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Abstract
The COVID-19 pandemic hits worldwide with a
significant number of deaths and poses a major
threat to public health. Accurate predictions of the
risk of death and medical interventions are crucial
for the survival of infected patients and the dis-
tribution of limited medical resources. Although
machine learning classifiers can be used to predict
mortality and medical interventions, it is problem-
atic to employ the methods because training data
are limited whose attributes may be missing and
classes may be imbalanced. To effectively cope
with these problems, we construct HexaGAN with
a hint mechanism to predict the survival of the
patients and medical interventions such as intu-
bation and supplemental oxygen. In experiments,
our method outperforms combinations of existing
techniques for limited data problems. Notably, our
method showed about twice higher performance
than benchmarks in predicting deceased patients
correctly. We anticipate that our approach could
help provide appropriate treatments on time, al-
locate limited medical resources efficiently, and
ultimately reduce the mortality rate of COVID-19
patients.

1. Introduction
The coronavirus disease 2019 (COVID-19) has spread
around the world since December 2019. The explosion in the
number of patients causes a shortage of medical resources
including medical staffs and hospital beds (Arabi et al.,
2020), so accurate screening of patients who are at high risk
of death or who require medical interventions helps efficient
allocation of medical resources. In addition, timely clinical
interventions, such as intubation and supplemental oxygen,
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are important to reduce inpatient mortality.

However, it is difficult for medical staffs to make decisions
about treatment in real time and to allocate medical re-
sources efficiently due to the large number of COVID-19
patients. This has increased the demand for automation
of the decision-making process using patients’ electronic
health records (EHR). To meet the demand, automated
tools, especially deep learning (DL) methods, to predict
the risk of death and interventions have been actively pro-
posed (Sankaranarayanan et al., 2021; Banoei et al., 2021;
Varzaneh et al., 2022).

Although DL models for classification and prediction have
remarkably advanced (Huang et al., 2017; Tan & Le, 2019),
limited data problems in EHRs have stunted the application
of the DL-based methods. There are three typical limited
data problems in EHRs. First, some attributes can be missing
(missing data). Second, outcomes can be missing due to
the labeling cost (missing label). Third, outcomes can be
imbalanced (class imbalance). For these reasons, DL models
for predicting various outcomes related to COVID-19 may
not perform best.

In order to address these problems, machine learning tech-
niques for imputation, oversampling, and semi-supervised
learning can be applied. Recently, deep generative models
for limited data problems have been proposed (Salimans
et al., 2016; Li et al., 2017; Yoon et al., 2018). Hwang et al.
(2019) suggested a unified view of limited data problems via
imputation and proposed generative adversarial networks
(GANs) that can address the three problems simultaneously.

In this paper, we used a publicly available dataset (Cohen
et al., 2020) of chest X-ray images and metadata to pre-
dict mortality and interventions of COVID-19 patients. We
adopted HexaGAN (Hwang et al., 2019) and additionally
applied a hint mechanism (Yoon et al., 2018) to accurately
predict the mortality, and whether the patients need intuba-
tion or supplemental oxygen. We verified that our method
outperforms combinations of existing techniques for limited
data problems.

We can summarize our contributions as follows:

• We construct deep generative models to provide ac-
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Figure 1. Overview of prediction of mortality and intervention in COVID-19 patients using GANs.

curate prediction of mortality and interventions for
COVID-19 patients from the dataset with limited data
problems.

• To enable this, we use generative adversarial networks
named HexaGAN which addresses limited data prob-
lems simultaneously and additionally apply a hint
mechanism to enhance the prediction performance.

• Our method significantly outperforms combinations
of existing methods. Especially, our method achieves
about twice higher performance (specificity) than
benchmark combinations in predicting the risk of
death.

2. Background
2.1. Coronavirus disease 2019

The coronavirus disease 2019 (COVID-19) pandemic poses
an unprecedented threat to health and public health around
the world. Since the outbreak in December 2019, the number
of confirmed cases has exceeded 500 million, and the death
toll from COVID-19 has surpassed 6 million people (up to
May 16, 2022) (Dong et al., 2020; Wynants et al., 2020).
Despite policies aimed at curbing the spread of the disease,
numerous countries have faced medical crises, and there has
been a marked shortage of medical resources, including beds
and medical staff (Arabi et al., 2020). In fact, about 10% of
SARS-CoV-2 infections are silent, the remaining 40% cause
benign upper respiratory diseases, and about 20% cause
pneumonia (Sah et al., 2021; Oran & Topol, 2020). About
10% of cases show hypoxemic pneumonia, which generally
requires hospitalization for oxygen treatment (Zhang et al.,
2022). In approximately 3% of cases, high-flow oxygen (O2
> 6 min−1), mechanical ventilation (noninvasive or intu-
bation) or extracorporeal membrane oxygenation (ECMO)

is required (Zhang et al., 2020; Bastard et al., 2020). The
provision of intervention in the intensive care unit is limited
due to the shortage of medical resources, and the number
of patients in need of intervention is explosively increasing,
placing a burden on the medical system (Pei et al., 2021).

A remarkable epidemiological feature of COVID-19 is its
strong age dependence, with a 10,000-fold greater risk in
people over 80 years of age compared to people under the
age of 10 (Zhang et al., 2022). The mortality rate from in-
fection increases with age, from 0.001% for people aged
5-9 years to 8.29% for people aged 80 or older (O’Driscoll
et al., 2021). However, age is not the only factor influencing
mortality, and it is impossible to accurately predict patient
mortality based on age information alone (Dessie & Zewotir,
2021; Takahashi et al., 2020; Hashim et al., 2020). Informa-
tion on the prognosis of a disease is necessary to efficiently
allocate medical resources and provide the best treatment to
patients. In addition, timely clinical interventions such as in-
tubation and supplemental oxygen are important to decrease
the death rate of inpatients (Vera et al., 2021; Long et al.,
2021). Therefore, machine learning models that predict the
need for intervention and prognosis can be of great help
in responding to public health crises and saving patients’
lives. The interest in dealing with COVID-19 patient data is
increasing, and among them, methods using deep learning
are being actively proposed (Sankaranarayanan et al., 2021;
Banoei et al., 2021; Varzaneh et al., 2022).

The most significant complication of severe COVID-19 is
the acute respiratory distress syndrome (ARDS), which is
associated with a high mortality rate of 35%-46% (Thomp-
son et al., 2017; Annane et al., 2017; FakhriRavari et al.,
2021). The COVID-19 treatment guidelines of National
Institutes of Health (NIH) provide treatment guidance for
adults hospitalized for COVID-19 based on their disease
severity and oxygen requirements. In the case of severe
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Table 1. Description of metadata in the dataset

Attribute Description Data type

age Age integer
offset Days elapsed since the onset of symptoms or hospitalization integer
sex Male or female binary

RT-PCR positive Yes or no binary
went icu Whether the patient was in CCU (critical care unit) or ICU (intensive care unit) binary
extubated Whether the patient was successfully extubated binary

temperature Temperature of the patient (◦C) continuous
pO2 saturation Partial pressure of oxygen saturation (%) continuous

wbe count White blood cell count (103/uL) continuous
neutrophil count Neutrophil cell count (103/uL) continuous

lymphocyte count Lymphocyte cell count (103/uL) continuous
view Anteroposterior (AP), Posteroanterior (PA), Lateral (L) or AP Supine (APS) for X-rays categorical

survival Yes or no binary
intubated Whether the patient was intubated (or ventilated) binary

supplemental O2 Whether the patient required supplemental oxygen binary

COVID-19 patients, antiviral and immunomodulatory ther-
apy using remdesivir and dexamethasone, and anticoagulant
treatment using prophylactic dose of heparin are recom-
mended. In particular, high-dose dexamethasone may be
effective in patients developing ARDS (NIH, 2022). The use
of dexamethasone is preferred for COVID-19 patients who
are hospitalized and need supplemental oxygen, mechanical
ventilation, or ECMO (Group, 2021; FakhriRavari et al.,
2021). Indeed, many studies suggest that doctors should
not use corticosteroids in early disease treatment processes
when patients do not require oxygen support due to potential
harms, while others have shown that early administration of
dexamethasone prevents the progression to a severe disease,
without increased mortality (FakhriRavari et al., 2021; Lee
et al., 2021; Arora & Panda, 2021).

2.2. Learning from limited data

Machine learning (ML) classifiers have shown outstand-
ing performances when trained on clean data (Huang et al.,
2017; Tan & Le, 2019). However, the data collected in
real-world can be limited, and it hinders the performance
of the classifiers. There are three limited data problems in
EHRs, and ML-based preprocessing techniques have been
utilized to solve these problems. First, records where some
features are missing cannot be used directly for learning
a model. One strategy to handle such missing features is
to fill them with certain values before training. Several
well-known imputation techniques are mean imputation,
k-nearest neighbors (kNN) (Troyanskaya et al., 2001), mul-
tivariate imputation by chained equations (MICE) (Van Bu-
uren & Groothuis-Oudshoorn, 2011). Second, class labels
in training data can be missing, and semi-supervised learn-
ing is performed to utilize data without labels to train the
model. Semi-supervised learning methods include kNN and
label propagation (LP) (Zhu & Ghahramaniн, 2002). Third,

when the classes of training data are imbalanced, the pre-
dictions of the trained model can be biased towards the
majority class. Oversampling techniques, including the syn-
thetic minority oversampling technique (SMOTE) (Chawla
et al., 2002) and adaptive synthetic (ADASYN) (He et al.,
2008), and regularization methods, including the cost sensi-
tive (CS) loss (Sun et al., 2007) and the class rectification
loss (CRL) (Dong et al., 2017), have been proposed to solve
the class imbalance problem. These methods can only deal
with one of the limited data problems. When several limited
data problems exist at the same time in a training dataset, a
cascade combination of these methods can be used.

2.3. Generative adversarial networks

Generative adversarial networks (GANs) are one of deep
generative models which implicitly estimate data distribu-
tion via an adversarial learning between a generator and a
discriminator (Goodfellow et al., 2014). Typically, GANs
use the adversarial losses as follows:

LD = −Ep(x) [f(D(x))]− Eq [g(D(G(z)))] (1)
LG = Eq(x) [h(D(G(z)))] (2)

where f, g, h : R 7→ R are loss metrics. For exam-
ple, f(t) = log σ(t), g(t) = h(t) = log(1 − σ(t)) for
vanilla GANs (Goodfellow et al., 2014) and f(t) = t,
g(t) = h(t) = −t for Wasserstein GANs (Arjovsky et al.,
2017). Here, p(x) denotes the real data distribution, q(x)
denotes the generated data distribution, and σ is the sig-
moid function. The generator and discriminator are learned
by minimizing LG and LD, respectively. GANs have been
mainly developed as models for image generation (Karras
et al., 2019) and speech synthesis (Kong et al., 2020). They
generate realistic data to the extent that humans cannot dis-
tinguish them from real data.
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The dataset contains X-ray image data of patients who have been confirmed or suspected of having 

COVID-19. The samples of X-ray image data are shown in Fig 1. We use X-ray image data and tabular 

data which contains the patient's information. The descriptions of tabular data attributes are shown in 

Table 1. 

  

Figure 1. The samples of X-ray image data of COVID-19 patients 

Figure 2. Samples of X-ray image data of COVID-19 patients.

Taking advantage of the excellent generation capability
of GANs, attempts have been made to solve the limited
data problems. GAN-based methods for missing data im-
putation (Yoon et al., 2018), oversampling (Engelmann &
Lessmann, 2021), and semi-supervised learning (Li et al.,
2017) have been proposed. Among them, GAIN (Yoon et al.,
2018) is a method for missing data imputation. The original
GAN discriminator distinguishes between real and gener-
ated records, whereas the GAIN discriminator distinguishes
between missing and non-missing elements in element-wise
manner. In addition, the imputation performance was im-
proved by introducing a hint mechanism. As one of the most
notable study, HexaGAN (Hwang et al., 2019) considers
a situation where three limited data problems co-exist in
the training data at the same time. HexaGAN defines lim-
ited data problems in terms of imputation and addresses the
problems simultaneously.

3. Method
We used the HexaGAN framework (Section 3.1) to ad-
dress limited data problems and applied a hint mechanism
(Section 3.2) to enhance the prediction performance. The
overview of our proposed method is depicted in Figure 1.

3.1. HexaGAN

For our task, the dataset contains chest X-ray image data I,
tabular metadata t, and outcomes y. We construct a boolean
vector m named a missingness vector to indicate whether an
element of metadata is missing. If i-th element of metadata
is missing, mi is 0, and vice versa. Since the dataset has
the missing data, class imbalance, and missing label prob-
lems simultaneously, we adopted the HexaGAN framework
(Hwang et al., 2019) which is the state of the art method for
this scenario.

HexaGAN consists of six components including an encoder,
generators, discriminators, and a classifier. These compo-
nents interact with each other via adversarial learning and
low-dimensional vectors h in the hidden space. Role of each
component is summarized as follows:

Table 2. The number of outcomes with rates of missing data
Outcome Y N Missing Imb. ratio (1:x) Missing rate

survival 162 38 384 4.3 65.8%
intubated 114 76 394 1.5 67.5%

supplemental O2 53 20 511 2.7 87.5%

• The encoder E receives I, t, and m and synthesizes a
low-dimensional hidden vector h in the hidden space.

• A generator for missing imputationGMI receives h and
performs missing data imputation and oversampling.

• A discriminator for missing imputation DMI receives
imputed data and predicts m.

• A generator for conditional generation GCG receives a
minority class label c and a noise vector z and gener-
ates h to oversample data in the minority class.

• A discriminator for conditional generation DCG distin-
guishes between h from real data and h synthesized
by GCG.

• The classifier C provides predictions given imputed
data and generates pseudo-label of unlabeled data to
perform semi-supervised learning.

As described in Hwang et al. (2019), these components
interact with each other to address the limited data problems.
Each component of the whole framework is updated in
rotation (See Algorithm 2 in Hwang et al. (2019)).

3.2. Hint mechanism

A hint mechanism, which is proposed by Yoon et al. (2018),
is a random variable containing partial information about
missingness. We used the hint mechanism to improve the
imputation performance of our method, which eventually
enhanced the prediction performance of the classifier. When
the hint rate is p which is the hyperparameter, each element
of a hint mechanism H is sampled as follows:

Hi =

{
mi w.p. p

0.5 w.p. 1− p
(3)

A sampled H is fed into DMI. With little computational
overhead, it helps DMI predict m, and improve the imputa-
tion performance of our method.

4. Experiments
We used the covid-chestxray-dataset (Cohen et al., 2020) for
the prediction of mortality and medical interventions. The
dataset includes 846 records who have been confirmed or
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Table 3. Mortality prediction performance of combinations of existing techniques

Missing data Class imbalance Missing label F1-score Accuracy AUROC Sensitivity Specificity

Mean SMOTE kNN 0.9162 0.8570 0.8490 0.9748 0.3909
kNN SMOTE kNN 0.9411 0.8948 0.8893 0.9861 0.3748

MICE SMOTE kNN 0.9198 0.8535 0.8093 0.9972 0.0826
Mean ADASYN kNN 0.8992 0.8251 0.8266 0.9778 0.2232
kNN ADASYN kNN 0.9367 0.8854 0.8888 0.9945 0.2631

MICE ADASYN kNN 0.9159 0.8464 0.7736 0.9930 0.0595
Mean CRL kNN 0.8961 0.8180 0.7888 0.9837 0.1642
kNN CRL kNN 0.9333 0.8794 0.8067 0.9847 0.2729

MICE CRL kNN 0.9181 0.8522 0.7612 0.9818 0.1567
Mean CS kNN 0.9029 0.8321 0.7860 0.9763 0.2634
kNN CS kNN 0.9213 0.8546 0.7193 1.0000 0.0240

MICE CS kNN 0.9162 0.8475 0.7100 0.9874 0.0963
Mean SMOTE LP 0.8713 0.7778 0.7781 0.9815 0.1119
kNN SMOTE LP 0.8762 0.7920 0.8163 0.9905 0.2201

MICE SMOTE LP 0.8839 0.8085 0.8307 0.9610 0.3317
Mean ADASYN LP 0.9015 0.8381 0.8036 0.9676 0.4141
kNN ADASYN LP 0.8739 0.7932 0.8132 0.9666 0.2926

MICE ADASYN LP 0.8746 0.7836 0.7914 0.9953 0.1220
Mean CRL LP 0.8740 0.7790 0.7525 1.0000 0.0558
kNN CRL LP 0.8744 0.7943 0.7886 0.9569 0.3231

MICE CRL LP 0.8739 0.7943 0.8164 0.9392 0.3415
Mean CS LP 0.8906 0.8144 0.7579 0.9815 0.2683
kNN CS LP 0.8718 0.7825 0.7625 0.9921 0.1793

MICE CS LP 0.8751 0.7896 0.8287 0.9719 0.2195

suspected of COVID-19 or other viral and bacterial pneumo-
nias. Among them, 468 records are obtained from COVID-
19 patients, and those with outcome attributes were used
as labeled data. Records obtained from other pneumonias
patients were treated as unlabeled data regardless of the
missingness of outcome attributes. We used X-ray image
data and metadata which contain the patients’ information.
The descriptions of metadata attributes are shown in Table
1. We used the bottom three attributes as outcomes. For
example, we used survival to predict mortality, intubated to
predict intubation, and supplemental O2 to predict supple-
mental oxygen. The samples of X-ray image data are shown
in Figure 2, and the number of outcomes and missing rates
are presented in Table 2.

We computed the F1-score, the area under the receiver oper-
ating characteristic curve (AUROC), the sensitivity, and the
specificity as the evaluation metrics. We used 5-fold cross
validation and reported the average of the test performance
for each fold.

4.1. Mortality prediction

Benchmark combinations To find the most competent
combinations of existing techniques for limited data prob-
lems, we conducted extensive experiments on mortality pre-
diction as shown in Table 3. We used mean imputation
(Mean), k-nearest neighbors (kNN) (Troyanskaya et al.,

2001), and multivariate imputation by chained equations
(MICE) (Van Buuren & Groothuis-Oudshoorn, 2011) for
the missing data problem; synthetic minority oversampling
technique (SMOTE) (Chawla et al., 2002), adaptive syn-
thetic (ADASYN) (He et al., 2008), class rectification loss
(CRL) (Dong et al., 2017), and cost sensitive loss (CS) (Sun
et al., 2007) for the class imbalance problem; kNN and label
propagation (LP) (Zhu & Ghahramaniн, 2002) for the miss-
ing label problem. As a result, a combination of kNN for
the missing data problem, SMOTE for the class imbalance
problem, and kNN for the missing label problem shows the
highest performance in terms of the F1-score, accuracy, and
AUROC. A combination of Mean for the missing data prob-
lem, ADASYN for the class imbalance problem, and LP for
the missing label problem shows the highest performance in
terms of specificity. Specificity is an important performance
metric for mortality prediction. Since the outcome is 1 when
the patient is alive and the outcome is 0 when the patient
is dead, the specificity becomes the probability of correctly
identifying patients who have died, which is an important
indicator for accurately predicting patients who need urgent
treatment. Therefore, we chose these two combinations as
competent benchmark combinations to compare with our
method.

Effectiveness of hint Figure 3 shows the benefit of a hint
mechanism on mortality prediction. We evaluated the perfor-
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Figure 3. Performance comparison with respect to the hint rate.

Table 4. Performance comparison on mortality prediction

Method Hint rate F1-score AUROC Sensitivity Specificity

kNN + SMOTE + kNN N/A 0.9411 0.8893 0.9861 0.3748
Mean + ADASYN + LP N/A 0.9015 0.8036 0.9676 0.4141

HexaGAN 0 0.9566 0.9395 1.0000 0.6571
HexaGAN w/ hint 0.7 0.9659 0.9508 1.0000 0.7393
HexaGAN w/ hint 0.8 0.9610 0.9464 0.9714 0.8071

mances of our method by changing hint rate from 0 to 0.9. If
the hint rate is 0, it is the same as HexaGAN without a hint
mechanism. The hint mechanism improved the prediction
performance of HexaGAN. F1-score is best at hint rate 0.7,
and specificity is best at hint rate 0.8. Therefore, we chose
these two hint rates to conduct comparative studies.

Comparison on mortality prediction Table 4 compares
the performance of our method with benchmarks on mortal-
ity prediction. Our method (HexaGAN with a hint mecha-
nism) outperformed benchmark combinations. Especially,
our method with a hint rate 0.8 performed approximately
twice better than benchmark combinations in terms of speci-
ficity, indicating that it predicted critically ill patients ap-
proximately two times better.

4.2. Intervention prediction

We also predicted medical interventions including intubation
and supplemental oxygen using our method, and conducted
comparative studies between our method and benchmark
combinations.

Comparison on intubation prediction Table 5 com-
pares the performance of our method with benchmark com-
binations on intubation prediction. We did not use the ex-
tubated attribute as a predictor for intubation prediction,
because a patient can only be extubated if they were intu-

bated at some point. The combination of Mean + ADASYN
+ LP failed to predict intubation of patients. Our method
showed the best performance across all evaluation metrics.
HexaGAN with hint rates 0, 0.7, 0.8 showed the sensitiv-
ity of 1.0000, which indicates that our method predicts all
patients who are actually intubated as patients in need of
intubation.

Comparison on supplemental O2 prediction Table 6
compares the performance of our method with benchmarks
on supplemental oxygen prediction. The combination of
Mean + ADASYN + LP showed the highest performance in
terms of F1-score and our method showed the best perfor-
mance in terms of all evaluation metrics except for F1-score.
HexaGAN with hint rates 0, 0.7, 0.8 showed the AUROC
of 1.0000, which indicates that our method can perfectly
predict supplemental oxygen by adjusting the prediction
threshold.

5. Discussion
5.1. Machine learning perspective

In order to learn a classifier from the training data in which
the limited data problems exist simultaneously, preprocess-
ing techniques to solve each problem must be applied se-
quentially. However, this approach requires building a pre-
processing pipeline that depends on problems present in the
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Table 5. Performance comparison on intubation prediction

Method Hint rate F1-score AUROC Sensitivity Specificity

kNN + SMOTE + kNN N/A 0.9513 0.9490 0.9805 0.7826
Mean + ADASYN + LP N/A 0.7133 0.6115 0.9742 0.0841

HexaGAN 0 0.9563 0.9729 1.0000 0.8227
HexaGAN w/ hint 0.7 0.9604 0.9771 1.0000 0.8409
HexaGAN w/ hint 0.8 0.9648 0.9764 1.0000 0.8591

Table 6. Performance comparison on supplemental O2 prediction

Method Hint rate F1-score AUROC Sensitivity Specificity

kNN + SMOTE + kNN N/A 0.9537 0.9771 0.9459 0.7493
Mean + ADASYN + LP N/A 0.9730 0.9713 0.9744 0.8000

HexaGAN 0 0.9513 1.0000 1.0000 0.7500
HexaGAN w/ hint 0.7 0.9609 1.0000 1.0000 0.8000
HexaGAN w/ hint 0.8 0.9568 1.0000 0.9556 0.9000

training data. Because each technique focuses on a problem,
it ignores the connections between the problems. However,
HexaGAN has the advantage that there is no need to build
a specific preprocessing pipeline. In addition, HexaGAN
deals with limited data problems simultaneously through in-
teraction between its components, which helps to maximize
the prediction performance.

As mentioned in Hwang et al. (2019), the limited data prob-
lems can be solved via imputation. Existing ML methods to
overcome the limited data problems either use the value of
the nearby training data or perform only simple processing.
This may result in the imputed data not faithfully following
the data distribution. On the other hand, deep learning meth-
ods can learn complex and nonlinear patterns inherent in
data. Our method estimates the data distribution using deep
generative models and addresses the limited data problems
more effectively. This eventually improves the prediction
performance of mortality and interventions in COVID-19
patients.

5.2. Medical perspective

The model presented in this study can predict survival,
the use of supplemental oxygen, and intubation which are
closely related to the severity of COVID-19. Since the use
of dexamethasone is important for the development and
mortality of the disease (NIH, 2022), the effect of early use
of dexamethasone according to the prediction of the model
could be further investigated.

Since the dataset used for experiments was obtained from a
cross-sectional study, the learned model can predict whether
an intervention was observed in retrospective data. We ex-
pect that GAN methods trained on datasets obtained from
longitudinal studies can predict whether an intervention

should be recommended at a particular moment. This will
be an important avenue for future work to provide more
timely treatment to COVID-19 patients in the presence of
the limited data problems.

6. Conclusion
We have proposed a method using HexaGAN and a hint
mechanism to predict mortality and the need for medical
interventions. Our method robustly predicts mortality and
interventions in the presence of the limited data problems
such as missing data, missing label, and class imbalance
problems. We also confirmed that a hint mechanism can en-
hance the prediction performance of HexaGAN. We believe
that the excellent performance on mortality and intervention
prediction of our model can help allocate limited medical
resources efficiently, provide timely and appropriate clinical
interventions, and ultimately save more lives from COVID-
19.
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