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Abstract

Propensity weighting enables learning from positive and unlabeled data (PU learning) in
the face of labeling bias. PU learning aims to train a binary classification model when
only positive and unlabeled data is available to learn from. This problem setting arises
commonly in practice. Often, PU data suffers from a labeling bias, where the labeled
examples are a biased sample from the positive examples. The probability for a positive
example to get selected to be labeled is called its propensity score. Weighting PU datasets
using propensity scores, allows to learn an unbiased model from biased PU data. However,
this method has a strong downside of being rather unstable. This paper proposes a robust
method for learning from biased PU data based on bagging. We show that the proposed
method remains unbiased, while it reduces the variance and hence increases robustness. Our
experiments confirms this by showing that our method has lower variance and classification
error than plain propensity weighting as well as another method that was proposed for
variance reduction.

Keywords: PU Learning, labeling bias, propensity scores, propensity weighting, Semi-
supervised learning, label noise, label imbalance

1. Introduction

The field of Learning from Positive and Unlabeled data (PU learning) aims to train binary
classification models from training data that consists of positive and unlabeled examples,
where the unlabeled examples can be either positive or negative. This setting arise often in
practice. Consider recommendation systems that aims to recommend products of interest
and are learned from click data. When someone clicks on a product, then they are definitely
interested in the product (positive), but if they do not click on it (unlabeled) there might
be a reason different from disinterest for not clicking on it. Another example is prediction
of product defects, based on products that were returned. Not all defect products will be
returned because the defect might not have been noticed yet, the defect could be light and
not worth the effort of returning it, or the customer may be too lazy to return it.

In both previous examples, the labeled examples are a biased subset of the positive
examples. One is more likely to click on a product if they are more interested in it, they are
more exposed to it, or if it is better located on a page. Similarly, products with stronger
defects or more expensive products may be more likely to be returned. The past 5 years,
the PU learning field has shown an increasing interest in learning in face of a labeling
bias (Bekker et al., 2019; Kato et al., 2019; Saito et al., 2020; Gong et al., 2022; Gupta
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et al., 2021; Gerych et al., 2022; Schouterden et al., 2022). The labeling mechanism decides
which positive examples get labeled and is quantified by propensity scores, which are the
labeling probabilities. The propensity scores can be used to perform propensity weighting
and so learn an unbiased model using the unbiased labels (Bekker et al., 2019). While the
propensity weighting method is unbiased, it suffers from instability because of its potential
high variance (Saito et al., 2020). Saito et al. (2020) propose a variance-reduction method
based on clipping propensity scores, however this method reduces the variance at the cost
of introducing a bias.

This work aims to make propensity weighting more robust by reducing its variance while
keeping it unbiased. Concretely, we (i) propose a new method for propensity weighting
based on bagging, (ii) proof that the ensemble models are unbiased, and (iii) empirically
show that the proposed method indeed reduces the variance as well as the classification
error, also outperforming the method proposed by Saito et al. (2020).

This paper is structured as follows. Section 2 discusses the related work. Section 3
explains the preliminaries, including an explanation of propensity weighting, its variance,
and the bias-variance decomposition of loss functions. Section 4 introduces our proposed
method and motivates it by providing insight on the instability issue in propensity weighting
and why bagging may help to resolve this. Section 5 contains the empirical evaluation.
Finally, section 6 concludes.

2. Related work

Most PU learning methods operate either under the Selected Completely At Random
(SCAR) assumption, where the labeled examples are i.i.d. sampled from the positive ex-
amples, or, they rely on the separability of the classes. For learning under the SCAR
assumption, the methods can broadly be categorized as class prior incorporation methods
and biased learning methods. Class prior incorporation explicitly takes the true class prior
into account when modeling the learning problem (Elkan and Noto, 2008; Du Plessis et al.,
2015; Kiryo et al., 2017), where the class prior could be estimated from the PU data it-
self (Elkan and Noto, 2008; Scott, 2015; Ramaswamy et al., 2016; Bekker and Davis, 2018).
Biased learning methods consider the labeled examples as negative, but assign different costs
to the two classes (Liu et al., 2003; Lee and Liu, 2003; Mordelet and Vert, 2014; Claesen
et al., 2015). Learning with separable classes is usually tackled with two-step techniques,
where the first step identifies reliable negative examples as the unlabeled examples that
are very different from any labeled examples and then performs standard (semi-)supervised
learning using the reliable negative examples in the second step (Liu et al., 2002; Yu et al.,
2002; Liu et al., 2003). For an overview of these methods, we refer to the survey of Bekker
and Davis (2020). This paper, in contrast, makes neither of these assumptions. It assumes
that the labeled examples are a biased sample of the positive examples.

Limited work has been done on PU learning with a labeling bias. The methods for
this setting are largely divided into two categories: (a) the labeling mechanism is under-
stood or (b) the labeling mechanism is unknown. This work falls in category (a). Bekker
and Davis (2020) introduced this setting and proposed the propensity weighting method,
which is built upon in this work. Similar methods have been proposed in the context of
recommendation systems (Saito et al., 2020; Gupta et al., 2021) and knowledge base com-
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pletion (Schouterden et al., 2022). Methods that assume an unknown labeling mechanism,
typically simultaneously optimize two models: one for the classification and one for the
labeling mechanism (Kato et al., 2019; Bekker et al., 2019; Gong et al., 2022; Gerych et al.,
2022).

Saito et al. (2020) has shown that the propensity-weighted method can have a large
variance in the presence of low propensity scores. They proposed to address this by clip-
ping low propensity scores. This paper also aims to improve the robustness of propensity
weighting by reducing its variance. In contrast to the clipping approach, our method does
not introduce a bias in the effort of reducing the variance.

Our proposed method is a bagging ensemble approach. Bagging techniques have been
shown to be beneficial under the SCAR assumption. Li and Zhang (2008) showed that
bagging PU decision trees (Denis et al., 2005) improves their robustness and classification
accuracy. Mordelet and Vert (2014) proposed bagging SVMs where all the labeled exam-
ples are always used as positive examples but different subsets of the unlabeled examples
were sampled as the negative examples. The reasoning behind this is that the unlabeled
examples can be considered contaminated negative examples, and by sampling them the
contamination differs per learned model. This showed significantly better results over stan-
dard class-weighted SVMs (Liu et al., 2003). Claesen et al. (2015) further extended this
approach by also sampling from the labeled set, which showed improvements if the labeled
set also contained contamination.

3. Preliminaries

Let x be an example characterized by its features and y the indicator for its class: y = 1
means that x is positive, y = 0 that x is negative. s indicates whether x is labeled (s = 1)
or not (s = 0). x,y, and s indicate sets of examples, classes and labels. A PU dataset D
of size n consists of labeled examples ⟨x, s = 1⟩ and unlabeled examples ⟨x, s = 0⟩. The
true class y is hidden, but from the PU property, it is known that all labeled examples are
positive Pr(y = 1|s = 1, x) = 1. This paper considers the single-training set scenario, where
the dataset D is an i.i.d. sample of the population P (Elkan and Noto, 2008).1 PU learning
aims to train a binary classification model f(x) = ŷ from D that approximates the true
class y as close as possible.

Which of the positive examples are selected to be labeled depends on the stochastic
labeling mechanism, characterized by the examples’ propensity score e(x) = Pr(s = 1|y =
1, x). The propensity score of an example x is the probability that it would get labeled if
the example were positive. Many PU learning approaches make the simplifying Selected
Completely At Random (SCAR) assumption, where the labeling mechanism is constant,
i.e., independent of the features e(x) = Pr(s = 1|y = 1, x) = Pr(s = 1|y = 1) = c (Elkan
and Noto, 2008). In contrast, this work generalizes to the Selected At Random (SAR)
assumption, where the labeling mechanism depends on the features x and hence can be
biased (Bekker et al., 2019).

1. In contrast, in the case-control scenario, the set of unlabeled examples D|s = 0 is an i.i.d. sample of
the population P and the set of labeled examples D|s = 1 is a (possibly biased) sample of the positive
population P |y = 1.
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3.1. Propensity Weighting for PU Learning

Propensity weighting is a method based on empirical risk minimization. Empirical-risk-
minimization approaches aim to train a model that minimizes the empirical risk R(ŷ),
which is calculated from labeled data as follows:

R(ŷ) =
1

n

∑
⟨xi,yi⟩∈D

δyi(ŷi) =
1

n

n∑
i=1

yiδ1(ŷi) + (1− yi)δ0(ŷi), (1)

where function δy(ŷ) represents the cost for predicting ŷ when the class is y. In this work,
we consider the zero-one loss as the cost: δy(ŷ) = Jŷ = yK, where Jŷ = yK is an Iverson
bracket evaluating to 1 iff the predicted class ŷ equals the true class y, and 0 otherwise.

The empirical risk cannot directly be calculated in PU data, because there is no access
to the true classes y. Bekker et al. (2019) proposed an estimator for the empirical risk that
can be calculated using the propensity scores:

R̂PW(ŷ|x, s) =
1

n

∑
⟨xi,si⟩∈D

si

(
1

e(xi)
δ1(ŷi) + (1− 1

e(xi)
)δ0(ŷi)

)
+ (1− si)δ0(ŷi). (2)

This estimator is unbiased, i.e., Es∼e

[
R̂PW(ŷ|x, s)

]
= R(ŷ) (Bekker et al., 2019). Calcu-

lating R̂PW(ŷ|x, s) corresponds to calculating the normal risk (Equation 1) on a weighted
dataset derived from the PU dataset. In this weighted dataset, each labeled example is
added once as a positive example with weight 1

e(x) and once as a negative example with

weight 1− 1
e(x) , each unlabeled example is added as a negative example with weight 1. This

way, any risk-minimization based learner can be turned into a PU Learner by using the
propensity-weighted dataset. Note, however, that the weight 1− 1

e(x) is negative, which in
practice prevents some learning methods from being applicable.

The intuition behind the weighting scheme can be understood as follows: Each positive
example x is selected to be labeled with probability e(x), meaning that for each labeled
example, there are expected to be 1

e(x) positive examples. The weighted labeled examples
now correctly represent the positive distribution. The negative distribution is the differ-
ence between the total distribution and the positive distribution. The total distribution is
correctly represented by the original dataset, i.e. each labeled and unlabeled example with
weight 1. From these, the positive distribution needs to be substracted, i.e. each labeled
example with weight 1

e(x) .

Obtaining propensity scores Propensity weighting takes the propensity scores e(x) of
the labeled examples as input. However, in practice, it is unlikely that the exact propensity
scores are known. Methods have been proposed to estimate the propensity scores from
PU data simultaneously with learning the classification model (Kato et al., 2019; Bekker
et al., 2019; Gong et al., 2022; Gerych et al., 2022). The underlying assumption is then
that, either the model biases will be strong enough to separate the labeling mechanism
from the classification (Bekker et al., 2019; Gong et al., 2022), that the labeling mechanism
preserves the order induced by the class posterior (Gong et al., 2022; Gerych et al., 2022),
or that there is a clear separation between the two classes (Gerych et al., 2022). Saito et al.
(2020) takes a different approach and uses a proxy that can be calculated from the data
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to approximate the propensity scores. In their recommendation systems setting, they use
relative item popularity as the proxy. Propensity score estimation is an area of research that
deserves more attention, as good propensity estimates are required as input for propensity
weighting. However, this goes beyond the scope of this work.

3.2. Variance of Propensity Weighting

While the propensity-weighted estimator is unbiased, it can suffers from high variance.
Specifically when there are low propensity scores, as the variance depends on 1

e(x) (Saito

et al., 2020):

Var
s∼e

[
R̂PW(ŷ|x, s)

]
=

1

|D|2
∑

⟨xi,si⟩∈D

Pr(y = 1|xi)
(

1

e(xi)
− Pr(y = 1|xi)

)(
δ1(ŷi)− δ0(ŷi)

)2

.

(3)

To reduce the variance of the estimator, Saito et al. (2020) proposed to use clipped
propensity scores e′(x) = max

(
e(x),M

)
, with clip value M :

R̂cl(ŷ|x, s) =
1

n

∑
⟨xi,si⟩∈D

si

(
1

e′(xi)
δ1(ŷi) + (1− 1

e′(xi)
)δ0(ŷi)

)
+ (1− si)δ0(ŷi). (4)

This reduces the variance at the cost of an increased bias (proofed by Saito et al. (2020)):

E
s∼e

[
R̂cl(ŷ|x, s)

]
= R(ŷ) +

∣∣∣∣∣∣ 1

n

∑
⟨xi,si⟩∈D

Je(xi) > MK Pr(y = 1|xi)
(
e(xi)

M
− 1

)(
δ1(ŷi)− δ0(ŷi)

)∣∣∣∣∣∣
(5)

Var
s∼e

[
R̂cl(ŷ|x, s)

]
=

1

|D|2
∑

⟨xi,si⟩∈D

Pr(y = 1|xi)
(

1

e′(xi)
− Pr(y = 1|xi)

)(
δ1(ŷi)− δ0(ŷi)

)2

.

(6)

3.3. Bias-Variance Decomposition

To study whether the variance is indeed reduced using our method, we use the bias-variance
decomposition. The expected loss of a learner on a set of datasets D sampled from a certain
population P can be decomposed into three components: noise, bias, and variance (Domin-
gos, 2000). The noise N(x) is the unavoidable component of the loss. It is due to the
difference between the optimal prediction y∗ and true class y. The optimal prediction y∗ for
an example with features x is the prediction that minimizes the expected loss for examples
with features x: y∗ = argminy∗ EP [δy(y∗)]. In case of zero-one loss, this is most common
class y for an example with features x. The bias B(x) is the component that specifies
the average difference between the learned models and the optimal model. It is due to the
difference between the main ym and optimal prediction y∗. The main prediction ym for
an example with features x is the expected predicted class by models trained on different
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datasets D ∈ D: ym = argminym ED [δy(ym)]. In case of zero-one loss, this is the most
common prediction ŷ for an example with features x. The variance V(x) specifies how
much the models vary from being trained on one training set D to another in D. It is due
to the difference between a specific model’s prediction ŷ and main prediction ym.

For a broad class of loss functions, including zero-one loss, the loss decomposes as follows:

E
D

[δy(ŷ)] = c1 · E
P

[δy(y∗)] + δy∗(ym) + c2 · E
D

[δym(ŷ)] (7)

= c1 ·N(x) + B(x) + c2 · V (x), (8)

where, if the loss function is symmetric (as is the case for zero-one loss), c1 = 2 PrD(ŷ =
y∗)− 1 and c2 = 1 if ym = y∗ and c2 = −1 otherwise. The average loss over all examples x
is the sum of the noise, the average bias and the net variance Ex [c2V (x)]:

E
D,x

[δy(ŷ)] = = E
x

[c1N(x)] + E
x

[B(x)] + E
x

[c2V (x)] , (9)

4. Robust Propensity Weighing through Bagging

This paper proposes a bagging-based method to enable more robust PU learning based on
propensity weighting. The next section provides insight on the instability of plain propensity
weighting and argues why bagging is a good way of addressing it. Section 4.2 details the
proposed method.

4.1. The Instability Issue and Bagging Potential

Propensity weighting provides an unbiased estimator for the risk (Bekker et al., 2019).
However, due to the variance of the estimator, the actual risk being optimized can still
significantly differ from the true risk (Saito et al., 2020), leading to potentially learning bad
models. The source of the variance lies with positive examples with low propensity scores.
Small perturbations in the training set, as a result of different numbers of examples being
labeled due to a low propensity score, thus result in large changes in the resulting model.
This is illustrated by the following example.

Example 1 (Instability of propensity weighting) Consider a dataset with a region
consisting of 40 positive and 20 negative examples, and the propensity score of this re-
gion being e(x) = 0.05. Propensity weighting counts each labeled example as positive with
1/0.05 = 20. If the number of labeled example in this region is the expected number 2,
then weighting those 2 examples with 20 indeed results in the correct 40 positive examples.
However, the probability of having exactly 2 examples labeled is only 28%. If by chance
only 1 example gets labeled (with probability 27%), then only 20 positive examples will be
counted in this region. With probability 19% 3 examples get labeled and hence this region
will be counted as completely positive. These three situations with very similar likelihoods
of happening will thus result in completely different models.

Breiman (1996) introduced the concept of bagging ensembles to decrease the variance
of unstable learning algorithms. A learning algorithm is unstable if small perturbations in
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the training set result in large changes in the resulting model. This is exactly the issue of
propensity-weighted learners.

To deal with the instability, bagging trains an ensemble of models, where each model
is trained on a different dataset i.i.d. sampled from the training data. Because of the
instability of the models, the variance between models might be large. When the models
are used to make a prediction, the predictions of all the models are aggregated. This
aggregation reduces the variance. This reduction in variance does not in general come at
the cost of increasing the bias, because each of the models in the ensemble has the same
expected bias as a model trained on the training set.

When sampling subsets of PU data, each subset of the data would have a varying
proportion of labeled/unlabeled examples in the various data regions. If the proportion for
the same region differs a lot between models, then combining the models will make sure
that no extreme predictions are done for this region.

Grandvalet (2004) argued that bagging works because it equalizes the influence over
all training instances. Datasets typically contain some leverage points, which have a large
impact on the learned model. By taking samples of the original training dataset, not all
leverage points are in the sampled set, which gives room for other data points to have an
influence on this model of the ensemble and thus the resulting ensemble. In propensity-
weighted PU Learning, low propensity labeled examples are such leverage points.

4.2. Bagging Propensity-Weighted Learners

To apply bagging to the propensity-weighted learner, an ensemble of k models is trained.
Algorithm 1 details the process. Each model is trained on a subset of the examples: an
i.i.d. sample Ds of the labeled examples with sample probability ps, and i.i.d. sample Ds̄

of the unlabeled samples with sample probability ps̄. Each of the models is trained by
applying a learner that minimizes R̂BPW, a slight adaptation of the propensity-weighted
risk estimator R̂PW. The models’ predictions are combined using majority voting to make
a final prediction.

Algorithm 1: Bagging Propensity-Weighted Learners (BPW)
Input: D = {⟨xi, si⟩}i=1...n, e(x), k, ps, ps̄
Output: Ensemble of classification models M
M← {}
repeat k times

Ds ∼ {⟨xi, si⟩ ∈ D|si = 0}, sampled with probability ps
Ds̄ ∼ {⟨xi, si⟩ ∈ D|si = 0}, sampled with probability ps̄
M ← train model from Ds and Ds̄ that minimizes R̂BPW (Equation 10)
M←M ∪M

end

The sample probabilities ps and ps̄ should be chosen such that there is enough variation
between the different resulting datasets. If the sample probability is too large (too close
to 1), then the low propensity examples will still appear in most subsamples, still carrying
too much influence. The sample probability should not be too small either, so that each
individual model can still learn something valuable. Due to the typically very low labeled-
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unlabeled example ratio in PU data, a suitable sample probability for unlabeled examples
might be unsuitable for labeled examples and vice versa. Therefore, we propose to sample
the labeled and unlabeled examples separately, using two hyper parameters ps and ps̄.

Because the positive and unlabeled examples are sampled independently, the resulting
sampled dataset is not an i.i.d. sample of the training data; the labeled-unlabeled ratio
differs. Therefore, the propensity-weighted risk estimator R̂PW (Equation 2) needs to be
adjusted to reweight the examples using the sample probabilities to preserve their respective
importance. This leads to the following risk estimator:

R̂BPW(ŷ|e, s) =
1

n

∑
⟨xi,si⟩∈Ds∪Ds̄

si
1

ps

(
1

e(xi)
δ1(ŷi) + (1− 1

e(xi)
)δ0(ŷi)

)
+ (1− si)

1

ps̄
δ0(ŷi).

(10)

Proposition 1 (The BPW risk estimator is unbiased) Let DPN be a binary classi-
fication dataset of size n with tuples ⟨x, y⟩ where x are the feature vectors and y the true
class labels. Let D be a PU dataset of size n corresponding to DPN with tuples ⟨x, s⟩, where
s indicates whether the example is labeled. y and s relate as follows: Pr(s = 1|y = 0, x) = 0
and Pr(s = 1|y = 1, x) = e(x). Let Ds be an i.i.d. sample of the examples ⟨x, s = 1⟩ ∈ D
with sample probability ps and Ds̄ an i.i.d. sample of the examples ⟨x, s = 0⟩ ∈ D with
sample probability ps̄. Then R̂BPW(ŷ′|e′, s′), where ŷ′, e′, s′ are the subsets of ŷ, e, s that are
in Ds ∪Ds̄, is an unbiased estimator for R(ŷ|y) calculated over DPN :

E
DPN

[
R̂BPW(ŷ′|e′, s′)

]
= R(ŷ|y) (11)

Proof

E
DPN

[
R̂BPW(ŷ′|e′, s′)

]
=

1

n

∑
⟨xi,yi⟩∈DPN

Pr(si = 1|yi, xi) Pr(xi ∈ Ds|si = 1)
1

ps

(
1

e(xi)
δ1(ŷi) + (1− 1

e(xi)
)δ0(ŷi)

)
+ Pr(si = 0|yi, xi) Pr(xi ∈ Ds̄|si = 0)

1

ps̄
δ0(ŷi)

=
1

n

∑
⟨xi,yi⟩∈DPN

yie(xi)ps
1

ps

(
1

e(xi)
δ1(ŷi) + (1− 1

e(xi)
)δ0(ŷi)

)
+ (yi(1− e(xi) + (1− yi)) ps̄

1

ps̄
δ0(ŷi)

=
1

n

∑
⟨xi,yi⟩∈DPN

yie(xi)

(
1

e(xi)
δ1(ŷi) + (1− 1

e(xi)
)δ0(ŷi)

)
+ (yi(1− e(xi) + (1− yi)) δ0(ŷi)

=
1

n

∑
⟨xi,yi⟩∈DPN

yiδ1(ŷi) + (1− yi)δ0(ŷi) = R(ŷ|y)
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Table 1: Datasets
Dataset name #instances #features Pr(y=1)

Breast Cancer 683 9 0.35
Image Segmentation 2310 18 0.43
Mushroom 8124 111 0.48
Splice 3175 60 0.52
20 Newsgroups 8870 200 0.55

Limitations Aside from improved robustness, bagging propensity-weighted learners suf-
fers from the same limitations as a single bagging propensity-weighted learner. The two
largest limitations are (1) that the propensity scores are required as input, and (2) that the
learner needs to be able to handle negative weights (as 1 − 1

e(xi)
≤ 0). Bagging introduces

two additional limitations: (3) There are additional hyperparameters k, ps and ps̄ to be set.
Since, to the best of our knowledge, there has not yet been introduced a SAR PU score
metric, it is not clear how to tune for them. (4) The training time takes k times longer than
for training a single propensity-weighted learner.

5. Empirical Evaluation

This section shows that the method proposed in this paper indeed learns more robust models
by bagging propensity weighted learners. To this end, it answers the following experimental
questions:

Q1 Does our proposed bagging approach lead to a variance reduction w.r.t. the original
propensity-weighted estimator, and in which propensity score settings is this more
prominent?

Q2 Does the reduction in variance also lead to a reduction in classification error and in
which settings?

Q3 Does our proposed bagging approach outperform the clipped estimator in terms of the
bias, variance and classification error?

5.1. Experimental Setup

To answer the experimental questions, different learning methods are evaluated in different
propensity score settings based on their empirical variance, bias and classification error
(zero-one loss). To estimate the variance, bias and classification error, several instances
of PU datasets are constructed from binary classification datasets, on which models are
trained using different learning methods. The details are discussed below.

Data The datasets used for this experiments are 5 binary classification datasets that
were also used by Bekker et al. (2019), using the same preprocessing2. The datasets are
summarized in table 1.

2. https://github.com/ML-KULeuven/SAR-PU
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Table 2: Propensity score settings
Setting Interval Propensity scores per cluster

Low 0.1− 0.3 [0.11, 0.13, 0.15, 0.17, 0.19, 0.21, 0.23, 0.25, 0.27, 0.29]
Varied 0.1− 0.95 [0.11, 0.2, 0.29, 0.38, 0.47, 0.56, 0.65, 0.74, 0.83, 0.92]
High 0.7− 0.9 [0.7, 0.72, 0.74, 0.76, 0.78, 0.80, 0.82, 0.84, 0.86, 0.88]

Constructing PU Datasets To turn the binary classification datasets into PU datasets,
a labeling mechanism is constructed and applied to the datasets. The same type of labeling
mechanisms are used for all datasets and 3 variants are proposed to enable studying the
effect of the proposed methods in different settings. The dataset is clustered into 10 clusters
using k-means clustering and to each cluster, a propensity score is assigned. I.e., there are
10 distinct propensity scores [e1, e2, . . . , e10], each associated ei associated with a cluster i.
A positive example belonging to a cluster i is then selected to be labeled with probability ei.
The propensity score values are varied to induce the following 3 settings: low, varied and
high propensity settings. For each setting, 10 propensity scores are defined, evenly spaced
within the interval. 10 variations of each of the settings are introduced, by assigning the
clusters to each of the scores in different ways using cyclic permutations of the propensity
scores. The settings are described in table 2. For each propensity score assignment, 100 PU
datasets are generated, i.e. 1000 PU datasets per propensity setting.

Learning methods Models are learned using the generated datasets, using the following
methods:

• BPW. The method proposed in this work: A bagging ensemble of learners that min-
imize the propensity-weighted empirical risk estimator R̂BPW (Equation 10). The
hyperparameters are set as ps = 0.4, ps̄ = 0.2, k = 50.

• PW. A learner that minimizes the propensity-weighted empirical risk estimator R̂PW

(Equation 2) (Bekker et al., 2019). It uses the whole PU dataset and the propensity
score function e to create its model.

• Clipped. A learner that minimizes the clipped propensity-weighted empirical risk
estimator R̂cl (Equation 4), with a clip value of M = 0.2 (Saito et al., 2020).

• Sup. A supervised learner that is trained using the real underlying classes y of the
data. It can be considered as an upper bound on the possible performance.

• Naive. A naive learner that assumes that all labeled examples are positive and all
unlabeled examples are negative.

All of the above methods use logistic regression as their learner, using the Scikit-Learn
implementation with default parameters, except max iter, which is set to 1000.

Evaluation The learning methods are evaluated on their classification error (zero-one
loss) and its decomposition into bias and net variance. To this end, 100 random training-
test splits are performed on each binary classification dataset, assigning 80% as training
and 20% as test data. Each of the training sets is turned into a 30 PU dataset using the
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construction method described above, i.e. 1 PU dataset per propensity score assignment.
The models trained on the PU training sets are evaluated on their corresponding test set.
For each propensity score setting and dataset combination, there are thus 1000 training and
test sets on which a model is trained and evaluated for each learning method.

The average classification error (zero-one loss) and its decomposition into the average
bias and net variance are reported for each combination of propensity score setting, dataset
and learning method, averaged over the test set predictions of 1000 models. The bias is
the loss incurred by the main prediction (the most common prediction of the 1000 models)
relative to the optimal prediction. However, since the optimal prediction is unknown, we
will (naively) assume that the optimal prediction is the correct prediction y. The bias thus
includes the noise as well. The variance is the average loss incurred by predictions relative
to the main prediction. To obtain the net variance, the variance is multiplied by -1 if the
main prediction was incorrect. The classification error is the sum of the bias and the net
variance.

5.2. Results and Discussion

Table 3 shows the results, reporting the bias, net variance and classification error for each
combination of the propensity score settings, datasets and learning methods. The results
show that, as expected, the original PW method results in the lowest bias but has the
highest variance. For all the methods that incorporate the bias, it can be observed that
both the bias and variance consistently increase with lower propensity scores.

To answer Q1, the variance of the BPW and PW methods are compared. Q1 is answered
affirmatively as BPW consistently has a lower variance than PW, with only 1 exception for
Splice in the high propensity score setting. The difference between the variances becomes
more prominent as the propensity scores are lower. The lower variance of the BPW does
come at the cost of an increase in the bias. Q2 assesses whether the increase in bias is worth
the decrease in variance.

To answer Q2, the classification error of the BPW and PW methods are compared. Q2
is answered affirmatively as both BPW has a lower classification error than PW in most
cases. The classification error is lower for all datasets in the low and varied propensity score
settings and for 3 out of 5 datasets in the high propensity score setting. The improvement
is again more prominent as the propensity scores are lower.

To answer Q3, the bias, variance and classification error of the BPW and Clipped
methods are compared. Here, the high propensity score setting can be omitted, as none
of the propensity scores are clipped and hence no variance reduction method is applied.
Q3 is answered affirmatively as BPW has lower bias in 4/5 datasets in both the varied
and low propensity score settings, its variance is lower in 4/5 datasets in the low and all
datasets in the varied propensity score settings, and its classification error is consistently
lower for all datasets in both settings. That the bias would increase for the clipped method
was expected, as the clipped estimator for the risk is a biased estimator. The reduction
in variance depends on the clip value being used. Figure 1 shows the influence of this
parameter in the low propensity score setting, by varying it between 0.1 and 0.3. As the
clip value increases, the variance decreases as expected, sometimes going below the variance
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(a) Breastcancer (b) Image Segmentation (c) Mushroom

(d) Splice (e) 20 Newsgroups

Figure 1: The bias, net variance and classification error of the BPW and clipped methods
for different clip values on different datasets in the low propensity score setting.

of BPW. However, the biases increases at a faster rate, leading to a worse classification
error, which is always above the BPW classification error.

6. Conclusion

This paper introduced bagging propensity weighting, which was shown to be more ro-
bust than both plain and clipped propensity weighting. Low propensity scores make plain
propensity weighting very unstable, due to a small difference in the number observed posi-
tive examples making a large difference in the presumed number of actual positive examples.
Bagging methods have been shown to improve the robustness of unstable learners, while
not affecting their bias. Indeed, bagging propensity weighting is unbiased and result in both
a lower variance and classification error than plain and clipped propensity weighting. As
expected, the improvement gets more prominent as the propensity scores decrease.

Acknowledgments

This research received funding from the Flemish Government under the “Onderzoekspro-
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