , d(V ).

Finally, the concatenation of all the descriptions of a sample x̃i is of dimension D =
V∑

v=1
d(v).

Armed with these basic notations and definition, we can outline the main approaches used
to solve a multi-view problem.

2.2. Solving a multi-view problem

This task adds complexity to the usual machine learning problems. Indeed, the separation
among the views can be critical to the model, as shown in the birds example.

Mono-view approaches Even with a multi-view dataset, it is still possible to use basic
mono-view algorithms to try to solve the problem. To do so, the the reader has to pick a
view and learn a mono-view model on it, ignoring the other V − 1 views.

This method reuses the knowledge about mono-view classification as is, without any
more investment. Moreover, it can be very computationally interesting as it only requires
to analyze one view. However, it is a very high level approach, as it considers that a single
view has sufficient information to solve the problem, which is not always the case in real

141



Bauvin Corbeil Benielli Koço Capponi

life multi-view datasets. Unlike what one may expect, this approach sometimes succeeds.
The first step towards multi-view approaches is by fusing the views (Snoek et al., 2005).

Early fusion Here, we present the early fusion method that consists in concatenating
all the views to create a new set X̂ ⊂ RD that allows any mono-view algorithm to learn

on x̂i =
{
x
(1)
i,1 , . . . , x

(1)

i,d(1)
, . . . , x

(V )
i,1 , . . . , x

(V )

i,d(V )

}
∈ RD. The process is schematized in Figure

1(a); note that some data processing may need to be performed before and after the fusion.

Empirically, it is possible to use well-studied conventional mono-view algorithms on X̂ ,
so they have access to all the available information about the samples at the same time.
However, this new dataset can be of very high dimension if the views are large and/or
numerous. In addition, this method does not allow to learn on heterogeneous data types,
and even if we supposed here that all the views are real-valued, this can lead to learning
difficulties, such as the ones highlighted by the previous bird example. Moreover, when the
dimensions of some views are much greater than dimensions of some others, these latter
might get neglected by algorithms such as L2-SVM that learn on the full description of
each sample. Finally, regularity patterns in the data might be different from one view to
another, so searching for regularities in the fused space could be a challenge.

Naive late fusion To adapt mono-view models to a multi-view task, it is also possible to
use the late fusion approach (Snoek et al., 2005) that learns one mono-view classifier B(v)

for each view then fuses their decisions in a naive majority vote V to output a multi-view

classification vote V =
V
V
v=1

(B(v)) with V being the majority voting operator. The process

is schematized in Figure 1(b).

Empirically, the late fusion method has dual advantages to the early fusion as it allows
to process each view at a time (or in parallel) to reduce dimensionality and focus on each
view’s regularities. However, it does not benefit from the interactions among the features of
every view, nor even able to tackle problems requiring accounting for complementary views.

Native multi-view algorithms The three methods that we introduced are based on
mono-view learning, and might not be sufficient to tackle problems that require a larger
amount of interactions among the views.

One of the approaches that does include interactions is Mumbo (Koço and Capponi,
2011), a boosting-based algorithm which assumes that views are complementary, therefore
that each sample of the dataset is well described in at least one view, but that one view
is not sufficient to build a relevant model. The principle of Mumbo is to overweight the
relevant views in the classification process of a specific sample thanks to a cost tensor that
generalizes the cost matrix of multi-class mono-view boosting.

The authors of Multi-View Machines (Cao et al., 2016) made different hypotheses and
supposed that some samples can only be classified when considering multiple-view interac-
tions. Therefore, MVM computes an interaction tensor gathering interactions between an
arbitrary number of views and learns a model based on a gradient descent that optimizes
a classification loss based on the weights given to each coordinate of the factorization of
the interaction tensor. Both these approaches are relevant for specific fields of multi-view
machine learning: on one hand, Mumbo might be relevant to learn on datasets where views
disagree on the samples, but one has the right description. On the other hand, Multi-View

142



SuMMIT

Figure 2: A static version of the interactive accuracy scores bar plot for Adaboost, De-
cision Tree (on each view and with their early fusion versions), for solving the
MV MNIST multi-class learning task over four views.

Machines might intuitively be relevant for tasks where the collaboration among the views
is mandatory to be able to build a relevant model.

The need for a benchmarking tool All the previous models come with their hypothe-
ses, areas of expertise, and are relevant only for specific tasks. Therefore, when working
with a specific multi-view dataset, a python tool that allows to evaluate the relevance of
groups of models while providing results interpretability or explainability is highly useful.

2.3. The technical difficulties of multi-view learning

Python provides a large amount of machine learning libraries, from scikit-learn (Pe-
dregosa et al., 2011) for well-established methods, to pytorch for building custom neural
networks that continuously push the limits of the field.

However, to the best of our knowledge, no supervised multi-view learning library is
available. Indeed, the dataset division in views requires to work with specialized tools
that account for the specificities of the context, while proposing already implemented ap-
proaches. This is our goal with multi-learn3, a multi-view Github organization that
regroups scikit-multimodallearn4 (Benielli et al., 2021), a library that implements multi-
view classifiers based on the scikit-learn framework, MAGE5 (Bauvin et al., 2021), a
multi-view dataset generator, and the focus of this paper : SuMMIT6, a multi-view bench-
marking tool. When developing SuMMIT, we strived to provide a tool that allows to com-
pare mono- and multi-view approaches on a supervised multi-view dataset, while yielding
the maximum amount of information when analyzing the results of the benchmark.

3. Discovering SuMMIT Functionalities

For illustration purpose, we consider the well-studied MNIST (Deng, 2012) supervised clas-
sification task. We used our own process to transform it into a four-views dataset. Each

3. https://github.com/multi-learn
4. https://github.com/multi-learn/scikit-multimodallearn
5. https://github.com/multi-learn/mage
6. https://github.com/multi-learn/summit

143

https://github.com/multi-learn
https://github.com/multi-learn/scikit-multimodallearn
https://github.com/multi-learn/mage
https://github.com/multi-learn/summit


Bauvin Corbeil Benielli Koço Capponi

(a) Whole figure

(b) Zoom on a subspace of the samples

Figure 3: A static version of the interactive heatmap that shows the number of times that
each classifier failed to classify a sample. A sample that has never been well-
classified is shown in black, while one that always have been well-classified is
plotted in white, with all the grey nuances between. Therefor, a dark row in the
heatmap shows a sample that has been mainly mis-classified by the models.

view gathers 3 random orientations of a 12-orientations histogram of gradients. We call this
new version MV MNIST to avoid any confusion with the real MNIST.

3.1. A Simple Multi-view Experimental Protocol for Classification

Given a supervised classification task over a multi-view dataset, the first trivial usage of
SuMMIT is to set up and run several learning processes, to be able to compare their
classification performance and explain their success or failure.

To do so, many mono-view algorithms are built-in in SuMMIT, as it is coded in Python3
over the scikit-learn machine learning library. Therefore, SuMMIT integrates supervised
algorithms and metrics from scikit-learn through a mapping table. Similarly, the early
fusion versions of those off-the-shelf mono-view algorithms are included in SuMMIT, to allow
a first level of multi-view analysis. In addition, a framework to build a late fusion classifier
based on any sklearn-based models has been included in SuMMIT’s pool of multi-view
classifiers. Finally, the algorithms provided by the scikit-mulimodallearn library have
been added to the multi-view collection, to provide purely multi-view models. Therefore,
running a benchmark on a multi-view dataset may allow to build a baseline on the considered
task, while providing a high-level understanding on the amount of information in each view,
and the best way to decrypt it.

144



SuMMIT

(a) Whole figure

(b) Zoom on the most important features

Figure 4: A static version of the interactive heatmap representing the sorted features by
importance, for the algorithms that provide this insight.

Technically, the setting up is easily specified in a yaml configuration text file and the
runs are executed locally, insuring data privacy. The results are locally saved in a dedicated
folder, gathering an interactive bar plot for each required metric, represented in Figure
2 for the accuracy score. It shows the train and test scores that have been averaged across
several train/test splits for each model, sorted by best mean test score. In addition, it
provides a heatmap representing the classification success or failure of each classifier
on each sample, shown in Figure 3. This kind of diagram allows to grasp a general point
of view on the classifiers and views relevance on each sample. Indeed, in Figure 3(b),
we see a zoomed-in version, that shows that Adaboost has trouble classifying the sample
ID 3094 5 in every view, except hog 1. This type of graph allows to detect possible outliers
in the samples, and provides an insight on the relevance of each view for each sample. It
is completed by a bar plot showing the number of classifiers that failed to classify each
sample, to ease the outlier detection. Morovoer, the feature importances are described
by a heatmap for each classifier, represented in Figure 4. This information derives from
sklearn’s feature importances attribute that provide insight on how important each
feature was in the classification process for each model. We generalized the concept to
multi-view algorithms and plotted a heatmap that shows explainability for each model in
the benchmark. Ultimately, a text file for each model learned, summarizes its scores, its
confusion matrix, and interpretation for the models that provide such information.

As an illustration on MV MNIST, let us suppose that the the user wants to compare the
accuracy of a decision tree and Adaboost on each view, alongside their early fusion versions
on all the views. This can be encoded in the yaml configuration file as:

name: [" multiview_mnist "] # Name of the dataset file

type: [" multiview", "monoview "] # Type of analysis

algos_monoview: [" decision_tree ","adaboost "] # Monoview algorithms

145



Bauvin Corbeil Benielli Koço Capponi

algos_multiview: [" early_fusion_adaboost", # Multiview algorithms

"early_fusion_decision_tree "]

The configuration file allows the user to indicate the performance measures to be con-
sidered, among the main scalar classification metrics.

Stepping into further in the integration functionalities of SuMMIT, several multi-view
algorithms other than early and late fusion can in turn be specified as algos multiview.
That way, the relevance of these multi-view algorithms on the dataset can be compared
to more traditional approaches. The following configuration file indicates that early and
late fusion of Adaboost must be compared with the Mumbo algorithm (Koço and Capponi,
2011) according to scikit-learn’s accuracy and F1 scores.

type: [" multiview", "monoview "]

algos_monoview: [" adaboost "]

algos_multiview: [" early_fusion_adaboost", "late_fusion", "mumbo"]

metrics: # The metrics configuration

accuracy_score: {} # Accuracy with default configuration

f1_score: {} # F1-score with default configuration

3.2. Optimizing Hyper-parameters and Reproducible Results

As SuMMIT’s main goal is to set baselines on new tasks, it includes two hyper-parameter
optimization methods: a grid search and a randomized search (attribute hps type of the
configuration file), based on prior hyper-parameter distributions. Both methods are com-
bined with k-fold cross-validation to validate the hyper-parameters. As this process can be
costly for large datasets or time-consuming learning algorithms, SuMMIT outputs a report
for each classifier, giving the best hyper-parameter’s set, so one can re-use it without the
optimization process in future benchmarks. These features are multi-view compatible gen-
eralizations of the existing code from scikit-learn. Moreover, to allow experts to provide
insight for the most relevant hyper-parameter distributions, the hyper-parameters available
for tuning are predefined for each integrated mono- and multi-view algorithm but can be
overwritten in the configuration file.

SuMMIT is configured thanks to an easily shareable file which is saved in each result
directory alongside a seed that control all the random number generators. As a consequence,
SuMMIT allows to reproduce any benchmark by simply sharing the result directory and
the dataset. For example, the following configuration calls a randomized search with 30
draws for each classifier with 5 folds cross-validation and a random seed of 42.

3.3. Plugging a New Multi-view Algorithm

Finally, it is simple to add one’s own implementations to SuMMIT, allowing to challenge
the baseline with one’s own algorithm(s). Indeed, the provided classifier pool in the master

branch is generic, but specific algorithms can be added to solve peculiar tasks (sparse deci-
sion functions, imbalanced datasets, etc.). To add a multi-view model to SuMMIT one must
add a python file named after the classifier to summit/multiview/multiview classifier,
in which one has to implement aa short adaptation class that inherits the mandatory
BaseMultiviewClassifier, and that provides fit and predict methods as well as the
hyper-parameter distributions for the classifier.

146



SuMMIT

Figure 5: Balanced accuracies of the models learned. The vast majority of the models are
relevant, except for the ones learned on the clinical view (the first four bars of
this plot).

The modularity of SuMMIT is a huge advantage, allowing it to be included in anyone’s
research, as long as the additional algorithms were conceived with the basic sklearn com-
patibility. An example of how to include a new multi-view classifier is given in Appendix
??, similarly for a hypothetical mono-view classifier in Appendix ??. We highly encourage
the user to share their already published code, to durably include it in SuMMIT.

3.4. Real World Use Case : Multi-Omic Study

To demonstrate the usefulness of SuMMIT, and the information it outputs on a specific
task, let us investigate the multi-omic dataset from a biological study (Osseni et al., 2021),
comprised of 5 views. Each view describes the output of a sensor, or the answers on a
clinical questionnaire, and we aim at predicting the type of breast cancer between Triple
Negative (TNBC) and Non-TNBC for 902 patients. The views available are (1) a clinic
view that regroups 18 categorial features about the patients, (2) an RNA-iso view, re-
grouping the expression levels of mRNA isoforms, (3) a DNA methylation view, describing
the methylation levels of the DNA, (4) an RNA view, regrouping the Single Nucleotide
Polymorphisms (SNPs), detecting mutations in the RNA, and (5) a mi-RNA view contain-
ing 250 features describing the expression of micro RNA. Similarly to the study (Osseni
et al., 2021), the larger views were cropped at 2000 features using dimension reduction.

To analyze this dataset and establish baselines, we run SuMMIT, with four mono-view
algorithms on each view, their early fusion versions and a purely multi-view algorithm on 5
train/test splits. To fit this particular imbalanced task, we added the imbalance bagging

from the imbalanced-learn library (Lemâıtre et al., 2017), and µCoMBo, a multi-view
version of CoMBo (Koço and Capponi, 2013), an algorithm that learns by minimizing
the confusion matrix norm, specifically designed for multi-class and multi-view imbalanced
tasks.The experiment took 1.5 hours, with more than 87% of this time used for hyper-
parameter optimization on 6 parallel threads, leading to the fitting and testing of ((4 ×
5) + 5) × 5 = 120 models for which 6 random search draws where done (to reduce the
computation time).

147



Bauvin Corbeil Benielli Koço Capponi

Figure 6: Feature importances of all the models learned on the multi-view dataset, sorted
with the most important across all models at the bottom. This graph shows that
there is a diversity in the features on which each classifier bases its model, but
that a subset are used in several models with high importance.

The balanced accuracy results are given in Figure 5, in which we see that early fusion
is sufficient to classify well the dataset, as the majority of the views are compatible data
types, such as densities, or gene expression levels, all of them, transcribed by scalars. An
interesting property to note is that the early fusion of the Random Forest has a lower
score than the mono-view version on both the RNA ISO and RNA views. This strange
behaviour might be caused either by overfitting, or by the fact that the Random Forest can
be impacted by noisy features during its bagging process. In addition, we can see on Figure
5 that either the clinical view does not hold any information, or possibly we did not find
the model to decrypt it, but all the mono-view algorithms failed on this task.

Similarly, the feature importance graph in Figure 6 shows that the FOXA1 gene is
frequently used by the algorithms, and it is a known cancer-linked gene 7, still identified in
very recent studies (Li et al., 2021), similarly for the MLPH gene that has been also linked
to breast cancer (Thakkar et al., 2015). Therefore, with one run of SuMMIT, in 1.5 hours,
we got relevant information about the learning task, the contribution of each model on each
view. We found known biomarkers that validate our models. Our results can now be used
by biologists for new tests or to establish new hypotheses.

3.5. Towards Additional Functionalities

SuMMIT’s development has been performed using continuous integration with Docker and
automated tests, covering 93% of the code. It is available under MIT license on GitHub8

to allow collaborative development and hosting the automated Sphinx documentation and
examples.

This paper presents the first release of SuMMIT. As a consequence, it comes with some
limitations that could be alleviated through a deeper coupling with scikit-learn or other
data science libraries. For example, similarly to scikit-learn, SuMMIT does not deal with
missing values, which therefore must be imputed beforehand. More generally, SuMMIT does

7. https://www.ncbi.nlm.nih.gov/gene/3169
8. https://github.com/multi-learn/summit

148

https://www.ncbi.nlm.nih.gov/gene/3169
https://github.com/multi-learn/summit


SuMMIT

not include feature pre-processing tools although such a functionality is clearly of interest
in multi-view experiments, especially for improving the performances of early fusion with
prior or posterior standardisation or component analysis. The architecture of SuMMIT is
opened to such an integration. In addition, SuMMIT is currently dedicated to supervised
classification. An upgrade for handling regression tasks is easy to produce as it would only
require to add relevant performance measures and algorithms in the mapping tables.

The best way to improve SuMMIT is to build a user community that will add features
based on their needs to collaboratively develop it in the most interesting direction. Indeed,
SuMMIT is mainly used in a local environment and would profit from a larger user-base.

4. Conclusion and Future Work

SuMMIT is an easy handling platform that provides first insights in model selection for
multi-view problems. Thanks to its plug-and-play architecture, it can be used to assess the
relevance of innovative multi-view algorithms compared to usual approaches. Moreover, it
is built on the robust sklearn framework and thanks to its public availability on GitHub
and its Docker continuous integration, it can be collaboratively developed.

We developed a customizable multi-view generator compatible with SuMMIT to simulate
specific problems, which integration in the platform is in progress, to provide generated
datasets to the user. Moreover, we are currently working to improve SuMMIT on several
levels, such as parallelization and GPU interface. To be more broadly used, it might also
need a graphical interface, or pre-processing tools such as missing value imputation.

Acknowledgments

We thank Riikka Huusari for her stimulating help and the anonymous reviewers for their
relevant and helpful comments. This work is supported by National Science and Engineering
Research Council of Canada (NSERC) Discovery grant 262067, and granted by Lives Project
(ANR-15-CE23-0026).

Importantly, we would like to acknowledge Pr. François Laviolette who passed away
recently. He had a huge impact on our work and was a mentor. His guidance and feedback
were important to us all.

References

Tadas Baltrušaitis, Chaitanya Ahuja, and Louis-Philippe Morency. Multimodal machine
learning: A survey and taxonomy. IEEE transactions on pattern analysis and machine
intelligence, 41(2):423–443, 2018.

Baptiste Bauvin, Dominique Benielli, Sokol Koço, Cécile Capponi, and François Laviolette.
Multi-view artificial generation engine: Mage – controlled data generator for multi-view
learning. June 2021.

Dominique Benielli, Baptiste Bauvin, Cécile Capponi, Sokol Koço, Hachem Kadri,
Riikka Huusari, and François Laviolette. Toolbox for Multimodal Learn (scikit-
multimodallearn). working paper or preprint, December 2021.

Bokai Cao, Hucheng Zhou, Guoqiang Li, and Philip S. Yu. Multi-view machines. In Pro-
ceedings of the Ninth ACM International Conference on Web Search and Data Mining,

149



Bauvin Corbeil Benielli Koço Capponi

WSDM ’16, page 427–436, New York, NY, USA, 2016. Association for Computing Ma-
chinery. ISBN 9781450337168. doi: 10.1145/2835776.2835777.

Li Deng. The mnist database of handwritten digit images for machine learning research.
IEEE Signal Processing Magazine, 29(6):141–142, 2012.

Riikka Huusari, Hachem Kadri, and Cécile Capponi. Multi-view metric learning in vector-
valued kernel spaces. In Amos Storkey and Fernando Perez-Cruz, editors, Proceedings
of the Twenty-First International Conference on Artificial Intelligence and Statistics,
volume 84 of Proceedings of Machine Learning Research, pages 415–424, Playa Blanca,
Lanzarote, Canary Islands, 09–11 Apr 2018. PMLR.

Sokol Koço and Cécile Capponi. A boosting approach to multiview classification with
cooperation. volume 6912, pages 209–228, 09 2011. doi: 10.1007/978-3-642-23783-6 14.

Sokol Koço and Cécile Capponi. On multi-class learning through the minimization of the
confusion matrix norm. Journal of Machine Learning Research, 29, 03 2013.

Guillaume Lemâıtre, Fernando Nogueira, and Christos K. Aridas. Imbalanced-learn: A
python toolbox to tackle the curse of imbalanced datasets in machine learning. Journal
of Machine Learning Research, 18(17):1–5, 2017.

Bin Li, Xiang Cheng, Ying Zhu, Hao Wan, Zequn Lu, Yimin Cai, Wenhui Li, Pengfei Yi,
Li Liu, Jiang Chang, Xiaoping Miao, Jianbo Tian, and Rong Zhong. FOXA1 of regulatory
variant associated with risk of breast cancer through allele-specific enhancer in the chinese
population. Breast Cancer, 29(2):247–259, October 2021.

Mazid Abiodoun Osseni, Prudencio Tossou, Jacques Corbeil, and François Laviolette. Ap-
plying pyscmgroup to breast cancer biomarkers discovery. In BIOINFORMATICS, pages
72–82, 2021.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12:2825–2830, 2011.

Ronan Perry, Gavin Mischler, Richard Guo, Theodore Lee, Alexander Chang, Arman Koul,
Cameron Franz, Hugo Richard, Iain Carmichael, Pierre Ablin, Alexandre Gramfort, and
Joshua T. Vogelstein. mvlearn: Multiview machine learning in python. Journal of Ma-
chine Learning Research, 22(109):1–7, 2021.

Cees Snoek, Marcel Worring, and Arnold Smeulders. Early versus late fusion in semantic
video analysis. pages 399–402, 01 2005. doi: 10.1145/1101149.1101236.

Arvind Thakkar, Hemanth Raj, Ravishankar, Bhaskaran Muthuvelan, Arun Balakrishnan,
and Muralidhara Padigaru. High expression of Three-Gene signature improves prediction
of Relapse-Free survival in estrogen Receptor-Positive and Node-Positive breast tumors.
Biomark Insights, 10:103–112, November 2015.

150


	Introduction
	A multi-view approach to supervised learning
	Defining a multi-view dataset
	Solving a multi-view problem
	The technical difficulties of multi-view learning

	Discovering SuMMIT Functionalities
	A Simple Multi-view Experimental Protocol for Classification
	Optimizing Hyper-parameters and Reproducible Results
	Plugging a New Multi-view Algorithm
	Real World Use Case : Multi-Omic Study
	Towards Additional Functionalities

	Conclusion and Future Work

