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Abstract

The application of the state-of-the-art biomedical
named entity recognition task faces a few chal-
lenges: first, these methods are trained on a fewer
number of clinical entities (e.g., disease, symp-
tom, proteins, genes); second, these methods re-
quire a large amount of data for pre-training and
prediction, making it difficult to implement them
in real-time scenarios; third, these methods do not
consider the non-clinical entities such as social
determinants of health (age, gender, employment,
race) which are also related to patients’ health.
We propose a Machine Learning (ML) pipeline
that improves on previous efforts in three ways:
first, it recognizes many clinical entity types (dis-
eases, symptoms, drugs, diagnosis, etc.), second,
this pipeline is easily configurable, reusable and
can scale up for training and inference; third, it
considers non-clinical factors related to patient’s
health. At a high level, this pipeline consists of
stages: pre-processing, tokenization, mapping em-
bedding lookup and named entity recognition task.
We also present a new dataset that we prepare by
curating the COVID-19 case reports. The pro-
posed approach outperforms baseline methods on
four benchmark datasets with macro-and micro-
average F1 scores around 90, as well as using our
dataset with a macro-and micro-average F1 score
of 95.25 and 93.18 respectively.

1. Introduction

In recent years, the number of biomedical documents (re-
search papers, case reports, electronic health records, and
clinical notes) has increased dramatically. MEDLINE, a
comprehensive database of medical articles, contains ap-
proximately 28 million articles to date (MEDLINE, 2021).
Due to COVID-19 research, hundreds of articles have been
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published in the past two years (Wang & Lo, 2021). To keep
up with the increasing demand for biomedical knowledge,
large-scale data management is necessary. In its current
state, it is very challenging for researchers to manage and
infer information from unstructured (free) texts (Campos
et al., 2012). These challenges include parsing the scientific
text, extracting key information, categorizing the articles,
and facilitating efficient content discovery. Text mining (Tan
et al., 1999) is a subtask of Natural Language Processing
(NLP) that converts free texts into a format suitable for data
analysis and to build machine learning (ML) models.

In the modern healthcare industry, there is also a substantial
increase in Electronic Health Record (EHR) data (Toscano
et al., 2018). It may include patient conditions, medications,
demographic data, medical history, and laboratory reports.
Before these EHRs can be utilized for research purposes,
they must be de-identified.

The task of identifying and categorizing key information
(entities such as a person, an organization, or an event) in the
text is known as Named Entity Recognition (NER) (Nadeau
& Sekine, 2007), and it is a key technique in text mining.
The NER task can be used in the biomedical domain to iden-
tify biomedicine entities such as genes, diseases, species,
chemicals, and so on (Cho & Lee, 2019). The results of
named entities can be used for a variety of downstream tasks,
including question answering system, drug-drug interaction
analysis, gene identification and information extraction. The
state-of-the-art work (Efroni et al., 2020) in biomedical NER
focuses on a small number of named entities (disease, genes,
proteins, etc.). However, there are many entities to consider,
such as disease, diagnosis, medical concepts, risks, vital
signs, and so, that need to be identified from texts, which is
a motivation for this research.

According to the Healthy People 2030 initiative (of Health),
non-clinical factors such as social determinants of health
(SDoH) (McNeely et al., 2020), live, work, and grow that in-
fluence the health of populations. At a broader level, SDoHs
refer to the distribution of wealth, power, and resources
that have long-term effects on individual health outcomes
and lead to health disparities (McNeely et al., 2020). For
instance, the effect of food insecurity on the patients’ health
and the effect of substandard housing on mental health. In
this study, we also focus on SDoHs, which is a relatively
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under-researched area in healthcare and Al

The purpose of this research is to study the clinical and
non-clinical named entities from biomedical texts. We refer
to both clinical and non-clinical entities as “biomedical
entities” throughout this paper. We propose a trainable ML,
pipeline that includes many phases, such as pre-processing,
tokenization, embedding lookup, a deep neural network
for the NER task; a NER converter to convert identified
named entities into user-friendly representations; and a de-
identifier to de-identify patients’ personal information based
on identified named entities (name, location, date, etc.). We
summarize our contributions as:

* We propose and develop a Biomedical NER Pipeline
(BNP), to identify biomedical entities from the scien-
tific texts. This pipeline consolidates and explains ML
best practices with a variety of features that can be used
as-is or as a starting point for further customization and
enhancement.

* We create a new dataset by curating a large number of
COVID-19 case reports, and scientifically parsing the
text from these case reports. A case report describes a
patient’s symptoms, diagnosis, treatment, and follow-
up. We also annotate a portion of this dataset with
biomedical entities to create a gold-standard dataset
that is used to train and evaluate the named entity
model.

» After identifying the named entities (name, address,
etc.), we de-identify the patients’ personal informa-
tion in the case report to comply with the Personal
Health Information Protection Act (PHIPA) (Nosowsky
& Giordano, 2006). In this work, we do not have ac-
cess to real patients’ personal information, so we use
the fake identifiers to build and test this module.

* We set up this pipeline using the Spark NLP config-
urations (Kocaman & Talby, 2021) that allows us to
scale up in clusters while maintaining distributed data
processing principles. Spark NLP supports in-memory
distributed data processing for both training and infer-
ence processes in real-time.

We compare the effectiveness of our NER approach to state-
of-the-art methods on publicly available benchmark datasets
and our COVID-19 case reports dataset.

2. Related Work

Traditional NER methods only consider specific entities
(e.g., persons, organizations, locations, etc.) (Nadeau &
Sekine, 2007). Biomedical NER (Campos et al., 2012) is the
task of identifying entities in the biomedical domain, such

as chemical compounds, genes, proteins, viruses, disorders,
drugs, adverse effects, diseases, DNAs and RNAs. In the
state-of-the-art of biomedical NER, most of the research
(Efroni et al., 2020; Goyal et al., 2018) focuses on general
approaches to named entities that are not specific to the
biomedical field. On the other hand, there are some works
(Eltyeb & Salim, 2014; Lee et al., 2020) that focus solely
on biomedical and chemical NER, however, they do not
cover many clinical entities, such as diseases, symptoms,
clinical procedures and such. SDoHs also a major impact
on people’s health, and well-being and are related to health
outcomes, which is rather an under-explored research area
in bio-medicine research.

In the last few years, there has been a dramatic increase
in biomedical data (1). Recently, because of the COVID-
19 surge, there is much increase in biomedical data that is
difficult to read, even more so when the urgency of time
and the number of patients is increasing exponentially. Due
to the critical nature of comprehending and fully utilizing
this biomedical data, several NLP tasks are initiated. These
tasks include Biomedical Question Answering (Raza et al.,
2022), CORD-19 challenge (Wang et al., 2020), and TREC-
COVID challenge (Roberts et al., 2021). To perform these
tasks, it is, therefore, necessary to accommodate a prior
process of biomedical NER task.

According to a 2016 survey, about 95% of U.S. hospitals
use EHRs (Toscano et al., 2018). Case reports (Rison et al.,
2013) also contain patients’ data that can be used as a substi-
tute for EHRs (Hummel & Evans, 2016) and are distributed
for free for research purposes. The term “de-identification”
refers to the process of removing or replacing personal iden-
tifiers in such a way that re-establishing a link between this
information should not be possible Some studies employ
de-identification as a sub-task of the biomedical NER task
(Fabregat et al., 2019), where patient personal entities are
recognized first and are then de-identified.

Usually, the NER tasks are considered as sequence-labeling
problems, where words in a given phrase are tokens that
can be given appropriate labels. Consideration of corre-
lations represented by the best joint probability between
neighbouring labels and the full sequence of labels is use-
ful for sequence-labeling. The Conditional Random Field
(CRF) models (Lafferty et al., 2001) are usually useful for
sequence-labeling where we can jointly decode label se-
quences using a CRF layer.

CRF models (Lafferty et al., 2001), and Structured Support
Vector (SVM) (Tsochantaridis et al., 2005) are commonly
used models for NER, biomedical NER and de-identification
tasks. Deep learning models based on recurrent neural net-
works (RNN) and Convolutional Neural Network (CNN) are
also used for biomedical named entities and de-identification
purpose (Yang et al., 2019). In recent times, BioBERT (Lee
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et al., 2020), SciBERT (Beltagy et al., 2019) and related
Transformer-based models are also used to identify named
entities from biomedical texts.

In this work, we also use deep learning-based meth-
ods to build a pipeline for the biomedical NER and de-
identification tasks. We extend the standard biomedical
NER to identify many named entities.

3. Approach

We develop a ML pipeline, Biomedical Named entity recog-
nition Pipeline (BNP), shown in Figure 1 . This pipeline
takes raw data, pre-processes it, and applies algorithms to
recognize and classify biomedical entities into predefined
classes. Next, we discuss each stage of this pipeline in detail.
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Figure 1. Proposed pipeline for biomedical named entity recogni-
tion task

Data collection

3.1. Data Collection

The input to the BNP is the data that is collected from
different sources. We feed some benchmark biomedical
datasets, and our dataset on COVID-19 case reports to the
pipeline.

Benchmark datasets: We use the following benchmark
datasets: JNLPBA (Kim et al., 2004), NCBI-Disease
(Dogan et al., 2014), BCSCDR (Li et al., 2016), BC2GM
(Smith et al., 2008).

These datasets are readily available in CoNLL-2003 for-
mat here . CoNLL has become a prototypical standard for
building algorithms that recognize named entities in the
texts (Sang & De Meulder, 2003). We performed additional
processing to convert the datasets into IOB (Inside-Outside-
Before) scheme (Zhai et al., 2017). The IOB format is a

tagging format in computational linguistics (e.g., NER) and
is used for sequence labelling. It is a facility provided by
our pipeline.

Our COVID-19 case reports dataset: We have collected
the clinical case reports from different journals (Lancet,
BMJ, AMJ, Clinical Medicine and other related journals)
that are standardized according to the CAseREports (CARE)
guidelines (Rison et al., 2013). The inclusion criteria are
given below:

* We include only the PubMed Central (PMC) case re-
ports.

* We specify English as the language for the case reports.

* We specify the timeline between March 20, 2021 and
March 20, 2022 for data collection.

* We exclude many early-pandemic case reports, as the
disease symptoms, diagnosis, drugs, and vaccination
information were unclear at that time. After scraping
the PDFs of these case reports, we use Apache Tikka
toolkit to extract metadata (authors’ names, DOI, jour-
nal name, case report title) and full texts from PDF
documents. After completing these steps, we found
around 4500 case reports.

The dataset details are as: JNLPBA (JNL) with gene/ pro-
tein entity types consists of 35,336 annotations from 2,404
abstracts. NCBI dataset with disease entity type consisting
of 6,881 annotations from 793 abstracts. BC5SCDR (BC5)
with chemical entity type consisting of 15,935 annotations
from 1,500 scientific articles. BC2GM (BC2) with gene/
protein entity type have 24, 583 annotations from 20,000
sentences. Our case reports (Cases) data with many clinical
and non-clinical entities have around 25,000 annotations
from 500 case reports. The actual size of the case reports
dataset is 4500 but we use 500 case reports for annotations,
which according to research heuristics (Kocaman & Talby,
2021; Chen et al., 2020) is a good size to start training the
model.

Gold-standard dataset: Gold-standard dataset (Ogren
et al., 2008) means a corpus of text or a set of documents
that are manually annotated with the labels. We use the John
Snow Labs annotation lab ! to annotate around 400 case
reports and prepare it in the CONLL (Sang & De Meulder,
2003) format to construct a gold-standard dataset; which
according to research (Snow et al., 2008), is good number to
begin training an NLP model. We train the BISLTM-CNN-
CREF algorithm inside the pipeline with this gold-standard
dataset to initiate the biomedical NER task.

"https://www.johnsnowlabs.com/annotation-lab/
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3.2. Proposed pipeline

Our proposed BNP, shown in Figure 1 consists of various
stages that are discussed next.

Pre-processing: The first stage in BNP is the data pre-
processing stage that is handled by a node ‘pre-processor’.
The input to this stage is the data from data collection stage.
The pre-processor pre-processes the input data and detects
the sentence boundaries in each document. Then, it trans-
forms the data into a format that is readable by the next
stage in the pipeline. The output from this stage is the set of
pre-processed documents.

Tokenization: The tokenized data from the previous stage
(i.e., tokenization) goes into the embedding lookup stage,
which is handled by the embedding lookup node. We have
used the BERT-based clinical embeddings pre-trained on
PubMed corpora and MEDLINE. This embedding lookup
node maps tokens to vectors, it can also download other
pre-trained embeddings (such as Glove, BERT, BioBERT,
etc.,). The output from this stage is word embeddings corre-
sponding to each word in the document.

Embedding lookup: The tokenized data from the previous
stage (i.e., tokenization) goes into the embedding lookup
stage, which is handled by the embedding lookup node.
We have used the BERT-based clinical embeddings® pre-
trained on PubMed corpora and MEDLINE. This embed-
ding lookup node maps tokens to vectors, it can also down-
load other pre-trained embeddings (such as Glove, BERT,
BioBERT, etc.,). The output from this stage is word embed-
dings corresponding to each word in the document.

Named entity recognition: This stage identifies biomedical
entities in the documents. It is an algorithm that is based on
Bi-directional Long short-term memory (BiLSTM) - Con-
volutional Neural Network (CNN) - Conditional Random
Field (CRF) (Huang et al., 2015) model. We refer to this
model as BILSTM-CNN-CRF model. We modify the vanilla
BiLSTM-CNN-CREF for the data loader so that it can work
with any input by converting it into CoNLL and then into
IOB encoding scheme. We show the working of BiLSTM-
CNN-CREF in Figure 2 and explain its work next.

As shown in Figure 2, the BILSTM-CNN-CREF algorithm
takes the sequence of words as S = [w1,ws,...,wy]| as
input, where w; refers to the one-hot representation of the
ith word in the sequence. This input goes to the first layer,
which is the embedding layer. The embedding layer converts
a sentence from a sequence of characters into a sequence of
dense vectors. An embedding matrix E € RP*V is used
to map each character into a dense vector, where D is the
embedding dimension and V is the vocabulary size.

The output of embedding layer is a sequence of vectors

Zhttps://github.com/ncbi-nlp/bluebert
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Figure 2. Proposed pipeline for biomedical named entity recogni-
tion task

S = [z1,72,...,7N], where x; € RP*V and x; refers to
the dense vector representation of word w;. We use the
pre-trained embeddings that are loaded and provided by the
embedding lookup node in this layer.

The second layer in this NER node is a CNN network that
is used to capture local information within given words in
a biomedical context. Each position in the sequence has
sliding windows, and CNN performs a transformation for
each sliding window. The contextual representation c; of the
i¢, character is learned by using the CNN filter, as shown in
Equation 1:

¢ :f(wTQBx[ii%]) (1)

where Tfix K—l}) represents the concatenation of embed-
2

dings of characters. We use the Rectified Linear activa-
tion Unit (ReLU) as an activation function f. The contex-
tual representation c; is the concatenation of the outputs
of all filters at this position. The output of CNN layer is
C = [e1,ca,...,cn] , where ¢; € RM, M refers to the
number of filters in CNN layer.

The third layer in the model is the Bi-LSTM network that
is used to learn hidden representations of characters for
tokens in a sequence using all previous contexts (in both
directions). The hidden representation h; is a concatenation
of contexts in both directions. The output of Bi-LSTM layer
is h = [h1, ha, ..., hy], where S refers to the dimension of
hidden states in LSTM.

The fourth layer on the top of the Bi-LSTM network is the
CRF layer (Ma & Hovy, 2016) The input to the CRF layer
is h = [h1, ha, ..., hy] generated by the Bi-LSTM layer,
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where h refers to the sequence of hidden states. CRF is
a conditional probability distribution model mostly used
in sequence labelling tasks to generate new tags based on
previously labelled tags (Ma & Hovy, 2016). In any NER
task, the neighboring labels strong depend on the target
label. For example, I-Disease (I for inside) label usually
follows B-Disease (B for before), but it cannot follow B-
SYMPTOM or I-SYMPTOM. Thus, it is useful to jointly
decode the labels of characters in a sequence rather than
decode them independently.

The output of the CRF layeris y = [y1, y2, - - - , Yn|, Where y
refers to the sequence of labels. In this work, the biomedical
entities are the labels. A tanh layer on top of the BILSTM
layer is added to predict the confidence scores (CS) for every
word with each of the possible labels as the output score of
the network, as shown in Equation 2:

CS; = tanh (W h} + b.) ()

where W, and b, refers to model parameters. In training,
we use the negative log likelihood function over all training
samples to calculate the loss function £, which is shown in
Equation 3 as:

Lene = — Y _log (p(ys | hs;0)) 3)
sES
where S refers to the set of sentences in training data, p
denotes the probability and 6 refers to the parameters during
training.

Conversion: This stage converts the IOB representation of
named entities to a user-friendly representation, by associat-
ing the tokens of recognized entities and their labels. This
stage is handled by NER convertor node. Each output from
this stage is a ‘chunk’ that is a tagged portion of sentence
into named entities.

De-identification In this stage, we employ the data obfusca-
tion technique, which is a process that obscures the meaning
of data (Bakken et al., 2004). For example, to replace iden-
tified names with different fake names or to mask some data
value (04 — 04 — 2022) with (DATE). This component
provides HIPAA or PHIPA compliance when dealing with
text documents containing any protected health information.
We use the pre-trained de-identification model (JSL) from
John Snow Labs inside the pipeline to de-identify patients’
records.

3.3. Biomedical named entities

We get biomedical named entities as the output of the BNP.
We include a number of clinical and non-clinical entities that
we finalized after reviewing the relevant literature (Caufield
et al., 2019; Johnson et al., 2016). These entities are:

Clinical entities Admission (patient admission status), on-
cology (tumor/cancer), blood pressure, respiration (short-

ness of breath), dosage (medicine), vital signs, symptoms,
kidney disease, temperature (body), diabetes, vaccine, time
of symptom (days, weeks), obesity, pregnancy, BMI, height
(of patient), heart disease, pulse, hypertension, drug name,
drug ingredient, hyperlipidemia, cerebrovascular disease,
disease syndrome disorder, treatment, clinical department,
weight (of patient), admission/ discharge (from hospital),
modifier (modifies current state), external body part, test,
strength, route, test result, drug.

Non-Clinical entities Name (of patient), location, date, rel-
ative date, duration, relationship status, social status, family
history (family members, alone/ with family/ homeless), em-
ployment status, race/ethnicity, gender, sexual orientation,
diet (food type, nutrients, minerals), alcohol, smoking

4. Experiments and Results
4.1. Experimental settings

We use PyTorch for the implementation of models. In addi-
tion, we use the Spark NLP pipeline to construct the BNP
(pipeline), which allows us to scale up in clusters and sup-
ports in-memory distributed data processing for faster train-
ing and inference. We run our experiments on Google Colab
Pro (NVIDIA P100, 24 GB RAM, 2 x vCPU) and used
Apache Spark NLP in local mode (no cluster) to integrate
the components of the ML pipeline. We specify the follow-
ing hyper-parameters as shown in Table 1. We use Grid
search to get the optimal values for the hyper-parameters
and early stopping to overcome possible over-fitting.

We also tried different pre-trained embeddings in the embed-
ding lookup component, such as glove100d, word2vec and
BERT embeddings and find better performance with BERT
embeddings pre-trained on PubMed and MEDLINE cor-
pora. We have divided all datasets into training, validation,
and test sets, with a 70:15:15 ratio. We used the Stratified
5-Folds cross-validation (CV) strategy for train/test split if
original datasets do not have an official train/test split.

Evaluation metrics Following the standard practice (Chen
et al., 2015) to evaluate NER tasks, we use the following
metrics:

* Micro-average F1 (mi) measures F1-score of aggre-
gated contributions of all classes.

* Macro-average F1 (ma) adds all the measures (Pre-
cision, Recall, or F-Measure) and divides with the
number of labels, which is more like an average

Baseline methods We test the performance of our BNP
approach against the following methods:

SciBERT (Beltagy et al., 2019): we use the implementation
of allenai/scibert-base pre-trained on biomedical data with
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Table 1. Hyperparameters used.

HYPERPARAMETER  OPTIMAL VALUE (VALUES USED)

LEARNING RATE
BATCH SIZE
EPOCHS

LSTM STATE SIZE
DROPOUT RATE

1.E-03 (1.E-02...., 3.E-04)
64 (8, 16, 32, 64, 128)
30 ({2,3,...,30})
200 (200, 250)
0.5({0.3,0.35,....,0.7})

OPTIMIZER ADAM
CNN FILTERS 2(2,3,4,5)
HIDDEN SIZE 768
EMBEDDING SIZE 128
MAX SEQ LENGTH 512
WARMUP STEPS 3000

785k vocabulary.

BioBert (Lee et al., 2020): BioBERT is a pre-trained lan-
guage model for biomedical text mining. We use the
BioBERT-base-cased with following versions:

BioBert v1.0 pre-trained on 200k PubMed articles.
BioBERT vl.1 pre-trained on 1M PubMed articles.

BioBERT v1.2 pre-trained on 1M PubMed articles in the
same way as BioBERT vl.1 but includes a language mod-
elling (LM) head.

CT-BERT (Miiller et al., 2020): it is a BERT-large-uncased
model, pre-trained on Twitter messages on the topic of
COVID-19.

BiLSTM-CRF (Akbik et al., 2018): we use a standard
BiLSTM-CRF architecture that relies on contextual string
embeddings.

All the baselines are trained on the datasets mentioned in Ta-
ble 1. Each baseline is tuned to its optimal hyper-parameter
setting and the best results for each baseline are reported.

4.2. Results

Comparison with baseline methods We report the results
of all methods on all datasets using macro (ma) average
F1 in Table 2 and micro (mi) -average F1 scores in Table
3. These scores show the percentage values. Bold means
highest and italic means second highest performance.

Overall, these results in Table 2 and 3 show that our
BNP approach achieves the best performance on four
public biomedical benchmarks (NCBI Disease, BCSCDR,
JNLPDP, BC2GM) as well as on our case-reports designed
specifically for biomedical named entities. This demon-
strates the generalizability of our methodology across dif-
ferent types of datasets.

This outstanding performance of our approach is attributed

Table 2. Test results using micro F1 average

NCBI BC5 JNL BC2 CASES
CT-BERT 62.67 62.91 60.27 62.82 68.16
SCIBERT 81.15 80.72 77.13 76.78 76.23
BILSTM-CRF 83.32 83.92 79.23 78.04 81.23
BIOBERT 1.0 86.01 84.56 78.68 85.28 85.87
BIOBERT 1.1 88.52 87.15 79.39 86.16 86.27
BIOBERT 1.2 89.12 8781 83.34 86.45 86.88
BNP (OURS) 91.12 89.12 90.13 89.15 93.14

Table 3. Test results using macro F1 average

NCBI BC5 JNL BC2 CASES
CT-BERT 63.14 63.24 61.15 63.23 68.72
SCIBERT 82.13 79.88 80.65 80.13 78.29
BILSTM-CRF 84.12 84.02 83.56 79.32 78.10
BI1oBERT 1.0  79.10 78.90 79.00 78.13 72.18
BIOBERT 1.1 85.89 87.10 87.18 8545 87.78
BIOBERT 1.2 86.78 87.89 86.07 85.15 86.98
BNP (OURS) 91.14 89.14 89.01 90.23 95.25

to two important things: (1) the embedding lookup compo-
nent that can load the domain-specific pre-trained language
model (we use clinical BERT embeddings) to get the rele-
vant embeddings. (2) Our approach stacks together various
ML components or nodes (Figure 1) as a directed acyclic
graph (sequence of execution steps), where each node prior
to NER node contributes to identifying the biomedical en-
tities. We see the biggest performance boost when our
pipeline is tested on our case reports dataset that is anno-
tated with many biomedical named entities.

Our approach achieves the best micro F1 score of 93.14
on our dataset (around 52 entities), 91.12 on NCBI Dis-
ease (disease entity), 89.12 on BC5CDR (chemicals),
89.15 on BC2GM (gene/proteins) and 90.13 on JNLPDP
(gene/proteins) dataset. We see similar patterns of highest
performance by our pipeline for macro F1 scores with a
performance of 95.25 using our dataset.

The BioBERT model also shows a competitive performance
(after our model) in these results. We find that BioBERT
achieves better performance on disease entities (NCBI),
followed by chemical (BC5CDR) and then gene/proteins
entities (BC2GM and JNLPDP). It performed very well on
our case reports dataset, probably because it has rich clinical
embeddings. Among the variants of BioBERT, we see the
overall better performance of BioBERT v1.2 than its other
predecessors, except for a few places, where BioBERT v1.1
marginally outperforms BioBERT v1.2. The better perfor-
mance of BioBERT v1.2 attributes to its training method,
which is the same way as BioBERT vl.1 but includes a
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language model head, which can be useful for probing. A
probing task (Perone et al., 2018) is a classification problem
that focuses on the simple linguistic properties of embed-
dings. In this work, we use the clinical BERT embedding
pre-trained on PubMed and Medline data, which shows
at least 1-3% better results than BioBERT pre-trained on
PubMed abstracts.

We also observe the performance of BILSTM-CRF model
in identifying many diseases, chemical and gene/proteins
entities in these experiments. The BiLSTM-CRE, though not
as deeper as a BERT model, performs better than SciBERT
and CT-BERT. This is probably because SciBERT is initially
trained on scientific data (not clinical), its performance is
somehow compromised on biomedical entities. In the same
way, CT-BERT is pre-trained on social media data, so the
meanings of entities are different from pure biomedical
entity types.

Our approach, BioBERT v1.1 and v1.2 perform better than
simple BILSTM-CREF baseline. Our modified BiLSTM-
CNN-CRF algorithm performs better than BILSTM-CRF
baseline, probably because, we are using pre-trained
biomedical embeddings (BiLSTM-CRF uses Glove embed-
dings). We are using a deeper neural network - with more
layers than standard BiLSTM-CRF. The BioBERT is also
pre-trained on huge amounts of biomedical data and is a
self-sufficient model to determine biomedical NER, so it out-
performs BiLSTM-CRF baseline. SciBERT and CT-BERT
relatively lower performance could be attributed to the fact
that it does not cover as much training and inference on
biomedical entities as our approach and BioBERT.

Although we fine-tune each baseline method to its optimal
hyper-parameter settings, we anticipate that the relatively
low scores of these baselines on our case reports dataset
can be attributed to the following: (i) absence of a train-
ing dataset for training new biomedical, and (ii) different
training/test set splits used in previous works that were un-
available.

In comparison to previous research, our method can rec-
ognize a wide variety of clinical and non-clinical entity
types. We extract many entries related to medical risk fac-
tors (hypertension, kidney, diabetes, etc.), patients’ personal
information (age, gender, geography), SDoH (diets, race, in-
come) and other clinical entity types such as underlying dis-
ease, tissue, and organ systems. Most biomedical-focused
projects concentrate on chemicals, proteins, and genes; how-
ever, our pipeline is quite adaptable and can identify many
identities. This is demonstrated by the fact that when we
train our pipeline on other datasets, it performed best. When
we trained our pipeline on the case reports dataset, it again
performed the best.

Effectiveness of BNP on case reports We give a random

Table 4. Confidence scores of predicted biomedical entities (sen.
for sentence, beg. for beginning conf. for confidence score).

SEN. BEG. END CHUNK ENTITY SCORE
0 2 12 85 YEAR OLD AGE 1.00
0 14 18 WOMAN GENDER 0.98
0 32 43 ICU CLINICAL DEPT  0.93
0 109 134 FEVER SYMPTOM 0.91
0 156 160 COUGH SYMPTOM 1.00
0 233 244 PRIOR 5 DAYS RELATIVE DATE 0.93
1 247 249 SHE GENDER 0.99
1 261 264 MILD MODIFIER 0.78
1 266 273 DIARRHEA SYMPTOM 0.82

Table 5. Most used clinical entities in 100 case reports

DRUG DISEASE SYMPTOM
ANTIBIOTICS CORONAVIRUS COUGH
DOBUTAMINE CARDIOGENIC COLD
OSELTAMIVIR CoviD-19 CONGESTION
FLUIDS PNEUMONIA ABDOMINAL
SALINE HEPATITIS HEMORRHAGE

snippet from a COVID-19 case report to our pipeline and
show the confidence scores for the predicted biomedical
entities. The BiLSTM network in the BNP predicts the
confidence scores (Equation ??) for every word with pos-
sible labels. The expectation over here is that for a given
confidence score, the model should predict with a higher
confidence score. The results are shown in Table 4.

As seen in Table 4, our pipeline can predict many biomedical
entities from the input text. For brevity reasons, we only
present a snippet of a case report, so these predicted entities
do not encompass all the biomedical entities that we have
defined.

We also show five most common clinical entities predicted
using our approach from 100 case reports, due to space
limitation, we only show a few top entities in Table 5.

We demonstrate a few non-clinical entities with their results
in Table 6 and find some factors that can be analyzed to
study the social impacts on population health.

We show the de-identification of personal information in
Figure 3.

Finally, we show a sample prediction of our BNP pipeline
on a case report ° in Figure 4.

3https://casereports.bmj.com/content/13/5/e235861
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Table 6. Most used non-clinical entities in 100 case reports

RACE RELATIONSHIP AGE GENDER
CAUCASIAN SINGLE 18-YEAR FEMALE
ASIAN MARRIED 59-YEAR- HE
BLACK DIVORCED TEENAGER HIS
WHITE PARTNER OLDER MAN
LATIN WINDOWED YOUNGER SHE

index [§dlsentence B deidentified w7

0 A 73-year-old woman came to A 73-year-old woman came to the Fever
the Fever Clinic of the First Clinic of the GENESYSIREGIONAL
Hospital. MEDICAL CENTER - HEALTH PARK.

1 The name of patient is Oliveira The name of patient is
who lives in Cocke County who lives inJ
Baptist Hospital . FRANCES HOSPITAL - SULPHUR SPRINGS .

2 0295 Keats Street. P.O.Box 101.

3 Phone 111-347-837. Phone_. y

Figure 3. De-identification task

5. Conclusion

In conclusion, this paper presents a ML pipeline for biomed-
ical NER task that consists of a number of nodes stacked
together. We use BiLSTM-CNN-CRF model plus BERT-
based embeddings to detect biomedical entities. The re-
sults show that using contextualized word embedding pre-
trained on biomedical corpora significantly improves the
results. We evaluated the performance of our approach on
five datasets (four benchmark datasets and one own devel-
oped case reports dataset) and our approach achieves the
best results compared to the baselines.

Limitations and future work: This work is based on the
curation of case reports and the biases related to study eligi-
bility criteria, identification and selection of studies can be
a limitation. So far, we chose only English as the language,
which may have omitted many useful literatures from the
corpus. One direction, in this regard is to have rigorous
research methods to determines the quality of literature. For
now, we don’t have access to any EHR, so we cannot de-
termine the validity of the de-identification component, we
have uses fake identifiers to simulate the de-identification
process, which suffice the purpose but does not represent
the real-time patients’ data. Some points that we plan to
consider to implement in the future are:

We plan to add additional layers that may emphasize key
patterns and words that are decisive for the identification
of the named entities We plan to use a Transformer archi-
tecture (Devlin et al., 2018) that consists of a positional
encoding layer that can compute the linear distance between
words. This is significant because the model will contain
additional information about the entities, their dependencies

A 85-year-old

RACE_ETHNICITY

woman | came to the alleging
CLINICAL_DEPT

intense | left | hemicranial headache | associated with | ocular pain | in her
SYMPTOM
LE She presented
EXTERNAL_BODY_PART_OR_REGION MODIFIER

I

associated with vesicles in the are:
SYMPTOM INTERNAL_ORGAN_OR_COMPONENT

supplied by the left

superior ophthalmic branch of the

INTERNAL_ORGAN_OR_COMPONENT

V cranial nerve She was diagnosed with

INTERNAL_ORGAN_OR_COMPONENT

and treated with cintment

DRUG_INGREDIENT

herpes zoster infection

DISEASE_SYNDROME_DISORDER

]

S5times aday |, 125 mg oral brivudine every 24 hours
DRUG_BRANDNAME
or 7 days |, and moxifloxacin drops | every 3 hours |. Like in the first case, Pfizer
DURATION DRUG_INGREDIENT

COVID-19 vaccine | had been administered in the | previous 72 hours |. No other signs or
RELATIVETIME

L

I

VACCINE

symptoms that could be related to the or others of any kind, were observed

VACCINE

Figure 4. Predictions on a case report

and cues that are important for the entity types. We strongly
encourage the inclusion of medical professionals in the an-
notation process. This is one of the most important findings
that we gathered from this research. In this way, the model
will have a higher degree of confidence in the inaccurate
predictions it generates. We also plan to do error analysis
on inaccurate predictions generated by the model for the
biomedical named entities

We also recommend annotating with standard biomedical
terminologies and mappings, (such as those from Unified
Medical Language System (UMLS), Medical Subject Head-
ings (MeSH), International Classification of Diseases (ICD):
ICD-9, ICD-10, Systematized Nomenclature of Medicine
(SNOMED) terms) rather than developing a custom termi-
nology from scratch. Well-maintained biomedical termi-
nologies are often the result of ongoing expert effort, which
is our long-term goal. We also plan to incorporate interoper-
ability in various contexts and use cases for the biomedical
research.
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