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Abstract
Since the global outbreak of the coronavirus
2019 pandemic, hundreds of works have been
published, analyzing and modeling multiple as-
pects of the disease. Several of them venture into
predictive and modeling tasks, such as mortality
prediction and patient severity scoring, using
machine-learning (ML) algorithms. An important
limitation for most of these works is the fact
that they do not consider the multiple temporal
aspects of this pandemic, especially regarding
disease profile and distributional changes over
the months. Such temporal effects are mostly
due to multiple interactions between different
and novel viral strains, combined with mass
vaccination campaigns targeting different groups
or patterns (e.g., prioritizing older individuals and
those with comorbidity first) and availability of
different vaccines. These temporal effects result
in impaired model effectiveness and classification
errors. In this paper, using a large dataset with
over 10,000 patients from 39 hospitals in Brazil
admitted during a period of more than 20 months,
we provide an overview of the multiple forms of
temporal drift that happened during the pandemic
and the magnitude of their effects on model
effectiveness. Our analyses encompass changes
in the severely ill patients’ profile as well as
how mortality rates have changed over time. We
also investigate how the importance of different
predictive variables change and shift over time.

1. Introduction
Ever since the coronavirus 2019 pandemic outbreak, the
number of cases and deaths has increased exponentially. As
of May 2022, over 500 million cases and 6 million deaths
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have been officially reported. Although vaccines have
been developed and produced at unprecedented speeds,
they have been administered at a slow and uneven roll out,
what occurred concurrently with the emergence of new
variants. Indeed, the number of people reinfected with
the Omicron and other variants of SARS-CoV-2 increased
sharply, despite the vaccines’ robust protection against
serious illness, hospitalization or death. Accordingly, many
pandemic’s aspects have changed over time.

In this context, various modeling tools have been developed
to assist effective decision-making. A common sub task
in this kind of work is early patient risk stratification for
predicting inhospital COVID-19 mortality. As suggested by
Marcolino et al. (Marcolino et al., 2021), many approaches
have been used, such as those described by (Ikemura et al.,
2021; Paiva et al., 2022), which tested different machine
learning algorithms to find high-effectiveness models to
predict the mortality risk of COVID-19 patients (Ikemura
et al., 2021; Paiva et al., 2022). A key limitation in most
of these works is disregarding the impact of temporal data
drifts while using past data to learn for both classification
and regression tasks.

Temporal data aspects may yield a significant impact on
the final model effectiveness at predictive tasks, as different
kinds of feature and label drifts become “training noise”.
Such drifts may cause further shifting of the classification
boundaries into improper regions. For instance, vaccination
strategies prioritized the elderly first, shifting the overall
age of dying patients towards the younger population, while
also altering potential casualty rates and interacting with
other time-related features. Concurrently, the dynamic
interactions between changes in population immunity,
ongoing viral evolution and immune escape have driven the
spread of viral variants, with different transmissibility and
disease severity profile (Telenti et al., 2021).

Some works have been proposed with the intention of
characterizing differences between various waves of the
pandemic, such as (Zeiser et al., 2022), (Iftimie et al., 2021)
and (Carbonell et al., 2021). These works have consistently
shown differences in mortality and hospitalization profiles
between waves, as measured in different countries and
cities. However, none of them have characterized and
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quantified such differences from a data drift perspective,
which is the main contribution of this paper.

Temporal drifts are known phenomena in other contexts
and related characterizations has been performed before in
works such as (Mourao et al., 2008) and (Salles et al., 2016),
which have analyzed drifts in word distributions, word
meanings and target class distributions. However in the
context of COVID-19, we are unaware of any work that pro-
vides such a temporal characterization of data/concept drifts
and their potential in classification and predictive tasks.

Summarizing, in this paper, we aim at identifying and
characterizing different types of temporal drifts using
past COVID-19 data. For this, we exploit a large dataset
obtained through the Brazilian Multicenter COVID-19
Registry, with more than 10,000 in-hospital patients from
39 hospitals, who were admitted during a period of more
than 20 months. We provide an overview of the multiple
forms of temporal drift that happened during the pandemic
and the magnitude of their effects on model effectiveness.
Our analyses encompass changes in the severely ill patients’
profiles as well as changes in mortality rates over time.
Furthermore, we investigate how the importance of the
most predictive features (variables) shift over time due
to analyzed temporal data drifts. Finally, We observed
significant drops in classifier effectiveness over time, that
can be potentially explained by the observed temporal drifts.

This work is organized as follows. Section 2 discusses
related work. We proceed with the characterization of the
temporal effects in our COVID-19 dataset. We finish with
conclusions and perspectives for future work.

2. Related Work
There have been multiple studies analyzing variations
observed over time in the class distribution. Studies
such as (Salles et al., 2016) and (Mourao et al., 2008),
for instance, perform a detailed characterization of such
effects in textual datasets of documents organized into
topics. The characterization of these effects with regards
to the COVID-19 pandemic, however, is a scarcely studied
problem. Indeed, we were able to find only two other works
(Jung et al., 2022; Jassat et al., 2021) showing differences
in hospitalized patient profiles as new COVID-19 waves
began spreading. (Jung et al., 2022), for instance, used mul-
tivariate logistic regression and a complementary machine
learning-based analysis using explainability methods for
better understanding the influence of age and comorbidities
during the different pandemic waves. The authors observed
that an older age was not as important risk factor to develop
severe COVID-19 in the third wave as it was in the previous
one. Meanwhile, (Jassat et al., 2021) used multivariate
logistic regression to investigate the increase in adjusted

Figure 1. Drift types with respect to the passing of time.

mortality when comparing the second-wave to the first
one in South Africa, and attributed this variation to a new
COVID-19 variant. We, on a complementary note, propose
to identify and characterize different types of temporal
drifts in a large Brazilian COVID-19 Registry. Such study
has a large potential to help in the allocation of medical
resources needed to manage patients in hospitals, and may
help to define target groups for vaccine booster shots.

In more details, concept drifts describe changes in the
statistical properties of target variables, while data drifts
refer to input distribution changes (i.e. changes in target
class distributions). These notions have been well defined in
studies, such as (Moreno-Torres et al., 2012), which unified
and consolidated some of the underlying terminologies. As
defined by (Gama & Zhang, 2019), data and concept drifts
can be categorized with regards to how they behave with
regard to the passing of time, being: (i) sudden (i.e. one
event permanently changes the “meaning” of a concept), (ii)
incremental (i.e. one event incrementally generates gradual
changes to the ”meaning” of a concept); (iii) gradual (i.e.
the concepts interchange gradually until the complete shift
occurs), or (iv) reoccurring (i.e. a transient concept drift).
These concepts are exemplified in Figure 1.

Approaches do exist to detect and learn in the presence of
concept drifts. In most contexts, naively monitoring data
drifts may be an expensive task, as it could require data label-
ing. As an alternative approach, (Haque et al., 2016) uses an
ensemble of classifiers to report their prediction confidences
and monitor changes in their confidence distribution, to de-
tect the moment at which concept drift occurred. In our spe-
cific dataset and task, however, deaths are easily obtainable
labeled data, which means that our main issue would be re-
lated to learning in the presence of data drift. In spite of that,
different COVID-19 problems may also require data drift
monitoring, such as COVID-19 detection on imaging tests.

On the issue of learning in the presence of data drifts, some
solutions also have been reported in the literature, mostly
focused on sample selection and/or sample weighting with
variations on how they derive the final weighting and/or sam-
pling. (Klinkenberg, 2004), for instance, tackles the problem
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by using support vector machines (SVMs) for both sample
selection and sample weighting through an iterative process
that sequentially trains SVMs to find the training instances
that constitutes the model’s support vectors, weighting them
based on how novel they are with respect to the desired
timeline. (Kolter & Maloof, 2007) uses an special weighted
ensemble to learn in the presence of such drifts. Other works
such as (Salles et al., 2016; 2010) use a temporal weight-
ing function that can be automatically learned (Salles et al.,
2017) to select relevant samples for each training window.

Another interesting concept proposed by (Rocha et al.,
2008) to tackle the problem is that of temporal contexts.
In their work, which analyzes document collections, the
authors define a temporal context as portions of documents
that minimize the temporal effects of class distribution,
term distribution and class similarity. This idea is used to
devise a greedy strategy to optimize the trade-off between
undersampling and temporal effects.

3. Dataset
This study exploits a dataset from a multicenter cohort,
which included 10,897 adult Brazilian COVID-19 patients,
admitted from March 2020 to November 2021 at 39
hospitals. This is a proprietary dataset, obtained through
the course of said cohort. Data can be made available upon
reasonable request. The median age of patients was 60
years-old [interquartile range 48-71] and 46% of them were
women. In total, 21% of all registered patients died, yielding
an unbalanced classification problem when predicting
future deaths. The dataset consists of over 200 features, but
only about 45 were admission features used in our future
death classification task. Admission features in the dataset
consist of data including patient’s age, sex, comorbidities,
laboratory tests (such as haemoglobin, C-reactive protein
and leukocytes) and vital signs at hospital presentation (i.e.
arterial blood pressure, respiratory rate, heart rate, etc).

Table 1 presents the full set of variables included in the
dataset and exploited in our experiments. From many
possibilities, we have focused on features collected at
admission time, and these are the ones shown in Table 1.
This choice is motivated by clinical utility, as patients may
present acute worsening of their symptoms without giving
hospitals time to prepare in advance. For instance, a health
center may reserve oxygen or an extra intensive care unit
bed for an additional patient, or even forward the patient to
another center. As such, this represents an overall adequate
timing to provision resources, as it ensures more time to
maneuver available assets.

Table 1. Variables included in our experiments
Variables

Demographics characteristics Illegal drug use
Sex at birth Alcoholism
Age (years) Current smoker
Comorbidities and lifestyle habits Ex-smoker
Hypertension Clinical characteristics
Coronary artery disease Time from symptom onset
Heart failure Respiratory rate (irpm)
Atrial fibrillation or flutter Heart rate (bpm)
Stroke Systolic blood pressure (mm Hg)
Chagas disease Diastolic blood pressure (mm Hg)
Rheumatic heart disease Inotrope use
Other cardiovascular disease Glasgow coma score
No relevant cardiovascular disease SF ratio
Asthma FiO2
COPD Laboratory
Pulmonary fibrosis C reactive protein (mg/L)
Diabetes mellitus Hemoglobin (g/L)
Obesity (BMI¿30kg/m2) Leucocytes (109/L)
Cirrhosis Neutrophils (109/L)
Psychiatry disease Lymphocytes (109/L)
Chronic kidney disease Neutrophils-to-lymphocytes ratio
Rheumatologic disease Platelet count (109/L)
HIV infection Creatinine (mg/dL)
Cancer Urea (mg/dL)
Previous organ transplantation Lactate (mmol/L)
Immunosuppressive condition Sodium (mmol/L)
Another relevant health condition Bicarbonate (mEq/L)
Nº comorbidities pH
Nº cardiovascular comorbidities pO2 (mmHg)
Nº of comorbidities in different groups pCO2 (mmHg)

4. Analyzing the Effect of Temporal Drifts on
the Brazilian Cohort COVID-19 Dataset

In this section, we aim at characterizing the diverse set of
temporal effects that occurred in our COVID-19 hospitalized
patients’ dataset. We begin by setting up a baseline for the
variation in effectiveness on a simple future death prediction
problem. For this, we present results of a binary (death vs.
non-death) classification task trained on admission variables
for two smaller periods (from March 2020 to March 2021,
and from March 2021 to November 2021) and the longest
possible period (the whole period March 2020 to November
2021). We begin by showing the unexpected drop in effec-
tiveness that is observed when using the full dataset when
compared to use specific (shorter) periods of time, then we
proceed into analyzing the possible explanations for this
fact, especially those related to potential data/concept drifts.

The results of the aforementioned analyses are presented
in Table 2. To perform the experiments, we took advantage
of the fact that each of our data points consists only
of patient admission attributes, ensuring no data leaks
occur when performing cross validation. Indeed, the
only temporally-related feature in our dataset is the
admission time, which is not used for prediction purposes.
Accordingly, we proceeded with a 10-fold cross validation
procedure while considering the three mentioned views, the
two halves of the dataset and the full dataset. The splitting
point between the partitions corresponds to roughly the mid
point of our dataset and also a point at which vaccination in
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Brazil started to reach 2-3% of the population with at least
one dose, not being so widespread as to cause an impact.

For each of the 10 test folds in each partition, we measured
both micro and macro averages for the F1-score obtained by
applying the respective learned model (trained with 8 splits
and tuned in one). The F1 score is a metric obtained through
the harmonic mean of precision and recall metrics. Micro
average combines the F1-score of the 2 classes (death x non-
death) without considering class imbalance while the macro
average does so by treating all classes as equally important.
In the specific case of this learning task, the macro-F1 score
is the most appropriate measure due to high class imbalance
– approximately 80-20 – which, as shown in Table 4, is
present at all time-based partitions. Statistical significance
was assessed by performing Wilcoxon’s signed-rank test,
since we can not assure a normal distribution of the data.

In terms of classification models, we have included: a
standard support vector machine (SVM); LASSO and GAM
regression, due to their excellent results in (Marcolino et al.,
2021); a boosting model (LightGBM), which, according
to (Shwartz-Ziv & Armon, 2022) is usually one of the
best performing models when applied to tabular data
such as our COVID-19 dataset; a deep neural network
representative (1D Convolutional neural network), and a
Stacking model. Our stacking model is a combination of
the output all other models, while using a logistic regression
classifier as combination strategy. The hyperparameters
tested for each model in the validation split can be found in
Table 3. For configuring the stacking parameters, we used
a nested cross-validation procedure within the training set,
as explained in (Gomes et al., 2021).

Table 2. Cross-validation comparison of different classifiers while
learning on 2 years of COVID-19 hospitalized patients’ data.

First Half

micro-f1 macro-f1

Stacking 0.855 ±0,007 0.739 ±0,018
LightGBM 0.846 ±0,008 0.723 ±0,016
GAM 0.847 ±0,006 0.720 ±0,014
Lasso 0.842 ±0,009 0.677 ±0,024
SVM 0.839 ±0,010 0.691 ±0,031
CNN1D 0.815 ±0,013 0.693 ±0,016

Second Half

micro-f1 macro-f1

Stacking 0.805 ±0,019 0.698 ±0,019
LightGBM 0.807 ±0,018 0.695 ±0,017
GAM 0.805 ±0,018 0.692 ±0,015
Lasso 0.799 ±0,020 0.668 ±0,018
SVM 0.804 ±0,021 0.675 ±0,022
CNN1D 0.771 ±0,019 0.666 ±0,018

Full Dataset

micro-f1 macro-f1

Stacking 0.821 ±0,046 0.654 ±0,026
LightGBM 0.825 ±0,043 0.648 ±0,029
GAM 0.813 ±0,051 0.630 ±0,019
Lasso 0.809 ±0,053 0.595 ±0,024
SVM 0.814 ±0,046 0.608 ±0,024
CNN1D 0.776 ±0,050 0.625 ±0,019

Table 3. Classification models’ hyperparameters
Methods Parametrization
SVM C : [10-3, 10-2, 10-1,

100, 101, 102]
Kernel: [linear, rbf, poly, sigmoid]

class weight: [None, ’balanced’]
Lasso Alpha: [10-3, 10-2, 10-1,

100, 101, 102]
LightGBM N-estimators: [10, 50, 100, 200, 500, 1000, 2000]

learning rate: [10-3, 10-2, 10-1, 30-1]
colsample by tree: [0.5, 1.0]

CNN Epochs: Until Early Stop
learning rate: 1e − 4

filter size: 32
activation: ’relu’

num layers: 4
GAM No tunning
Stacking Meta-Classifier:

Logistic Regression, Alpha: [102]

As aforementioned, the results from the cross-validation
test are shown in Table 2. In this table, bold values indicate
results significantly superior within that time partition.
Micro and macro f1 scores for 6 classifiers, including
the stacking model, are shown, as well as the confidence
intervals for these results. Regarding the individual models,
overall, the neural network model was the worst performer
in all tests, possibly related to the size of our dataset
( 10K samples for the full data and 5K samples for the
halves), which is too small for such huge models. The
best individual model was LightGBM, and the best overall
model is our combination strategy (Stacking). These two
models were statistically tied at micro f1 on all tests, but
stacking has a slight edge, being statistically superior in
the first period. The high effectiveness of LightGBM in
all scenarios is possibly due to the tabular nature of our
learning task, as suggested in (). On the other hand, the
superior performance of the Stacking model in all scenarios
is consistent with recent results (Gomes et al., 2021).

A key observation in this Table is the fact that, for all
classifiers, there is a statistically significant drop in
effectiveness when using the complete data versus training
only in the two halves. For example, the effectiveness of our
best model (Stacking), as measured by MacroF1, drops up
to 11.5% in the full dataset versus that obtained in the first
period. This is true, even though the period which had the
best results (the first half) is fully included in the ‘complete’
dataset. Another interesting observation relates to how the
variance (and with it, the size of the confidence intervals) of
the results increases as we move from the first to the second
half, and then to the full dataset. This higher variability is
possibly due to the fact that, in the second half, we have
many more interacting factors (such as vaccines and viral
variants). Indeed, by considering the full period, we are
in fact increasing heterogeneity and the difficulties for the
classifier. Although we have more data when combining the
two periods (and then, more data to learn from), combining
the two heterogeneous partitions resulted in worst results.
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Some interesting questions arise. For instance, why do we
have important effectiveness variations between the two
partitions, and why does combining them yield worse classi-
fiers? As we will show in the following paragraphs, multiple
(temporal) factors seem to be implicated in these outcomes.

Table 4. Fraction of patients per class at each time period
recovered died

Until march-2021 79.85% 20.15%
Until november-2021 78.28% 21.72%
March-november-2021 75.34% 24.66%

Among the potential variations that could lead to such effec-
tiveness degradation, one of the most directly observable is
class distribution drift. The COVID-19 pandemic induced
multiple potential class drifts, such as drift in mortality and
hospitalization rates. In the specific case of our dataset, we
measured mortality over time. These results are shown in
Figure 2. The Figure shows the monthly moving average of
mortality for the past month at each day in our dataset. On
the X-axis, we show time, as measured by means of patient
admission dates, while on the Y-axis, we show mortality
rates over the past 30 days. As we can see, between the
extremes of this curve there is a maximum of over 30%
variation in mortality, going from just under 17% up to
23%, over the course of a few months.

Though simple to understand from a clinical perspective, the
case fatality rate drift has important effects in the learning
process, since classifiers will tend to learn to reproduce pre-
dictions somewhat close to the training distributions, which
are far from constant over time. Additionally, these rather
large drifts of more than 30% occur in the minority class,
which can cause even more confusion for the predictor to
be learned. This is mainly true if the learning algorithm
explores some information from prior distributions, either
directly such as Naive Bayes, or indirectly, such as LGBM
that exploits some type of sampling from the training data.

Additional sources of temporal drifts in the data include
feature drifts which can be both semantic and distribu-
tional. These drifts, on their turn, may result in either
gains or losses of correlation between the input and the
target variables. To test for this kind of temporal effect,
we further split the data into trimesters and measured
the Pearson correlations between the overall top-5 most
predictive admission features for future lethality and the
death outcome in each trimester. We opt for this additional
split in trimesters to better analyze how these effects change
over time, as opposed to just comparing the correlations
in the two halves and in the full dataset.

The Pearson correlation metric shown in Figure 3 is the ratio
between the covariance of two variables and the product
of their standard deviations. As such, it is essentially a
normalized measure of their covariance, yielding results

Figure 2. Proportion of hospitalized patient deaths over time.

between -1 and +1 that represent how much linearly
correlated the two variables are. The formula for this metric
is shown in Equation 1. The intuition behind this analysis
lies in attempting to capture how much variables correlate to
the target and how their relative ranking changes over time.
Significant variations observed in this analysis, particularly
in how correlated variables are and in their relative ranking,
imply changes in the typical profile of the target classes
when compared to the overall distribution.

ρ(X,Y ) =
cov(X,Y )

σXσY
(1)

Equation 1: Pearson Correlation

In the Pearson correlation analysis of Figure 3, we can see
that both the relative ranking and the absolute correlation
of each feature changes over time. On the X-axis, we
show trimesters of observations, while on the Y-axis, we
show absolute Pearson correlation scores. Notice, for
instance, how at the earlier stages of the pandemic, Age
was the single best predictor of future death out of the
5 best variables, while on the last one, it was the worst.
Possibly, this effect was the result of an interaction between
elder patients having a naturally higher risk of death,
resulting in age being the best predictor in the first trimester.
Elderly patients were also the first vaccinated, leading to
non-vaccinated elderly patients dying more often than their
vaccinated pairs and acting as noise with respect to patient’s
age as a feature for death prediction.

This sort of effect may induce wrong future predictions, as
a classifier may learn that, for instance, patient age is highly
predictive of future death, but, as previously stated, elderly
patients received vaccines first, resulting in them having an
overall smaller risk when compared to relatively younger
peers and other non-vaccinated groups.
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Figure 3. Absolute Pearson correlations over time for the 5 overall
most correlated features in our dataset. Notice that the relative rank-
ings and the most predictive features change over time changes.

It is interesting to observe the particular case of patient
age as a predictive feature for future COVID-19 related
deaths, as it was the most predictive in the early periods
(e.g., trimester 0 and 2) and became less discriminative
in later periods (e.g., trimester 5). In our experiments, we
measured the median age of death for patients that died
from COVID-19 and show the results on Figure 4. In this
Figure, we can see that at the earlier stages of the pandemic,
older patients (median age between 60-63 years) were
the typical profile for deaths. As time went by, vaccines
were developed and older patients were prioritized for
vaccination in Brazil. This resulted in a subsequent fall
of median death age, which achieved a lowest value of
around 55 years of age by September,2019. COVID-19
vaccines had a known effect of not necessarily preventing
infections but actually reducing casualty rates. However,
as time advances and vaccination progressed, new variants
continued to emerge. This culminated in a subsequent
rise of median mortality ages, as elder patients were (once
again) susceptible to some of these new variants.

To further analyze how the profile of a typical dying
COVID-19 patient changes over time, we calculated the
mean feature values over all dying patients (i.e. their cen-
troid) in our dataset, and assessed the mean similarity to that
centroid over time. The general profile of a dying patient
is represented by a 45-position vector where each position
contains attributes measured at hospital admission time.
The general centroid has the mean value for each feature for
all dying patients. This procedure is described in Equation 2.
From this, we analyzed the mean cosine similarity between
this general centroid and a similar vector representing
patients who have died at each particular point in time.

The results from this analysis are shown in Figure 6. From
the Figure, we can see that there is a trend towards deviation

Figure 4. Median age of COVID-19 dying patients over time.

centroid =
1

n

n∑
i=1

Xi (2)

Equation 2: Dying patient’s general centroid

Figure 5. Mean dissimilarity between classes (Death x Non-death)
over time.

and approximation from this centroid over time, with the
highest dissimilarities occurring at the earlier stages of
the pandemic, and higher similarities occurring around
July-2021. This pattern shows that the ‘dying patients’
profile’ changes over time, and a well tuned classifier
trained on just one period will most certainly underperform
when applied at another period. Notice how the “first big
shift” occurs right at the onset of the pandemic, around
May-July 2020, when some states began experiencing
exponential growth in cases, causing further deaths of
less severely ill patients. The second major profile change
occurs around March-2021, when vaccination starts to gain
traction in the country, which initially shifted the dying
patient’s profile towards the younger, unvaccinated patients.
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Another important factor that affects how classification
tasks behave over time is the evolution of the relationships
among classes, as in how similar or dissimilar they are over
time. We analyze this particular trait on Figure 5. In the
Figure, the X-axis shows time (in months), while the y-axis
shows the mean cosine distance between patients in both
classes. To generate this plot, we move a sliding window
that captures each month in our database, and filter, in that
view, the patients that died and the ones that did not die.
In this Figure, we can see that patients that died were also
more dissimilar at the earlier stages of the pandemic, which
partly explains the better results in the first half of our
dataset when compared to the second half and to the full
dataset. As time passes younger patients started to die from
COVID-19, from multiple reasons, from being unvaccinated
to being more exposed to the disease, their characteristics
became more similar to those of the ‘recovered’ group.

An interesting exercise that relates to the results in Figure
5 is that of characterizing why the first partition yields more
effective classifiers than the second one. Going back to Ta-
ble 2, we can see that the first partition yelds the best results,
followed by the second one, while both yield better results
than the full dataset (looking at macro-f1). A major reason
for this, from a temporal drift standing point, is simply the
fact that classes are more dissimilar on the first partition.
The dying patients on the second partition are younger and
more similar to the ones that do recover, versus relatively
older and more diseased patients in the first partition.

To conclude, we have shown that the task of predicting
future COVID-19 mortality upon hospitalization has
suffered multiple temporal drifts over time, including class
distribution shifts, feature importance changes and even
the modification of the overall risk profile for death. Such
effects impair classification effectiveness, and the solution
to these problems is not trivial, as there is a trade-off
between selecting less samples form a more recent time
to re-train a classifier – and hence having less information
to learn from – and selecting more samples to learn from
– but incurring at the danger of incorporating noise into the
model due to the multiple temporal shifts in the data.

5. Conclusion
In this work, we presented evidence of how several types of
temporal effects have impacted important characteristics of
the COVID-19 pandemic, including the dying patient’s pro-
file. For instance, we have shown that mortality rates have
changed over time, possibly due to the interaction between
multiple vaccines being applied targeting specific patterns
(e.g., specific age groups and populations first). Vaccines
seem to have an important influence on some of the tem-
poral drifts we observed in this pandemic. We have also
demonstrated the classification effectiveness degradation

Figure 6. Mean cosine similarity between dying patients and their
overall centroid over time.

that emerges out of using data containing all of these hetero-
geneous patterns and shown how the correlation between dif-
ferent predictors and the target variable (in our case, future
death) can change over time. In order to properly address
these temporal effects, we may employ and adapt some
strategies already proposed in the literature, such as sample
selection (Rocha et al., 2008) and sample weighting (Salles
et al., 2010). These strategies can minimize the temporal
effects by ensuring that the most relevant samples will have
the highest relative impact on the learning algorithm. These
strategies also aim at maximizing effectiveness under the
trade-off between having less data to learn from and learning
from the most relevant (and possibly most recent) samples.

In the future, we will explore the impact of both sample
selection and sample weighting strategies when applied
to COVID-19 data aiming at mitigating the temporal drifts
that impact machine learning models applied in this context.
We also intend to work on meta-features derived from the
population in a given period of time to minimize the tempo-
ral effects. Finally, we intend to test these solutions on other
COVID-19 datasets besides the one described in this work.
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Flix, S., De Febrer, G., Parra, S., Hernández-Aguilera, A.,
Riu, F., Joven, J., Andreychuk, N., et al. First and second
waves of coronavirus disease-19: A comparative study
in hospitalized patients in reus, spain. PloS one, 16(3):
e0248029, 2021.

Ikemura, K., Bellin, E., Yagi, Y., Billett, H., Saada, M.,
Simone, K., Stahl, L., Szymanski, J., Goldstein, D., and
Gil, M. R. Using automated machine learning to predict
the mortality of patients with covid-19: Prediction model
development study. JMIR, 23(2):e23458, 2021.

Jassat, W., Mudara, C., Ozougwu, L., Tempia, S., Blumberg,
L., Davies, M.-A., Pillay, Y., Carter, T., Morewane, R.,
Wolmarans, M., et al. Difference in mortality among
individuals admitted to hospital with covid-19 during the
first and second waves in south africa: a cohort study. The
Lancet Global Health, 9(9):e1216–e1225, 2021.

Jung, C., Excoffier, J.-B., Raphaël-Rousseau, M., Salaün-
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