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Abstract
By using a recently released chest X-ray (CXR)
image database for COVID-19 positive cases
along with Normal, Lung Opacity (Non-COVID
lung infection), and Viral Pneumonia images, this
study compares the performance of SOTA deep
learning models in detecting COVID-19 CXR im-
ages. Pre-trained deep learning models are re-
trained under several combinations of optimizers,
learning rate schedulers, and loss functions. Our
study shows that these SOTA deep learning mod-
els perform well if the models and parameters
are selected meticulously. Overall, EfficientNet
is superior to others especially across different
optimizers. Regarding the loss function, the inte-
gration of cosine embedding similarity and cross
entropy is slightly better than cross entropy itself
while we adopt the SGD optimizer. In terms of
optimizer, SGD constantly performs well while
Adam and AdamW are unstable across different
models.

1. Introduction
Coronavirus disease 2019 (COVID-19) is a contagious dis-
ease caused by the severe acute respiratory syndrome coron-
avirus 2 (SARS-COV-2) and it was first identified in Wuhan,
China in 2019 (Page et al., 2021). The virus spreads world-
wide, leading to the COVID-19 pandemic. As of May 27th,
2022, it has confirmed over 500 million COVID-19 cases
and over 6 million deaths (ArcGIS, 2022).

People with COVID-19 may be asymptomatic or experience
one or more of the following symptoms: fever or chills,
cough, myalgia, headache, fatigue, breathing difficulties,
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loss of smell or taste, sore throat, congestion or runny nose,
nausea or vomiting, diarrhea (Stokes et al., 2020). At least a
third of infected people do not develop noticeable symptoms
(Oran and Topol, 2021). In an analysis of more than 1.3
million laboratory-confirmed cases of COVID-19 that were
reported in the United States between January and May
2020, 14% of patients required hospitalization, 2% were
admitted to the intensive care unit, and 5% died (Stokes
et al., 2020).

Testing is important to identify and help reduce the spread
of COVID-19. Viral tests, including a nucleic acid am-
plification test (NAAT) and antigen tests, are used to di-
agnose COVID-19. Antibody tests (serology) are not in-
dicated to diagnose a current infection. NAATs that use
reverse transcription-polymerase chain reaction (RT-PCR)
technology to detect SARS-CoV-2 ribonucleic acid (RNA)
are highly sensitive and specific to detect SARS-CoV-2
RNA in respiratory specimens. Clinical RT-PCR tests for
SARS-CoV-2 that determine the cycle threshold (Ct) value
are not validated to determine viral load, and the NIH rec-
ommends that Ct values should be used clinically in consul-
tation (COVID-19 Treatment, 2022).

Chest radiographs of patients with severe COVID-19 may
demonstrate bilateral air-space consolidation (Sadiq et al.,
2021). Chest computed tomography (CT) images from pa-
tients with COVID-19 may demonstrate bilateral, peripheral
ground glass opacities and consolidation (Kanne et al., 2021;
Doerschug and Schmidt, 2022). Less common CT findings
can include intra- or inter-lobular septal thickening with
ground glass opacities (crazy paving pattern) or focal and
rounded areas of ground glass opacity surrounded by a ring
or arc of denser consolidation (reverse halo sign).

In the setting of the COVID-19 pandemic, chest imaging
plays a very important role in the early diagnosis and the
treatment planning for patients with suspected or confirmed
COVID-19 chest infections, as it is readily available in the
community physician offices, urgent care clinics and hospi-
tal emergency departments. The authors (Cleverley et al.,
2020) found that no single feature of covid-19 pneumonia
on a chest radiograph is specific or diagnostic, but a com-
bination of multifocal peripheral lung changes of ground
glass opacity and/or consolidation, which are most com-
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monly bilateral, may be present, and the diagnosis might
be complicated as covid-19 pneumonia may or may not be
visible on chest radiograph while considering other causes
for patients’ respiratory symptoms. The authors (Smith
et al., 2020) suggested that the presence of patchy and/or
confluent, bandlike ground-glass opacity or consolidation
in a peripheral and mid to lower lung zone distribution
on a chest radiograph obtained in the setting of pandemic
COVID-19 was highly suggestive of severe acute respira-
tory syndrome coronavirus 2 infection and should be used
in conjunction with clinical judgment to make a diagno-
sis. In the study (Yasin and Gouda, 2020), there were 350
patients proven with positive COVID-19 disease; 220 pa-
tients (62.9%) had abnormal baseline chest X-ray (CXR)
and 130 patients (37.1%) had normal baseline CXR. Their
study demonstrates that radiographic findings are very good
predictors for assessing the course of COVID-19 disease
and it could be used as long-term consequences monitoring.

2. Related Study
To address the challenges caused by the pandemic, artificial
intelligence has been widely used to help provide solutions
to save lives and to stop the pandemic outbreak. In detecting
COVID-19 from CXR images, Guefrechi et al. utilize fine-
tuned deep learning models ResNet50, InceptionV3, and
VGG15 to distinguish COVID-19 CXR images from normal
CXR images (Guefrechi et al., 2021). The results show that
transfer learning is effective, showing strong performance
and easy-to-deploy COVID-19 detection, which may be
used in cases wherein the materials and RT-PCR tests are
limited. Unfortunately, the dataset contains only COVID-19
and normal CXR images, other viral Pneumonia images
are not involved. Second, the latest deep learning models
are missing in the study. The third, the hyper parameters
including optimizers and learning rate schedulers, which
may be very important to the detection performance, are not
discussed.

The authors in the article (Akter et al., 2021) applied a modi-
fied MobileNetV2 to COVID-19 CXR images. The resulting
model produced the highest accuracy of 98% in classifying
COVID-19 and healthy chest X-rays among all the imple-
mented CNN models. The results suggest that the proposed
method can efficiently identify the symptoms of infection
from chest X-ray images better than existing methods. Sim-
ilarly, the data only contains two classes: COVID-19 and
healthy chest X-rays. Nayak et al. compared eight pre-
trained deep CNN models, namely, VGG-16, Inception-V3,
ResNet-34, MobileNet-V2, AlexNet, GoogleNet, ResNet-
50, and SqueezeNet for COVID-19 CXR images, and they
claimed that ResNet-34 outperformed other competitive net-
works (Nayak et al., 2021).

Hussain et al. designed a 22-layer CNN architecture, which

has achieved an accuracy of 99.1% for 2 class classification,
94.2% for 3 class classification, and 91.2% for 4 class clas-
sification. The numbers of images used to train the model
for 4-class classification are 500 COVID-19, 800 normal,
400 pneumonia-viral, and 400 pneumonia-bacteria (Hussain
et al., 2021). The authors in the article(Okolo et al., 2021)
applied 11 CNN models for the task of classifying COVID-
19, normal and viral pneumonia X-ray images (3-class prob-
lem). The authors claimed that that the EfficientNetB4- and
the Xception-based models perform the best.

In the article (Kumar et al., 2022), modified versions of
VGG16, VGG19, ResNet50, and InceptionV3 were applied
to a total of 720 CXR images, containing 540 normal and
180 COVID-19, and the authors claimed that the modified
InceptionV3 performed the best. The authors (Sampen and
Lavarello, 2022) compared three deep learning architec-
tures (COVID-net, CovXNet and DarkCovidNet) with CXR
images with COVID-19, pneumonia and healthy (3305 im-
ages for each class), the study claims that DarkCovidNet
achieved 94.04% and CovXNet obtained 92.02%. Recently,
Li and Li compared 17 different deep learning models
and applied the ensemble of these 17 models. Among vi-
ral pneumonia, diagnostic accuracy for Covid-19 reaches
99.95%. The authors claimed that high diagnostic accuracy
was achieved for distinguishing Covid-19 pneumonia from
bacterial pneumonia (Li and Li, 2022).

Although many studies have been conducted for the CXR-
based diagnosis of COVID-19, unfortunately, the latest deep
learning models have not been thoroughly investigated yet.
Additionally, most studies are constrained in the limited
CXR data or just limited to the binary classification of
COVID-19 and healthy CXR images. Regarding deep learn-
ing itself, different hyper-parameters, optimizers, learning
rate schedulers, and the loss functions may have significant
impacts on the performance, which have not been carefully
investigated. In this study, we aim to adopt the STOA deep
learning models that have been proven in the ImageNet
benchmark testing, transfer these pre-trained models with
fine-tuning to COVID-19 CXR images, and compare the per-
formance with different optimizers, learning rate schedulers,
and loss functions.

3. Proposed Study
3.1. Deep Learning Models

The ImageNet Large Scale Visual Recognition Challenge
(Russakovsky et al., 2015) evaluates algorithms for object
detection and image classification at large scale. It con-
tains hundreds and thousands of images, which has been
instrumental in advancing computer vision and deep learn-
ing research. PyTorch Image Models named timm is a
library for state-of-the-art image classification, containing
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a collection of image models, optimizers, schedulers, aug-
mentations, and training/validating scripts with ability to
reproduce ImageNet training result (Wightman, 2019). It
contains validation and benchmark results for the models in
this collection. We select the following top-ranking models
in the classification of ImageNet-1k dataset, listed in the
Table 1, for our study in COVID-19 CXR image recogni-
tion. These SOTA models are selected from Bidirectional
Encoder representation from Image Transformers (BEiT)
(Bao et al., 2021), a family of pure ConvNet models dubbed
ConvNeXt, ConvNeXts (Liu et al., 2022), a new vision
Transformer, called Swin Transformer (Liu et al., 2021), Ef-
ficientNet (Xie et al., 2020) and EfficientNetV2 (Tan and Le,
2021), and Vision Transformer (Dosovitskiy et al., 2020).

Table 1. Deep learning models used in our study.

MODEL NO MODEL NAME

1 beit large patch16 512
2 beit large patch16 384
3 beit large patch16 224
4 beit base patch16 384
5 convnext large 384 in22ft1k
6 convnext xlarge in22ft1k
7 convnext large in22ft1k
8 convnext base 384 in22ft1k
9 swin large patch4 window12 384
10 swin base patch4 window12 384
11 swin large patch4 window7 224
12 tf efficientnet b6 ns
13 tf efficientnetv2 xl in21ft1k
14 tf efficientnetv2 l in21ft1k
15 vit large patch16 384
16 vit large r50 s32 384

3.2. Selection of Optimizers and Learning Rate
Schedulers

In deep learning, optimizers can be explained as a mathe-
matical function to modify the weights of the network given
the gradients and additional information, depending on the
formulation of the optimizer. Optimizers are built upon the
idea of gradient descent, the greedy approach of iteratively
decreasing the loss function by following the gradient. The
pre-trained pytorch image models (Wightman, 2019) were
trained with stochastic gradient descent (SGD) optimizer.
Therefore, we adopt SGD as a primary optimizer in out
study, and briefly introduce below.

Consider the object function

J(ω) = − 1

n

n∑
i=1

J (i)(ω) (1)

Where the parameter ω that minimizes J(ω) is to be esti-
mated. Each summand function J (i)(ω) is typically associ-
ated with the i-th observation in the dataset for training.

To minimize the object function, a standard gradient descent

method is performed in the following iterations:

ω := ω − η∇J(ω) = ω − η

n

n∑
i=1

∇J (i)(ω) (2)

Where η is a step size or called the learning rate.

Stochastic gradient descent with momentum remembers the
update ∆ω at each iteration, and determines the next update
as a linear combination of the gradient and the pervious
update:

∆ω := α∆ω − η∇J (i)(ω) (3)

ω := ω + ∆ω (4)

That leads to:

ω := ω − η∇J (i)(ω) + α∆ω (5)

Where the parameter ω which minimize J(ω) is to be esti-
mated, η is a step size or called the learning rate, and α is an
exponential decay factor between 0 and 1 that determines
the relative contribution of the current gradient and earlier
gradients to the weight change.

Adaptive optimizers like Adam (Kingma and Ba, 2015)
have become a popular choice for training neural networks,
however it is observed to not generalize as well. Loshchilov
and Hutter (Loshchilov and Hutter, 2019) demonstrate that
L2 regularization is significantly less effective for adaptive
algorithms than for SGD. They propose an improved version
of Adam called AdamW that yields much better model, and
it can compete with SGD while training faster. In this study,
we consider SGD as a primary optimizer, also include Adam
and AdamW on the optimizer list.

Recently, a study is conducted to investigate the liver seg-
mentation task with two popular learning rate schedulers, Py-
torch OneCycleLR and Pytorch ReduceLRonPlateau. The
study shows that both schedulers perform well and Pytorch
ReduceLRonPlateau is slightly better (Akter et al., 2022). In
general, it reduces learning rate when a metric has stopped
improving. This scheduler reads a metrics quantity and if
no improvement is seen for a ‘patience’ number of epochs,
the learning rate is reduced. We will adopt the ReduceL-
RonPlateau as our first learning rate scheduler.

Loshchilov and Hutter propose a simple warm restart tech-
nique for stochastic gradient descent. Set the learning rate
of each parameter group using a cosine annealing schedule,
where ηmax is set to the initial rate, T cur is the number of
epochs since the last restart and T i is the number of epochs
between two warm restarts (Loshchilov and Hutter, 2017).

ηt = ηmin +
1

2
(ηmax − ηmin)(1 + cos(

T cur

T t
π)) (6)
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When T cur = T i, set ηt = ηmin. When T cur = 0, set ηt = ηmax.

In this study, we select Pytorch cosineAnnealingWarm-
Restarts as our second learning rate scheduler.

3.3. Loss Functions

Cross entropy is frequently used for loss function. For a
multiple-class classification, the loss function is given by

L(ŷ, y) = −
M∑
c=1

y(c) log(ŷ(c)) (7)

Where y(c) is the 0 or 1, indicating whether class label c is
the correct classification and ŷ(c) is the prediction on the
class label c.

Cosine embedding loss measures the loss given inputs x1,
x2 and a label tensor y containing values 1 or -1. It is used
for measuring whether two inputs are similar or dissimilar,
using the cosine distance, and is typically used for learning
nonlinear embeddings or semi-supervised learning. The loss
function for each sample is

L(x, y) =

{
1 + cos(x1, x2) if y = 1

max(0, cos(x1, x2)−margin) if y = −1
(8)

3.4. Dataset and Experimental Setup

We adopt the COVID-19 CXR image dataset (Chowdhury
et al., 2020; Rahman et al., 2021), which contains 3616
COVID-19, 6012 lung opacity, 10192 normal, and 1345
viral Pneumonia image files. We randomly select one CXR
image from each class, shown in Figure 1.

We randomly select 72% from each class for training and
13% for validation, and the remaining 15% for testing. In
each experiment, the same training, validation, and testing
are applied to each fine-tuning deep learning model. We se-
lect the initial learning rate individually from 0.0005, 0.001,
0.005, 0.01, and 0.05, overall, the models with the initial
learning rate 0.001 are better than the models on other ini-
tial learning rates. We compare the cross-entropy loss and
a combination of cross entropy and cosine embedding loss
with the weight ratio of cross entropy to cosine embedding
is 1:10. The dataset contains imbalanced classes, while we
randomly selected samples for training, different weights
are assigned to the four classes, computing by the total num-
ber of all class images over the number of each class. The
total number is 21165, the weights are 5.85 for COVID-19,
3.52 for lung opacity, 2.08 for normal, and 15.74 for viral
Pneumonia.

Figure 1. Image examples: COVID-19 (upper left), Lung opacity
(upper right), normal (lower left), and viral pneumonia (lower
right)

4. Experimental Results
Table 2 shows the mean testing accuracy of the 16 mod-
els with the six combinations of optimizer, loss function,
and learning rate scheduler, wherein cosine entropy is the
loss of cosine embedding loss +0.1 cross entropy, noted
as cosine entropy in this paper, and ReduceLRonPlateau is
named Plateau in Table 2.

It shows that the combination of Adam and AdamW with
cosineAnnealing does not perform well and the performance
varies across different models. Besides the optimizer, the
testing accuracy results in Table 2 show that the loss function
has significant impact on some models, e.g., BEiT models.
On average, the testing accuracy with the cosine entropy
loss is better than entropy loss function over different deep
learning models. The results in Table 2 also demonstrate
that EfficientNet family generally performs well across the
six combinations. In each combination, the highest testing
accuracy is associated with EfficientNet models.

Figure 2 shows the boxplots to compare the four combina-
tions with the SGD optimizer. It indicates that the integra-
tion of the loss function cosine embedding similarity with
cross entropy is slightly better than cross entropy alone. Re-
duceLRonPlateau is comparable to consineannealing learn-
ing rate scheduler in our experiments.

Tables 3 to 18 present the normalized confusion matrix
(NCM) of the testing results with SGD, cosine entropy,
and cosineannealing learning rate scheduler, wherein pre-
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Table 2. Testing accuracy (%)with differnt optimizers, loss functions, and learning rate schedulers.

MODEL NO
SGD

COSINE ENTROPY
PLATEAU

SGD
COSINE ENTROPY

COSINEANNEALING

SGD
ENTROPY
PLATEAU

SGD
ENTROPY

COSINEANNEALING

ADAM
COSINE ENTROPY

COSINEANNEALING

ADAMW
COSINE ENTROPY

COSINEANNEALING

1 94.5 94.6 81.4 82.3 49.1 45.9
2 93.2 93.0 85.7 90.9 46.7 85.8
3 94.5 93.2 94.1 94.2 38.2 70.3
4 95.1 93.6 85.0 92.7 36.3 87.7
5 95.0 94.7 95.1 95.2 27.9 27.2
6 94.5 94.9 94.4 93.5 16.9 85.2
7 93.5 94.6 95.0 93.3 49.0 47.4
8 95.3 94.2 95.1 94.6 49.0 17.1
9 95.7 95.2 95.2 94.0 49.0 49.4

10 95.7 95.7 95.3 93.4 6.2 16.6
11 94.6 94.8 94.5 94.7 6.2 44.6
12 94.9 96.3 95.3 95.6 92.8 93.0
13 95.9 95.7 96.9 95.3 80.5 92.5
14 95.9 95.9 95.9 96.1 85.1 93.6
15 95.6 95.0 95.5 95.8 22.1 55.3
16 95.6 95.1 94.6 93.4 27.9 17.8

Figure 2. Boxplots of the testing results on the four combinations
with SGD optimizer

diction is abbreviated as ‘pred’. The results from Tables
3-18 show that all SOTA models perform well by using the
SGD optimizer. Regarding the prediction of each class of
CXR images, we have the following observations from the
16 models: the top models among the 16 models are con-
vnext base 384 in22ft1k (99.4%) for detecting COVID-19,
beit large patch16 512 (95.4%) in predicting lung opacity,
swin large patch4 window12 384 (96.7%) in detecting nor-
mal, and tf efficientnetv2 xl in21ft1k (100%) in identifying
viral pneumonia images. Overall, all five SOTA deep learn-
ing architectures perform well. If we combine all results
with Table 2, EfficientNet is slightly superior to others, es-
pecially with Adam and AdamW optimizers, the advantage
of EfficientNet is noticeable.

Table 3. NCM with beit large patch16 512.

ACCURACY (%)
TRUTH

COVID OPACITY NORMAL VIRAL

PRED

COVID
OPACITY
NORMAL

VIRAL

98.9 0.5 0.4 0.0
0.7 95.4 6.8 0.0
0.2 4.0 92.2 2.5
0.2 0.1 0.5 97.5

Table 4. NCM with beit large patch16 384.

ACCURACY (%)
TRUTH

COVID OPACITY NORMAL VIRAL

PRED

COVID
OPACITY
NORMAL

VIRAL

96.5 0.5 0.9 1.4
1.2 90.4 6.2 0.0
1.9 9.1 92.0 4.2
0.3 0.0 0.9 94.4

Table 5. NCM with beit large patch16 224.

ACCURACY (%)
TRUTH

COVID OPACITY NORMAL VIRAL

PRED

COVID
OPACITY
NORMAL

VIRAL

95.7 2.4 2.0 1.5
3.4 80.7 11.6 0.0
0.6 16.8 84.5 4.5
0.4 0.1 2.0 94.0

Table 6. NCM with beit base patch16 384.

ACCURACY (%)
TRUTH

COVID OPACITY NORMAL VIRAL

PRED

COVID
OPACITY
NORMAL

VIRAL

95.9 0.9 0.3 0.5
0.2 92.0 7.1 0.0
3.0 7.1 91.9 0.5
0.9 0.1 0.7 99.1
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Table 7. NCM with convnext large 384 in22ft1k.

ACCURACY (%)
TRUTH

COVID OPACITY NORMAL VIRAL

PRED

COVID
OPACITY
NORMAL

VIRAL

97.6 0.3 0.3 0.0
0.5 91.0 2.6 0.0
1.6 8.7 96.6 3.2
0.2 0.0 0.5 96.8

Table 8. NCM with convnext xlarge in22ft1k.

ACCURACY (%)
TRUTH

COVID OPACITY NORMAL VIRAL

PRED

COVID
OPACITY
NORMAL

VIRAL

97.6 0.9 0.4 0.0
1.1 92.8 4.5 0.0
1.1 6.3 94.5 2.7
0.2 0.0 0.6 97.3

Table 9. NCM with convnext large in22ft1k.

ACCURACY (%)
TRUTH

COVID OPACITY NORMAL VIRAL

PRED

COVID
OPACITY
NORMAL

VIRAL

98.4 1.9 1.7 0.5
1.0 93.6 5.1 0.0
0.5 4.5 92.4 0.5
0.0 0.0 0.9 99.0

Table 10. NCM with convnext base 384 in22ft1k.

ACCURACY (%)
TRUTH

COVID OPACITY NORMAL VIRAL

PRED

COVID
OPACITY
NORMAL

VIRAL

99.4 1.2 0.3 1.1
0.6 92.7 5.1 0.0
0.0 6.1 93.9 0.5
0.0 0.0 0.6 98.4

Table 11. NCM with swin large patch4 window12 384.

ACCURACY (%)
TRUTH

COVID OPACITY NORMAL VIRAL

PRED

COVID
OPACITY
NORMAL

VIRAL

98.2 1.0 0.3 1.0
0.5 89.5 2.4 0.0
1.2 9.5 96.7 3.4
0.0 0.0 0.6 95.6

Table 12. NCM with swin base patch4 window12 384.

ACCURACY (%)
TRUTH

COVID OPACITY NORMAL VIRAL

PRED

COVID
OPACITY
NORMAL

VIRAL

99.2 0.2 0.3 0.0
0.4 93.5 3.9 0.0
0.2 6.2 95.3 1.4
0.2 0.0 0.6 98.6

Table 13. NCM with swin large patch4 window7 224.

ACCURACY (%)
TRUTH

COVID OPACITY NORMAL VIRAL

PRED

COVID
OPACITY
NORMAL

VIRAL

99.3 0.4 0.5 0.5
0.2 93.5 2.9 0.0
0.5 6.0 95.8 1.5
0.0 0.0 0.8 98.0

Table 14. NCM with tf efficientnet b6 ns.

ACCURACY (%)
TRUTH

COVID OPACITY NORMAL VIRAL

PRED

COVID
OPACITY
NORMAL

VIRAL

98.5 0.6 0.4 0.5
0.4 92.4 4.0 0.0
1.1 7.1 94.8 1.4
0.0 0.0 0.9 98.1

Table 15. NCM with tf efficientnetv2 xl in21ft1k.

ACCURACY (%)
TRUTH

COVID OPACITY NORMAL VIRAL

PRED

COVID
OPACITY
NORMAL

VIRAL

97.6 0.3 0.2 0.0
1.4 93.6 5.1 0.0
0.8 6.1 93.9 0.0
0.2 0.0 0.8 100.0

Table 16. NCM with tf efficientnetv2 l in21ft1k.

ACCURACY (%)
TRUTH

COVID OPACITY NORMAL VIRAL

PRED

COVID
OPACITY
NORMAL

VIRAL

97.1 0.8 0.3 0.9
0.6 90.6 2.5 0.0
1.6 8.7 96.2 1.4
0.8 0.0 1.0 97.7

Table 17. NCM with vit large patch16 384.

ACCURACY (%)
TRUTH

COVID OPACITY NORMAL VIRAL

PRED

COVID
OPACITY
NORMAL

VIRAL

98.6 0.2 1.0 0.0
0.6 92.5 3.8 0.0
0.4 7.3 94.7 9.6
0.4 0.0 5.8 99.0

Table 18. NCM with vit base patch16 384.

ACCURACY (%)
TRUTH

COVID OPACITY NORMAL VIRAL

PRED

COVID
OPACITY
NORMAL

VIRAL

90.5 5.0 3.8 2.4
4.7 79.1 10.0 0.5
4.1 15.3 82.1 2.9
0.7 0.6 4.2 94.3



Detecting COVID-19 Chest X-Ray Images with SOTA Deep Learning Models

5. Conclusion
In this study, we compare the 16 SOTA deep learning models
for detecting COVID-19 CXR images for four-class classifi-
cation. Experimental results show that the hyper-parameters,
the optimizers and the loss function have significant impact
on the detection performance. The SGD optimizer and the
integration of cosine embedding similarity and cross en-
tropy loss are ideal for different models. Both learning rate
schedulers ReduceLRonPlateau and cosineAnnealingWarm-
Restarts perform well. Overall, if parameters are selected
meticulously, all models are effective with the SGD opti-
mizer. While Adam and AdamW are selected as the opti-
mizer, the performances of most models except EfficientNet
are noticeably unstable.
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