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Abstract

Remote physiological measurement, e.g., heart
rate and respiratory rate measurement, be-
comes more and more important when contact
instrument-based measurement is inaccessible
and non-preferable under the COVID-19 pan-
demic. Non-contact camera based physiological
measurement enables Telehealth, remote health
monitoring and smart hospital applications. Re-
mote physiological signal measurement has chal-
lenges such as environment illumination varia-
tions, head motion, facial expression, etc. We
propose a convolutional neural network to jointly
estimate heart rate and respiratory rate with cam-
era video as input in a multitask fashion, which
leverages the correlation between heart rate and
respiratory rate. Specifically, we propose a novel
loss function which integrates the frequency cor-
relation between heart rate and respiratory rate to
improve robustness of both heart rate and respi-
ratory rate estimation. Furthermore, we propose
a post processing filter based on correlation be-
tween heart rate and respiratory rate which further
improve prediction accuracy. Extensive experi-
ments demonstrate that our proposed system sig-
nificantly improves heart rate and respiratory rate
measurement accuracy.

1. Introduction

Remote physiological measurement research draws signifi-
cant attention especially remote health monitoring becomes
preferable during the COVID-19 pandemic. Heart rate and
respiratory rate are the most important physiological signals.
Measuring heart rate and respiratory rate is the essential
step to identifying many diseases. Cameras are one of the
popular sensors for remote heart rate and respiratory rate
estimation. The underlying principle for camera based heart
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Figure 1. Overview of our proposed neural network to jointly esti-
mate heart rate and respiratory rate leveraging correlation between
heart rate and respiratory rate, i.e., Pulse-Respiration Quotient
(PRQ) loss. Our PRQ loss can be applied to any backbone multi-
task network architecture to further improve heart rate and respira-
tory rate estimation accuracy. We also propose on using the PRQ
information as a post-processing filter to further improve heart rate
and respiratory rate accuracy.

rate and respiratory rate measurement is capturing subtle
skin color changes (Wu et al., 2012) or subtle motions (Bal-
akrishnan et al., 2013) caused by blood circulation and res-
piration. Pulse oximeter uses Photoplethysmography (PPG)
technology to detect blood volume changes by measuring
light absorption from the skin. Imaging Photoplethysmog-
raphy (iPPG), also called remote Photoplethysmography
(rPPG), technology is based on the measurement of subtle
changes in light reflected from the skin from camera images
in non-contact way. Skin color change and motion caused by
blood circulation and respiration are so subtle which makes
camera based heart rate and respiratory rate estimation chal-
lenging, especially under uncontrolled environments such
as lightening variations, facial expression, head motion, etc.

Traditional heart rate and respiratory rate estimation uses
face tracking (Wang et al., 2016) and/or skin segmentation
(Tasli et al., 2014) to detect a region of interest (ROI) which
contains strong physiological signals, such as cheek, fore-
head, nose regions, and then extract color changes from
these ROI across frames, with frequency bandpass filter-
ing (Wang et al., 2017) and principle component analysis
(PCA) (Lewandowska et al., 2011) to filter noise and extract
heart rate or respiratory rate. To improve the algorithm ro-
bustness under a noise environment and leverage big data
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and supervised learning, a deep learning based method has
been proposed (Chen & McDuff, 2018) to enable end-to-end
learning of the heart rate and respiratory rate. Deep learning
based methods outperform traditional handcrafted feature
based methods especially for challenging scenarios, such
as head motion, under compression artifacts (Nowara et al.,
2021), etc. Especially, multitask learning (Liu et al., 2020)
enables learning heart rate and respiratory rate jointly using
the same backbone network but with two heads, one for
heart rate, another for respiratory rate. Multitask learning
reduces memory by using one network to estimate both of
the signals. However, the loss is simply the summation of
the heart rate rPPG waveform Mean Squared Error (MSE)
loss and respiratory rate rPPG waveform MSE loss which
results in an accuracy drop because the multitask network
is trained to optimize on two tasks rather than a dedicated
network to optimize on a single task. Leveraging the cor-
relation between heart rate and respiratory rate to improve
multitask learning accuracy has never been explored.

In our work, we propose a Pulse-Respiration Quotient (PRQ)
loss to integrate into the multitask loss to improve multitask
learning accuracy. PRQ loss takes the correlation between
the heart rate and respiratory rate into account to make the
network optimize PRQ as well as rPPG. Furthermore, we
propose on using the PRQ information to further remove
inaccurate heart rate or respiratory rate estimation as a post-
processing step. We demonstrate in experiments that adding
heart rate and respiratory waveform PRQ loss into multitask
loss improves network accuracy and using PRQ information
as a post processing filter can further improve the result
accuracy.

2. Related Work
2.1. Traditional Hand-crafted Feature Method

Lewandowska (Lewandowska et al., 2011) proposed using
channel selection and the PCA algorithm to separate heart
rate signal and noise. CHROM (De Haan & Jeanne, 2013)
method leverages light absorption differences among R, G
and B channels to conduct noise reduction among RGB
channels to improve physiological signal robustness. Wang
(Wang et al., 2015) improved robustness of the CHROM
method by using spatial redundancy of image sensor to im-
prove motion robustness. POS (Wang et al., 2016) method
extracts the pulse using a projection plane orthogonal to the
skin tone. Wang (Wang et al., 2017) proposed sub-band
pulse extraction to suppress periodic motions to particularly
improve heart rate estimation robustness in fitness scenarios.
RGBIR sensor has also been proposed for physiological sig-
nal estimation in order to leverage an additional IR channel
to improve signal robustness and reduce noise (Wang & den
Brinker, 2020).

2.2. Convolutional Neural Network Method

Recent CNN based solutions provide an end-to-end solution
for physiological signal estimation and enables large scale
data training to improve physiological signal estimation.
Chen (Chen & McDuff, 2018) proposed a Convolutional At-
tention Network (CAN). CAN takes two consecutive frames’
face crop difference as motion map and original frame’s face
crop as appearance map as inputs to estimate blood volume
pulse. Ren (Ren et al., 2021) integrated efficient channel
attention (Wang et al., 2020) to Chen’s spatial attention
network and built a dual attention network to recalibrate
features in both spatial domain and feature domain. 3D
convolution was proposed in (Liu et al., 2020) to replace 2D
convolution in Chen (Chen & McDuff, 2018)’s architecture,
although it gives better accuracy, 3D modules complexity
is much higher than 2D module. Liu (Liu et al., 2020)
further improved Chen (Chen & McDuff, 2018)’s network
by adding temporal shift module (TSM) (Lin et al., 2019)
and multitask learning for heart rate and respiratory rate
estimation, and called it Multitask Temporal Shift Convo-
lutional Attention Network (MTTS-CAN). TSM shifts part
of the channels along the temporal dimension to exchange
information among neighborhood frames. TSM achieves
the accuracy of 3D CNN and maintains 2D CNN’s com-
plexity as well. Niu (Niu et al., 2019) proposed to use
spatial-temporal map with a deeper backbone network for
end-to-end heart rate estimation. Niu (Niu et al., 2020)
proposed cross-verified feature disentangling from pairwise
face video training to improve heart rate estimation accuracy.
Several CNN architectures are proposed to estimate heart
rate from a highly compressed video (Rapczynski et al.,
2019; Yu et al., 2019; Nowara et al., 2021).

2.3. Loss Function

The loss function of Chen’s model (Chen et al., 2018) is the
MSE between the estimated and ground truth physiological
signal derivative. Liu (Liu et al., 2020) summed heart rate
and respiratory rate rPPG MSE loss as the multitask learn-
ing loss for joint learning. Niu (Niu et al., 2019) proposed a
smooth Mean Absolute Error (MAE) loss function to con-
strain the smoothness of adjacent heart rate measurements
based on the fact that the variance of the subjects’ heart rate
is small during a very small period of time (Niu et al., 2017).
Niu (Niu et al., 2020) combined physiological signal loss,
heart rate estimation loss and cross-verified disentangling
loss into the loss function. Gideon (Gideon & Stent, 2021)
introduced maximum cross-correlation (MCC) as a new loss
function for rPPG supervised training which is more robust
to synchronization error between video and physiological
ground truth. Revanur (Revanur et al., 2022) performed the
MCC in the frequency domain instead of time domain.
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Figure 2. Multitask Convolutional Attention Network (MT-CAN (Liu et al., 2020)) and Multitask Temporal Shift Convolutional Attention
Network (MTTS-CAN (Liu et al., 2020)) architecture by adding PRQ loss in multitask learning.

2.4. Heart Rate and Respiratory Rate Correlation

A lof of research (Bahmed et al., 2016; Scholkmann & Wolf,
2019; von Bonin et al., 2014) has been done to investigate
the frequency correlation between cardiovascular and respi-
ratory systems, and defined its ratio as the Pulse-Respiration
Quotient (PRQ). PRQ has correlation with general health,
physical activities, etc. Scholkmann (Scholkmann & Wolf,
2019) found that PRQ may change during different physical
activities and different times of the day (non-sleep, sleep),
however PRQ is in a certain range regardless of higher or
lower heart rate or respiratory rate. In our multitask learning
model, we leverage the correlation between heart rate and
respiratory rate and integrate the PRQ loss into multitask
learning to improve both heart rate and respiratory rate.

3. Methodology
3.1. Skin Reflection Model

For the theoretical optical principle of the deep neural net-
work model to estimate rPPG, Shafer’s dichromatic reflec-
tion model (DRM) (Wang et al., 2016) is applied to model
the lighting and physiological signals (Chen & McDuff,
2018; Liu et al., 2020). RGB value of the k-th skin pixel in
an image can be defined by a time-varying function:

Cu(t) =1o- (1 4+ ¥(m(t),O(p(t), r(t))))
I(t)
“(us - (50 + @(m(t), O(p(t),7(1))))
vs(t)
+ug-do+uy, - O(p(t), r(t))) + val(t)

va(t)

)

where Cj(t) denotes a vector of the RGB values; I(t) is
the illuminace intensity; v(t) and v4(t) are specular and
diffusion reflection respectively; v,,(¢) denotes camera sen-

sor’s quantization noise. I(t), v4(t) and v4(t) can all be
decomposed into stationary part (i.e. Iy, us - So, Uq - dg)
and time-varying part (i.e. Iy - U(-), us - ®(-), up, - ©(+))
(Wang et al., 2016). ©(p(¢),r(t)) denotes a combination
of both pulse p(t) and respiration r(t) signal. The rela-
tion between Cy(t) and O(p(t), r(t)) is non-linear and the
non-linear is caused by illuminance variation, head motion,
facial expression, camera compression, etc. m(t) denotes
all non-physiological variations; ¥(-) denotes the intensity
variation observed by camera; ®(-) denotes the specular
reflections varying parts; us and uy denotes the unit color
vector of the light source and skin-tissue respectively; u,, de-
notes the relative pulse strengths. Iy denotes stationary part
of illuminance intensity; so and dy denotes the stationary
specular and diffusion reflection respectively. Deep learn-
ing based heart rate and respiration rate estimation methods
(Chen & McDuff, 2018; Liu et al., 2020) model the rela-
tion between Cy,(t) and ©(p(t), r(t)) by supervision from
training data. For example, adding head motion data into
training can make the neural network predict heart rate and
respiratory rate more accurately under the head motion case.

3.2. Architecture

We use MT-CAN and MTTS-CAN (Liu et al., 2020) as the
backbone network for multitask training. Their network ar-
chitectures are shown in Figure 2. MT-CAN is a two branch
network, i.e. motion branch and appearance branch, with
spatial attention applied from appearance branch. Motion
branch takes N consecutive frames’ face ROI difference as
input. Appearance branch takes current frame’s face ROI as
input. There are two spatial attention layers that get multi-
plied to motion branch to select informative spatial features.
Spatial attention mask can help localize the rPPG signal
since the strength of the rPPG signal on face differs with
spatial location. Forehead and cheek regions have stronger
heart rate rPPG signal while nose and neck have stronger
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Figure 3. Ground truth heart rate and respiratory rate waveform from two subjects in COHFACE dataset. Horizontal axis is recording time
in second, vertical axis is the signal magnitude from ground truth sensor recording.

respiratory rate rPPG signal. Compared to MT-CAN, tem-
poral shift module (Lin et al., 2019) is applied before 2D
convolution layers in the motion branch in MTTS-CAN.
Temporal shit module helps incorporate temporal informa-
tion when predicting rPPG which makes rPPG signal more
robust. Different from (Liu et al., 2020), the novel part
of our network architecture is that we add heart rate and
respiratory rate ratio error as a loss function, i.e., Lprq to
multitask loss besides rPPG loss from heart rate and respira-
tory rate. The Lpgrq reinforces the correlation between heart
rate branch and respiratory branch to maintain the heart rate
and respiratory rate ratio in a valid range and to avoid the
network over optimize towards one branch.

3.3. Loss Function

3.3.1. HEART RATE AND RESPIRATORY RATE RPPG
Loss

Lippg, defined in Equation (2), is the summation of heart
rate rPPG loss Lppg_gr and respiratory rPPG loss Lppg_grr-
L.ppg measures the MSE error between predicted and ground
truth rPPG physiological signal.

rPPG*Oé*E

T
2
)

LippG RR

H \

Lippg_HR

2

where T is the time window, p(t) and r(t) are time vari-

ant pulse rPPG sequence and respiratory rPPG sequence
respectively.

3.3.2. PULSE-RESPIRATION QUOTIENT (PRQ) LoOSS

Figure 3 visualizes two subjects heart rate and respiratory
rate ground truth physiological signal recording. We can
see the trend that subject with lower heart rate has lower

respiratory rate. Figure 4 plots heart rate and respiratory
rate values for each subject in COHFACE dataset. Heart
rate and respiratory rate are weakly linear correlated, i.e.,
when heart rate increases respiratory rate increases. Heart
rate and respiratory rate Pearson correlation is 0.3, which is
computed using the following equation,

Cov(Pulse, Respiration)
PPulse,Respiration — y
O Pulse O Respiration

3)

where Cov is the co-variance, o is the standard deviation.
Figure 5 plots the PRQ histogram for all the subjects in
COHFACE dataset. PRQ., = 14.83, PRQ;, = 2.54,
PRQ,can = .57, most of the subjects have PRQ = 4 which
aligns with the research (Bahmed et al., 2016; Scholkmann
& Wolf, 2019; von Bonin et al., 2014) that PRQ maintains
within a certain range regardless of heart rate and respiratory
rate values.

We define PRQ loss in Equation (4), which is the mean
absolute error (MAE) between predicted PRQ and ground
truth PRQ. Our intuition is that if the predicted PRQ and
ground truth PRQ has large difference, then it’s likely that
either of the signal is not predicted accurately.

Lprq =|PRQyeq — PRQgr | 4
where HR
PRQ pred
pred — RRpred
HRgr
PR =
Qqgr RRor

HR and RR are computed by first applying bandpass filter
([0.67, 4]Hz for HR, [0.08, 0.5]Hz for RR) and then extract
dominant frequency component using frequency analysis
method.
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Figure 4. Heart rate and respiratory rate dot plot. Each dot repre-
sents ground truth heart rate and respiratory rate extracted from
the one minute recording from COHFACE dataset.
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Figure 5. Pulse-Respiration Quotient (PRQ) Histogram of data in
COHFACE dataset.

3.3.3. MULTITASK LOSS

The multitask loss proposed by Liu et al. (Liu et al.,
2020) is simply the summation of heart rate and respi-
ratory rate rPPG loss, which does not take the correla-
tion between heart rate and respiratory rate into account.
There can be case when the neural network has lower loss
for heart rate rPPG and respiratory rate rPPG estimation
in multitask learning, however, PRQ is not in the valid
range. Please note that PRQ loss alone is not enough
for supervising heart rate and respiratory rate joint train-
ing, since PRQ = % is a ratio, there exists a constant
k that would result in the same PRQ as PRQ = X:HR
Therefore, for example, if (HRpreq, RRprea) = (60, 10) and
(HRgT, RRgr) = (120, 20), the PRQ loss would give zero
error, in which case network could not learn meaningful
information with PRQ loss only. Thus, PRQ loss has to be
combined with rPPG loss to improve the accuracy. Incorpo-
rating both rPPG loss and PRQ loss into multitask learning

loss can make neural network back propagate the rPPG loss
and PRQ loss and make predicted rPPG aligned with ground
truth rPPG meanwhile predicted PRQ does not deviate from
ground truth PRQ. We integrate rPPG loss (Equation (2))
and PRQ loss (Equation (4)) into the multitask loss. Our
multitask loss is defined in Equation (5),

L = Lippg + vLprq, @)

where multitask loss L is the summation of rPPG loss Lppg
defined in Equation (2) and PRQ loss Lprq defined in Equa-
tion (4). «y is empirical parameter to balance Lppg and Lprg.
We set « = 8 = v = 1 in our experiment.

3.4. PRQ Post Processing Filter

The multitask neural network output is the pulse waveform
sequence and respiratory waveform sequence. To extract
the heart rate and respiratory rate in beats per minute, we
first applied bandpass filter (cut-off frequencies of 0.67 and
4 Hz for heart rate, and 0.08 and 0.50 Hz for respiratory
rate). 10 second window is used as evaluation window to
apply the Fourier transform to get the dominant frequencies
as the heart rate and respiratory rate. We further remove the
predicted heart rate and respiratory result with PRQ outside
range [2.5, 16.0] based on the dataset statistics as shown in
Figure 5. Using PRQ as a post processing helps reduce false
positive prediction, i.e., instead of showing wrong heart
rate and respiratory rate estimation for current evaluation
window, we use previous evaluation window’s result until
we get reliable prediction result which within valid PRQ
range.

4. Experiments

We compare our methods with two networks for heart rate
measurement and respiratory rate measurement: multitask
convolutional attention network (MT-CAN) and multitask
temporal shift network (MTTS-TAN) (Liu et al., 2020).
Other than MT-CAN and MTTS-CAN, we are not aware of
other networks that estimates heart rate and respiratory rate
together in a multitask fashion.

4.1. Datasets

We run our experiments using COHFACE dataset(Heusch
et al., 2017) since the dataset contains RGB videos of faces,
synchronized with heart rate and respiratory rate wave of
the recorded subjects. The face video is recorded with
a Logitech webcam with resolution 640x480 pixels. The
camera frame rate is 20Hz. Heart rate and respiratory rate
waveform ground truth are recorded at 256 Hz. The dataset
contains 40 subjects, in total 160 one-minute long video
sequences. There are 4 videos from every client: 2 videos
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Table 1. Heart rate and respiratory rate testing data accuracy benchmark with MT-CAN (Liu et al., 2020) on COHFACE dataset.

Settings Heart Rate (HR) Respiratory Rate (RR) HR and RR Average
MAE SNR Availability | MAE  SNR  Availability | MAE SNR  Availability
Lippg 11.016 2.177 0.684 4217 15.534 0.980 7.617 8.855 0.832
Lippg + FprQ 8.470 2233 0.688 4.071 15.557 0.988 6.271 8.895 0.838
Lippg + Lprq 6.727 2.772 0.735 4115 15.159 0.972 5421 8.965 0.854
Lippg + Lprg + Fprg | 4.601  2.880 0.755 4.083 15.311 0.984 4342  9.096 0.870

Table 2. Heart rate and respiratory rate testing data accuracy benchmark with MTTS-CAN(Liu et al., 2020) on COHFACE dataset.

Settings Heart Rate (HR) Respiratory Rate (RR) HR and RR Average
MAE SNR Availability | MAE  SNR  Availability | MAE  SNR  Availability
Lippg 1.621 6.756 0.945 2.514 13.554 1.000 2.067 10.155 0.972
Lippg + FprQ 1.625 6.747 0.945 2.482 13.600 1.000 2.053 10.174 0.972
Lippg + Lprq 1.621 6.756 0.945 2.514 13.555 1.000 2.067 10.155 0.972
Lippg + Lprg + Frrg | 1.625  6.747 0.945 2482 13.601 1.000 2.053 10.174 0.972

with controlled conditions, another 2 videos with more nat-
ural conditions. Natural condition videos include lightening
change and subjects natural head movement. We follow
the training and testing data split protocol provided by CO-
HFACE dataset in our experiment.

4.2. Experiment Details

We use the COHFACE(Heusch et al., 2017) dataset to eval-
uate our proposed heart rate and respiratory rate PRQ loss
function and post processing filter. We use OpenCV face
detector to get face crop and resize it to 72x72. And we
sample the ground truth heart rate wave and breath rate
wave at 20 Hz so that it is aligned with camera frame rate.
Motion map is current frame and previous frame’s face crop
subtraction. Appearance map is the current frame’s face
crop. Both motion map and appearance map are normalized
in the video.

To have a fair comparison with previous work, we use the
same backbone architecture to train MT-CAN and MTTS-
CAN. We use the same motion map and appearance map and
the same post processing steps (same cut off frequencies
for bandpass filter and frequency analysis method). The
training parameters (learning rate, epoch, etc) are the same
for fair comparison. The only difference is whether to apply
PRQ loss function and PRQ post processing filter.

We did ablation on our proposed PRQ loss function and
post processing filter. We compare accuracy by applying
PRQ loss function and post processing PRQ filter in dif-
ferent network backbones to show how adding PRQ loss
to multitask loss and applying post processing filter could
improve network accuracy.

4.3. Evaluation Metrics

The evaluation metrics were computed over all windows of
all the test videos in a dataset, we used 10 seconds as eval-
uation window. We use the following metrics: (1) Mean
Absolute Error (MAE): The average absolute error be-
tween ground truth heart/respiratory rate and predicted
heart/respiratory rate. (2) Signal-to-Noise Ratio (SNR):
We calculate blood volume pulse and respiration signal-
to-noise ratios (SNR) according to the method proposed
by De Haan (De Haan & Jeanne, 2013). The SNR is cal-
culated in the frequency domain as the ratio between the
energy around the first two harmonics and remaining fre-
quencies within heart rate and respiratory rate frequency
range. SNR captures the quality of predicted heart rate
and respiratory rate. (3) Availability: We compute the per-
centage of SNR > 0 in a video as availability. SNR < 0
indicates predicted heart/respiratory rate is not reliable since
signal energy is less than noise energy. This metric captures
percentage of the time the system is able to predict high
quality heart/respiratory rate.

5. Results and Discussion

We did ablation study on our PRQ loss function and post
processing PRQ filter using various network backbone and
show that the PRQ loss and the PRQ filter’s capability of
improving heart rate and respiratory rate estimation accu-
racy. Specifically, we compare network testing accuracy
with and without the PRQ loss function and post processing
PRQ filter. We evaluated heart rate and respiratory rate esti-
mation accuracy using the following rPPG loss (denoted as
Lppg), PRQ loss function (denoted as Lprg) and PRQ filter
(denoted as Fprg) combinations, which are in Table 1 and
Table 2’s row 1, row 2, row 3 and row 4 respectively:
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PRQ histogram.

1. Lppg: Apply rPPG loss as multitask loss, which is the
sum of MSE loss of heart rate rPPG loss and respiratory
rate rPPG loss, defined in Equation (2).

2. Lippg + Fprq: Apply 1PPG loss as multitask loss de-
fined in Equation (2) and also apply post processing
PRQ filter. PRQ filter implementation detail is de-
scribed in Section 3.4.

3. Lippg + Lprg: Apply the multitask loss defined in
Equation (5), i.e., use the sum of rPPG loss and PRQ
loss as multitask loss.

4. Leppg+Lpro+Fpro: Apply the multitask loss defined
in Equation (5) and also apply post processing PRQ
filter. PRQ filter implementation detail is described in
Section 3.4.

Under each of the above four experiment settings, we com-

pare heart rate and respiratory rate estimation MAE, SNR
and Availability.

5.1. Ablation on Lprg and Fprq using MT-CAN as
Backbone Network

Table 1 first row and third row compares without and with
Lprqg using MT-CAN as backbone network on COHFACE
test dataset. Adding Lprq on top of Lippg greatly reduces
HR MAE from 11.016 to 6.727 and reduces RR MAE from
4.217 to 4.115. Since HR rPPG and RR rPPG are jointly
optimized in multitask learning, thus we average evaluation
metrics for HR and RR, which are in the third column. HR
and RR averaged MAE is reduced from 7.617 to 5.421;
averaged SNR increases from 8.855 to 8.965; averaged
availability increases from 0.832 to 0.854. The results show
that Lprg could improve network accuracy by imposing HR
and RR’s correlation during training.
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Table 1 first row and second row compares without and with
Fprq. Adding Fprq on top of Lppg reduces HR MAE from
11.016 to 8.470 and reduces RR MAE from 4.217 to 4.071.
HR and RR averaged MAE is reduced from 7.617 to 6.271;
averaged SNR increases from 8.855 to 8.895; averaged
availability increases from 0.832 to 0.838. Therefore, Fprq
also improves HR and RR accuracy.

Table 1 fourth row shows the result by adding both Lprg and
Fprq on top of Lippg. For this experiment setting, we would
like to evaluate whether applying both Lprq and Fprq could
further improve result compared to apply Lprg or Fprq in-
dividually. HR and RR averaged MAE further reduces to
4.342; Averaged SNR further increases to 9.096; Averaged
availability further increases to 0.870. This result shows
that Lprg and Fprg can improve HR and RR estimation
accuracy. Furthermore, applying both Lprg and Fprg can
achieve better accuracy improvement than applying Lprq
or Fprq individually, which indicates that Lprq and Fprq is
complementary on reducing inaccurate HR and RR predic-
tions.

Figure 6 (a) shows scatter plot of ground truth and predicted
HR values from Lppg setting and Lippg + Lprq + Fprq set-
ting. Figure 6 (b) shows scatter plot of ground truth and pre-
dicted RR values from L,ppg setting and Lyppg +Lprq+FprQ
setting. Lippg + Lprg + Fpro setting gives better HR and
RR estimation result with higher correlation with ground
truth. Figure 6 (c) shows PRQ histogram of Lppg setting
and Lippg + Lprq + Fprq setting compared to ground truth.
Lippg + Lprg + Fpro setting gives better correlation with
ground truth, especaillly we can see that Lppg +Lpro+FprQ
setting reduces outlier PRQ outside ground truth PRQ range
(i.e., PRQ larger than 16.0 which is based on COHFACE
dataset statistics, as shown in Figure 5). The predictions out-
side valid PRQ range even after applying Fprq are those at
the beginning of the video when there’s no previous reliable
prediction to propagate to current evaluation window.

5.2. Ablation on Lprg and Fprq using MTTS-CAN as
Backbone Network

Table 2 first row and third row compares without and with
PRQ loss function using MTTS-CAN as backbone network
on COHFACE test dataset. The accuracy does not improve
because MTTS-CAN is a stronger backbone network and
has much higher accuracy than MT-CAN. Therefore, there’s
not much outlier training samples outside valid PRQ range
which Lprg could help.

Table 2 first row and second row compares without and with
Fprq. Frrq reduces averaged HR and RR MAE from 2.067
to 2.053 and increases averaged SNR from 10.155 to 10.174.
As post processing filter, Fpgq is able to improve HR and RR
estimation accuracy by removing outlier estimation outside
valid PRQ range.

Figure 7 shows scatter plot of ground truth and predicted
HR values and RR values, as well as PRQ histogram using
MTTS-CAN backbone network. Lippg+Lprg-+Fprq setting
gives better accuracy than Lppg setting since Fprq reduces
predicted HR and RR outside valid PRQ range.

5.3. Discussion

Both Lprq and Fprq can reduce HR and RR prediction error
by leveraging the correlation between HR and RR. Lprg
leverages the correlation by back-propagating PRQ loss
during neural network training while Fprqg leverages the
correlation by replacing wrong HR and RR outside valid
PRQ range with neighborhood reliable prediction in a video.
For the time window when neural network is not able to
predict HR and RR accurately which can be due to under
challenging environment (e.g., low lightening, head mo-
tion, compression artifacts, etc), Fprg could reduce false
predictions by maintaining PRQ within a reasonable range.

Both Lprq and Fprq provide higher accuracy improvement
for the weaker backbone network (i.e., MT-CAN) than the
stronger backbone network (i.e., MTTS-CAN). Fprq can
improve accuracy for stronger backbone network MTTS-
CAN. This demonstrates that both Lprq and Fprg can be
integrated to improve prediction accuracy especially for
the weaker backbone and for the harder training samples.
For the weaker backbone network and the harder training
samples, Lprq helps the network learn the hard training data
which otherwise Lppg could not differentiate.

6. Conclusions

We proposed leveraging correlation between heart rate and
respiratory rate to improve remote camera-based heart rate
and respiratory rate estimation accuracy. We evaluated vari-
ous ways of leveraging heart rate and respiratory rate cor-
relation, including a novel PRQ loss function which can
be inserted to any multitask learning backbone and a PRQ
filter as a post processing to remove false estimation result
outside a valid PRQ range. We integrated PRQ loss function
into multitask learning network to back propagate PRQ loss
to jointly optimize heart rate and respiratory rate. It was
demonstrated by experimental results that the heart rate and
respiratory rate correlation improve the estimation accuracy
on benchmark dataset.
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