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Abstract

A crucial aspect of managing a public health cri-
sis is to effectively balance prevention and mitiga-
tion strategies, while taking their socio-economic
impact into account. In particular, determining
the influence of different non-pharmaceutical in-
terventions (NPIs) on the effective use of public
resources is an important problem, given the un-
certainties on when a vaccine will be made avail-
able. In this paper, we propose a new approach
for obtaining optimal policy recommendations
based on epidemiological models, which can char-
acterize the disease progression under different
interventions, and a look-ahead reward optimiza-
tion strategy to choose the suitable NPI at differ-
ent stages of an epidemic. Given the time delay
inherent in any epidemiological model and the
exponential nature especially of an unmanaged
epidemic, we find that such a look-ahead strat-
egy infers non-trivial policies that adhere well to
the constraints specified. Using two different epi-
demiological models, namely SEIR and EpiCast,
we evaluate the proposed algorithm to determine
the optimal NPI policy, under a constraint on the
number of daily new cases and the primary reward
being the absence of restrictions.

1. Introduction

One of the key challenges in managing a public health crisis
is the allocation of scarce resources and how to balance
the cost-benefits of mitigation strategies. This is especially
true for non-pharmaceutical interventions (NPIs), which
potentially impact a large number of otherwise not affected
populations (Ferguson et al., 2020; Morato et al., 2020). In
order to asses the impact of optimal NPIs, one can parame-
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terize epidemiological models to represent disease progres-
sion at different levels of interventions, and measure the
predicted number of new infections (Ghamizi et al., 2020).
Conceptually, this can be used to formulate an optimization
problem in the context of non-linear control, wherein users
can assign a cost/reward to different levels of interventions
and specify constraints on the peak response (Alvarez et al.,
2020; Yaesoubi & Cohen, 2016). However, epidemiolog-
ical models pose a number of unique challenges in both
formulating the problem as well as solving it.

The first challenge is to find a meaningful formulation
of what can be considered optimal under which con-
straints (Khadilkar et al., 2020; Libin et al., 2020). An
intuitive objective would be to minimize harm, i.e. aim
to minimize the number of infected or potential casualties.
However, this directly leads to a trivial solution of applying
maximal NPIs (e.g. lockdown) at all times, which by design
will lead to the fewest number of infections. However, this
disregards any socio-economic costs, i.e. lost business ac-
tivity or negative health effects due to inactivity. In practice,
balancing the different aspects explicitly is challenging and
requires not only in-depth economic studies (Guerrieri et al.,
2020) but also knowledge of when vaccines might become
available or what role herd immunity will play as an exit
strategy (Lurie et al., 2020), etc. Instead, we use a common
simplification which reformulates the problem in terms of
health care management with the primary constraint being
the number of daily new cases, and a reward assignment pro-
cess that encourages lessened restrictions. This reflects the
desire to guarantee adequate care for all sick given the finite
healthcare resources, and assumes that in isolation applying
any NPI will incur a cost to be avoided. As will be discussed
in more detail below, our approach allows policy makers
to assign relative rewards to different NPIs reflecting the
differences between, for example, closing all non-essential
businesses vs. preventing large gatherings.

The second challenge is the time delay inherent in any epi-
demiological model and the exponential nature of an un-
managed epidemic (Liu, 2020; Germann et al., 2019). Due
to effects such as incubation times or asymptomatic infec-
tions, interventions taken (or removed) today may show a
significant effect only days or weeks later. Simultaneously,
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allowing an exponential growth even within a given con-
straint may result in unavoidable future violations despite
maximal NPIs. Both of these issues emphasize the need for
a substantial look-ahead window to consider not only the
current state but a long term forecast. Ideally, this window
should be “infinite” to avoid any possibility of unexpected
problems due to delayed dynamics. However, this formula-
tion makes the optimization expensive especially for more
complex models. Here, we present a greedy approach based
on a two-level look-ahead strategy able to produce optimal
policy recommendations for a variety of different scenarios.
Furthermore, the optimization incorporates practical consid-
erations, such as, the limited frequencies at which public
policies can be changed, or the variable cost of different
interventions. Finally, the two-level optimization provides
an intuitive trade-off between short term gains and potential
future costs beyond the total reward inherent in the sys-
tem. For example, the optimal policy might place relatively
stringent early NPIs to avoid predicted peaks months later.
However, given the uncertainty of long term predictions
one may prefer a more optimistic choice early as long as
there is sufficient lead time to prevent peaks later even if this
produces an overall lower reward. Using empirical studies
with two popular epidemiological models, namely SEIR and
agent-based EpiCast, we demonstrate the effectiveness of
our approach.

2. Background: Epidemiological Models

2.1. SEIR Model

We consider a compartmental SEIR model from which one
can obtain trajectories of the epidemic, given the current
state and epidemic-specific parameters. An SEIR model
divides the population into Susceptible, Exposed, Infected
and Recovered compartments and can be described in terms
of ordinary differential equations (ODEs) (He et al., 2020).
While exposed refers to the latent infected but not yet infec-
tious population, recovered contains the population that is
no longer infectious (also referred as removed). While this
has been popularly used to model influenza epidemics (Mills
et al., 2004), there have been several existing efforts that
have utilized this model with great success in the case of the
recent COVID-19 epidemic (López & Rodo, 2020; Roda
et al., 2020; Yang et al., 2020). Formally, an SEIR model is
described as follows:

dS

dt
= ��S(t)I(t)

dE

dt
= �S(t)I(t)� �E(t)

dI

dt
= �E(t)� �I(t)

dR

dt
= �I(t).

(1)

Here, the the rate of changes in the compartments are pa-
rameterized by infectious rate �, incubation rate � and the
recovery rate �. The severity of an epidemic is characterized
by the basic reproduction number that quantifies the number
of secondary infections from an individual in an entirely
susceptible population as R0 = �

� . Following common pa-
rameter settings assumed by COVID-19 studies in different
countries (López & Rodo, 2020; Yang et al., 2020; He et al.,
2020), we set � = 0.1, � = 0.2. Interestingly, even in this
simple model, one can introduce the effects of different NPI
choices through changes in the infectious rate �. While there
are existing works that attempt to estimate the current value
of � using additional data sources (e.g. mobility), in order
to better fit the observed trajectory (Soures et al., 2020),
our focus is on choosing the optimal policy of interven-
tion. In particular, we define the set of NPI choices through
corresponding � values N := {0.25, 0.3, 0.5, 0.7, 0.8, 0.9},
where higher � implies lower restrictions.

2.2. Agent-based EpiCast Model

EpiCast is an individual-based model, with daily contacts
between people in household, workplace, school, neighbor-
hood, and community settings. The primary data source is
U.S. Census demographics at the tract level (the ⇠ 65, 000
tracts are subsets of the ⇠ 3000 counties, with typically a
few thousand people in each tract), and Census tract-to-tract
workerflow data (i.e., how many people live in tract A and
work in tract B). This is used to construct a model popula-
tion with tract-level age and household size demographics,
and realistic daily workflow pattern, which captures most
of the short-range mobility. In addition, occasional long-
distance travel is possible. A 12-hour timestep is used, so
(unless on travel) individuals spend the night-time at home
and day-time at school or workplace, if they belong to one
(and they are open). Additional details are provided in the
Supporting Information of (Germann et al., 2006). In the
original model (Germann et al., 2006; Halloran et al., 2008),
the individual age- and context-specific contact rates that ac-
count for the duration and closeness of interactions between
pairs of individuals in different settings (home, school, work-
place, neighborhood, community, etc.) were uniform across
the US. In a recent school dismissal study (Germann et al.,
2019), different communities were allowed to close their
schools at different times, depending upon the current local
disease incidence. In adapting this model to COVID-19,
these local policies have been extended to all community
mitigation measures: school dismissal, workplace closure,
shelter-in-place, and other social distancing.

3. Problem Formulation

We first provide a formal definition of the policy optimiza-
tion problem. Without loss of generality, let us denote the
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current state of an epidemic, as described by a model E, as
X[t], where t is the time step. Here, X can refer to factors
of interest such as – the set of susceptible, exposed, infected
and removed populations in an SEIR model (Hethcote &
Van den Driessche, 1991) or a more complex, fine-grained
internal states of an agent-based system(Germann et al.,
2006). One can evaluate the future states by evaluating the
epidemiological model X[t+ 1 : t+ k] = E(X[t]; n[t], k),
where n[t] denotes the NPI applied at time-step t. In our
formulation, we assume that each n[t] 2 N , where N is a
set of discrete NPI choices ordered by severity, i.e. N (i)
is more restrictive with a smaller reward than N (i + 1).
Note that in practice, the NPI choices will typically be
represented by some combination of model parameters de-
pending on the model. For example, in case of an SEIR
model, N represents a set of infection rates � which corre-
spond to more or less stringent NPIs. We refer to a sequence
of NPIs, P = {n[1], n[2], · · · , n[T ]}, as a policy. With
C 2 R|N | denoting the reward for adopting each of the NPI
choices in N , one can compute the reward for the policy as
R = r[1]+ r[2]+ · · ·+ r[T ]}, 8r[t] 2 C. Here, the symbol
|.| is the cardinality of a set.

The design objective of not overloading the healthcare sys-
tem is specified by a threshold on the maximum number of
new daily cases, denoted by ⌧ . Note that, other constraints
could be used, i.e. the number of currently active cases,
predicted number of patients requiring the ICU, etc. Finally,
we consider policies in sets of d days both to reflect the fact
that public policy cannot realistically be changed on a day to
day basis as well as to make the optimization more tractable.
The goal is to maximize R while not violating ⌧ anytime
during the course of the epidemic. While a few studies have
been recently proposed in the literature to utilize reinforce-
ment learning approaches with a tractable epidemiological
model to optimize for mitigation policies (Libin et al., 2020;
Khadilkar et al., 2020; Ghamizi et al., 2020; Liu, 2020), our
goal is to deal with complex models, such as the agent-based
EpiCast considered in our study, which is computationally
expensive to be repeatedly evaluated. Furthermore, we are
interested in designing a scalable optimization approach that
can be rapidly executed for a wide-variety of constraints
and specifications, which is known to be a bottleneck for
episodic-training based reinforcement learing methods.

4. Approach

We now describe the new two-level optimization used to
solve the problem described above, followed by a discussion
on dealing with models that are computationally expensive
to be optimized directly.

The key novelty of our approach for solving the above op-
timization problem is to split the reward using a two-level
scheme with a finite time horizon that enables an efficient

early termination of a greedy search. In particular, policy
choices are made every d days (frequency) based on com-
bining a short-term and a long-term reward:

Short-term reward is computed from the current day for
k days forward and a policy choice is given its full reward
if the constraint is met for all k days and no reward if it
is predicted to violate the constraint at any point. This is
equivalent to a brute force search of all policy choices and
the straight-forward check of the constraint, both restricted
to a short-term forecast that can be computed efficiently.
Note that typically k > d which represents a first restriction
on the search space, as in principle, one can initially relax
the policy and subsequently switch to more a stringent NPI
at a later stage, and thereby prevent the constraint violation.
In practice, the short-term forecast represents a hard cutoff
on response times, for example, to mobilize additional ICUs
and provides a guaranteed (within the accuracy of the model)
window of time for interventions.

Long-term reward is evaluated for an additional ks days
(on top of k days from short-term reward computation) using
a potentially different NPI. Conceptually, the long-term
reward reflects an optimistic choice to relax NPIs for the
next d days even if they are predicted to become problematic
within k + ks days as long as tightening restrictions after
k days can correct for any violations. In other words, the
search explores the NPI from the first k days as well as
potentially more stringent NPIs (in the next ks days) that
can help control the disease propagation. However, unlike
the short-term reward which is a constant for all k days (zero
if the constraint is violated at any point), long-term rewards
are assigned proportional to the number of days the selected
policy remains within the given constraint. Therefore, a
more relaxed policy that violates the constraint at some point
can eventually accumulate a higher reward than another one
that stays restrictive during the entire forecasting period.
Similar to the short-term reward, the limit to ks days reduces
the total simulation time necessary for the optimization.
Furthermore, we reduce the number of explored scenarios
by only considering more restrictive NPIs. Assuming a
more relaxed NPI is acceptable past the initial k days, it will
always be explored in the next outer loop in d < k days.

An additional benefit of providing users the ability to choose
these time scales is that it balances the level of risk with
the uncertainties inherent in forecasting and enables one to
compensate for external factors. For example, if we expect
new treatments to become available, choosing a smaller ks
results in more aggressive policy choices while still con-
sidering the need to correct for problems if this hope does
not materialize. We use different set of NPI choices and
corresponding reward assignments for SEIR and Epicast
models, which are provided in the next section. Intuitively,
higher reward is assigned to relaxed policy choice, taking
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Algorithm 1 Mitigation policy optimization.
input :Epidemiological model E;

Initial state X[0]; look-ahead parameters k, ks; threshold ⌧ ; frequency of NPI change d; Time steps T ;
Set of NPI choices N ; Set of rewards for each of the NPIs C.

output :Policy P , Reward R
for t 1 to T by d do

for i 1 to |N | do

X̄[1 : k] = E(X[t� 1];N (i), k) ; /* Run E for k steps with N (i) */
Using X̄[1 : k], obtain the counts of new infected cases at each time step Nc[1 : k];
if max(Nc[1 : k]) > ⌧ then

break
end

rewardshort[i] = C(i)*k; /* Compute short-term reward */
for j  i to 1 by �1 do

X̃[1 : ks] = E(X̄[k];N (j), ks) ; /* Run E for ks steps with N (j) */
Using X̃[1 : ks], obtain the counts of new infected cases at each time step Ñc[1 : ks];
/* Find the first index where the threshold is violated */
for ind 1 to ks do

if Ñc[ind] > ⌧ then

break
end

end

f [j] = (ind� 1) ⇤ C(j) ; /* long-term reward when one NPI switch is allowed */
end

rewardlong[i] = max(f)
rewardnet[i] = rewardshort[i] + rewardlong[i]

end

n = argmax(rewardnet); /* use NPI with the highest net score */
P[t : t+ d] = N (n);
R[t : t+ d] = C(n);
X[t : t+ d] = E(X[t� 1];N (n), d); /* Evaluate E for d steps with the chosen NPI */

end

into account longer term societal impact.

4.1. Surrogate Model

At the core of our approach is the need to obtain look-
ahead estimates of the pandemic state given the current
state X[t] and the NPI n[t], which in turn requires evalua-
tion of the epidemiological model E. In cases where this
evaluation is computationally expensive, it is beneficial to
build a machine learned surrogate model that predicts the
future states given the current state and the NPI choice. For-
mally, we build the surrogate to produce k�step predictions,
X[t + 1 : t + K] = F̂ (X[t];n[t]), where k is the look-
ahead parameter. Note that, since the ODE-solver for SEIR
is highly efficient, we do not use a surrogate in that case.
However, the agent-based EpiCast model is computationally
expensive and hence we build a machine learning surrogate
for faster evaluation. The details of the surrogate model are
provided in Section 5.2.

4.2. Algorithm

A detailed description of our optimization is given by Algo-
rithm 1. Given an epidemiological model E (or a surrogate
model in the case of EpiCast), its initial state X[0] and the
threshold ⌧ as inputs, the policy optimization assumes that
NPIs can be changed every d time steps. The outer loop
runs once every d days (frequency of policy change) and an
inner loop that iterates through the NPI choices. For every
NPI, we first forecast the state of the infection for k days
and the corresponding short-term reward is estimated. Note
that, the short-term reward is assigned either fully for all k
days, if the constraint is never violated, or none at all.

Next, in order to compute the long-term reward, we consider
the subset of stricter policies (referred by index j) compared
to the choice (referred by index i) made in the first k days.
For each j, we forecast the infection state after ks days
with the initial state set to X̄[k]. The long-term reward for
switching to policy index j, i.e., f [j], is thus computed as the
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Figure 1. � Optimization for SEIR. Policies inferred using the proposed approach with an SEIR model. The NPI choices comprised
of different settings for the infectious rate �, which is known to be strongly linked to interventions. We show the policies obtained for
different values of the threshold ⌧ .

Figure 2. Effect of ⌧ on the optimal policy. For each case, we
show the total reward and the cumulative number of infections
(in parentheses). We find that as ⌧ becomes lower, we can obtain
more conservative policies in terms of infections, but comes at the
price of diminished rewards.

total reward accumulated over all days between k and k+ks
when the constraint is not violated (number of infections
is lesser than ⌧ ). We repeat this for all j’s, and assign the
long-term reward for policy N (i) as the maximum over
all f [j]. Finally, the short-term and long-term rewards are
combined to rank the NPI choices for the current interval.

5. Case Studies

In this section, we use the proposed optimization algorithm
to determine the NPI policy using both SEIR and EpiCast
models. All our empirical studies are carried out using
different scenarios, and we employ a simple reward assign-
ment for each of the NPI choices. In both the models, we
set the frequency of changing the NPI d = 14 days. As
described earlier, while SEIR reflects the effects of NPI
coarsely through the change in infectious rate �, EpiCast
allows more fine-grained characterization of school or busi-
ness restrictions.

5.1. Optimizing � Switches in SEIR

In the case of SEIR, we consider the scenario where we are
at the beginning of a pandemic, i.e I(0) = 0, E(0) = 1,
R(0) = 0. Since the four compartments in the SEIR model
add up to the total population, the susceptible compartment
S(0) = N � 1. In this study, the population N is set to 3e6.
As discussed earlier, following existing work on COVID-19,
we set the incubation rate � = 0.2 and recovery rate � =
0.1. Given the set of NPI choices in the form of � values
(infectious rate) N = {0.25, 0.3, 0.5, 0.7, 0.8, 0.9} and the
corresponding reward assignments C := {1, 3, 6, 8, 12, 15}.
The higher the infectious rate �, more severe the infection
is or less restrictive the interventions are.

The naı̈ve policy of using the most restrictive NPI will pro-
vide the highest reward, when there is no constraint on the
limit on the number of new cases each day, i.e., the thresh-
old ⌧ = inf . As showed in Figure 1, this naı̈ve policy
peaks within the first 75 days and the number of new cases
reaches as high as 30K. This unrestricted policy can natu-
rally lead to significant overheads to the healthcare system.
To circumvent this, we perform the optimization in Algo-
rithm 1, by placing an upper limit on the number of cases,
⌧ = {6000, 5000, 3000, 2000}. As one might expect, the
policy selection over the entire period is highly non-trivial,
given the combinatorial nature of this optimization process.
In our algorithm, we set the look-ahead parameters k = 21
days and ks = 35 days, i.e., a total of 8 weeks.

In Figure 1, we illustrate the policies inferred using our
approach for different values of ⌧ . Interestingly, in all cases,
our greedy optimization produces effective policies that
meet the constraint. As one might expect, the policies be-
come more complex as ⌧ becomes lower. We make two key
observations from the results. First, due to the constraint
⌧ , the epidemic takes a much longer duration to flatten; for
example at ⌧ = 3000 it takes about 350 time steps when
compared to ⇠ 100 time steps in the case of ⌧ = inf . Sec-
ond, our optimization balances short-term and long-term
rewards, thus producing policies that are not overly con-
servative. For example, unless the constraint ⌧ becomes
very strong (say 2000), the most restrictive NPI (� = 0.25)
is rarely necessary. This effectively balances between the
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exponential growth of the epidemic and societal impacts of
total inactivity through highly restrictive interventions.

Since the duration for flattening is much longer with our
policies, due to the use of less restrictive NPIs or no inter-
vention (� = 0.9), it is important to study the total number
of cases across the entire duration. This will indicate if the
relaxations recommended by the inferred policy eventually
leads to more (cumulative) cases. To study this trade-off,
Figure 2 shows the total reward and the cumulative number
of cases achieved using the different policies. Interestingly,
with only a little compromise in the total reward, our policy
achieves significant reduction in the total number of cases
(indicated in parentheses near each marker). For example,
using ⌧ = 6000 results in ⇠ 40K lesser cases in total, when
compared to ⌧ = inf . However, as the constraint on ⌧
becomes more severe, i.e. 3000 or 2000, we see effects of
herd immunity as sufficient number of cases still appear.

5.2. Optimizing Phase Switches in EpiCast

In this section, we describe how our optimization approach
can be used with the agent-based EpiCast model. When
compared to the SEIR model, EpiCast can model the impact
of fine-grained interventions (e.g., 2 days of school closure
every week vs full closure) and hence can contain more
complex dynamics, particularly when there is an interplay
between different intervention choices. This improved mod-
eling comes at the price of high computational complexity
as well as challenges in adjusting policies on the fly.

To make the problem tractable epidemiologists have chosen
to split the different parameter choices into a set of discrete
policies, i.e. a given school or work schedule, and a number
of continuous parameters. Furthermore, as these simulations
require complex workflows and large scale parallel comput-
ing it is practically infeasible to change either policy or
parameters during an individual run thus leaving parameter
matching as well as optimization to an outer loop solution.

• Parameters of EpiCast: probability of transmission
between individuals, percentage of asymptomatic in-
fections, and relative infectiousness;

• State specification: number of currently infected
individuals, number of recovered (and assumed im-
mune) patients, and the level of compliance to non-
pharmaceutical interventions like masks.

We use two sets of scenarios with respect to school and
industry operations, that roughly match the phases outlined
in (The United States Government, 2020).

School Closure NPIs: (a) Phase 0, with only essential
businesses open and no schools (P0); (b) Phase 1 which
corresponds to slightly more businesses and less stringent

distancing measures but with schools still universally closed
(P1) (c) Phase 2 with even less restrictions on businesses
and schools potentially opening – 5 days of school (P2a),
3 days of school (P2c), 2 split cohorts each with 2 days of
school (P2d); and 1 day of school (P2e).

Industry Closure NPIs: (a-b) 5 day workweek (P1q, P2q);
(c-d) 3 day work week (P1r, P2r); (e-f) two split cohorts
working 5 out of 10 days (P1v, P2v). Note that, in phase
1 we assume that only a subset of the businesses to be
open, while in phase 2 the restrictions are relaxed and more
businesses are operational.

Our goal is to develop a framework for policy makers that
given a set of (potentially complex) scenarios expressed
through EpiCast would provide suggestions on optimal pol-
icy choices given certain constraints. Since the computa-
tional costs make a direct policy optimization as in the SEIR
model is infeasible, we propose to first build surrogate mod-
els for the different policies each able to emulate EpiCast
across a wide range of parameter settings.

Experiment Design for EpiCast. While building surro-
gate models is typical in scientific problems (Koziel & Leifs-
son, 2013), the quality of the surrogates relies directly on the
experiment design used to generate the dataset. To create the
necessary training data for these models, we introduce an it-
erative approach aimed at reducing the computational costs
as well as improving model fits. The challenge in fitting a
surrogate models to all phases of the disease is that large
portions of the parameter space are invalid, in particular
with respect to the initially infected and recovered popu-
lations, i.e. a large number of currently infected without
anyone recovered. While it is possible to execute EpiCast
with any parameter setting, using unrealistic combinations
wastes compute resources and likely affects the quality of
the surrogate. However, it is unclear a priori which param-
eter configurations may be valid or how to sample from
this space. Instead, we first create simulation ensembles
resembling realistic early outbreaks, i.e. few infected and re-
covered individuals and simulate the corresponding disease
progression until outbreak has passed (typically 360 days or
longer). We then analyze all intermediate epidemic states
and create additional simulations using these as starting
conditions while varying the remaining disease parameters.
In our experience two iterations of this process, meaning
three sets of simulation ensembles, are sufficient to cover
the parameter space densely enough for surrogate modeling.

Surrogate Model. Given the dataset generated using the
experiment design described earlier, we build a machine-
learned surrogate that can map the initial pandemic state
X[0] to predict the future trajectory of the states. Since
predicting long-term trends can be challenging with EpiCast,
we resort to estimating the states for the next 21 time steps.
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Figure 3. School opening policy optimization - Policies inferred using our approach with the EpiCast model. The NPI choices comprised
of different phases of school opening. We show the policies obtained for varying values of the threshold ⌧ .

(a) (b) (c)

Figure 4. Analysis. (a) Effect of ⌧ on the cumulative infections and achieveable reward; (b) The impact of the transmission probability
parameter on the policy. We find that higher TransProp leads to a spike in the total infections, while also reducing the reward significantly;
(c) For a given TransProp, the Compliance parameter reveals a positive impact on the quality of the policy.

Figure 5. Industry opening policy optimization - Policies inferred using our approach with the EpiCast model. The NPI choices
comprised of different schedules for industry opening. We show the policies obtained for varying values of the threshold ⌧

We create this dataset using sliding windows on the EpiCast
samples and design a surrogate F that takes as input the
current state (6-dimensional input) and outputs the trajectory
curves for number of infected and removed cases.

Following the recent surrogate modeling literature (Anirudh
et al., 2020), we first constructed a low-dimensional latent
space to better capture the structure in the curves. We ex-
plored the use of a simplified formulation with principal
component analysis (PCA) on the curves (concatenated)
as well as a more sophisticated multi-variate sequence-to-
sequence models (autoencoders). We find that both these
strategies are capable of accurately representing the short-
term dynamics, as measured using reconstruction error of

held-out validation data. Note that, we constructed a latent
space of 5 dimensions for each of the NPI choices consid-
ered (different school closing schedules). This pre-training
step reformulates the surrogate modeling problem as pre-
dicting into the latent space, in lieu of the curves directly.

The surrogate model was implemented as a fully con-
nected network with 5 hidden layers (configuration
[64, 128, 256, 64, 32]) and ReLU activations. We trained
the model with the MSE objective and an `2 regularizer on
the weights using the Adam optimizer with learning rate
0.001. We also compared the performance of this model
against a random forests regressor containing 100 trees and
found the fully connected network to be marginally better –
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R-squared statistics of 0.94 and 0.93 respectively.

(i) Policies for school closure. In this study, we consid-
ered a scenario where the total population for a region of
interest was set to 1e7 and the initial state of the pandemic
was set to the following values:

• Number of infected: 250; Number of removed: 25K

• TransProp: 0.2; Asymptomatic ratio: 0.3

• Relative infectiousness: 0.9; Compliance: 0.75

The set of NPI choices comprised of 6 different settings un-
der phases 0,1 and 2 (N = [P0,P1,P2e, P2d, P2c, P2a]) with
the corresponding rewards C = [1, 3, 6, 8, 12, 15]. Similar
to the previous experiment, we set the frequency of NPI
change at d = 14 days and used the look-ahead parameters
k = 21 and ks = 35 days respectively. We ran the proposed
algorithm with the pre-trained surrogates for each of the 6
NPI settings and computed the optimal mitigation policy
for a duration of 600 time-steps. The most relaxed policy
P2a corresponds to the case of ⌧ = inf and achieves the
maximum reward. However, as showed in Figure 3, one can
obtain more realistic policies by placing a constraint on the
number of new cases.

In particular, as we reduce ⌧ from 2000 to 1250 we observe
that the policy rolls back to a very restricted setting (P0 or
P1) for longer periods of time, indicating that the exponen-
tial nature of the epidemic requires some rather stringent
constraints especially early on to get to a more controlled
state of the epidemic. Furthermore, all results suggest that
the primary effect of the restrictions is to broaden the peak
until the epidemic has run its course and even the most re-
laxed policy shows an steep decline in cases. Interestingly,
as illustrated in Figure 4(a), the optimal policy at ⌧ = 2000
achieves a significant reduction in the total number of infec-
tions (544K) when compared to the ⌧ =1 case (630K) for
⇡ 15% drop in the total reward. This clearly shows the effi-
cacy of our look-ahead optimization in inferring non-trivial
policies, while taking into account the complex interplay
between the different NPI choices.

Impact of TransProp: It is well-known to epidemiologists
that the probability of transmission between individuals is
a critical parameter in controlling the trajectory of infec-
tions. Hence, we studied the impact of this parameter on the
policies inferred using our algorithm. For this purpose, we
varied the TransProp parameter between 0.1 and 0.22 while
fixing the rest at the settings specified earlier. Note that, for
this analysis ,we fixed the threshold ⌧ = 1600. From the
result in Figure 4(b), it is apparent that the efficacy of the
policy becomes increasingly inferior as TransProp grows –
increase in the total number of cases as well as a significant
reduction in the total reward.

Effect of Compliance: Another important aspect of mitigat-
ing epidemics such as COVID-19 is the public compliance
to the mandates enforced and EpiCast includes that as one
of its input parameters. We studied its effect on the poli-
cies inferred by varying compliance between 0.5 and 0.95
(higher value implies more compliant), while fixing the rest
of the parameters as specified earlier. Similar to the previous
experiment, we fixed ⌧ = 1600. As showed in Figure 4(c),
improved compliance does lead to better policies both in
reduced total number of infections and increased reward.
However, given the relatively high transmission probability
of 0.2, there is a limit beyond which the reward could not
be increased even with a high compliance.

(ii) Policies for industry closure. In this experiment,
we considered NPI choices pertinent to business open-
ing and followed the protocol from the school open-
ing study for running the policy optimization. Given
N =[P0,P1v,P1r,P1q,P2v,P2r,P2q] and the corresponding
reward assignments C = [1, 3, 6, 8, 12, 15, 18], we obtained
the policies in Figure 5. First, we find that for the same ini-
tial settings as before, the trajectory for the infection growth
is less severe when only businesses are open (schools closed)
when compared to the case where schools are also open.
Even when we aggressively reduced the threshold ⌧ to 700,
we could find an optimal policy, which however required a
brief period of returning to phase 0 (total closure).

6. Conclusions

In this paper, we proposed an epidemic mitigation policy op-
timization algorithm that systematically accounts for short-
and long-term effects of non-pharmaceutical interventions,
via sophisticated epidemiological models. Our approach
provides a principled, yet scalable, way to navigate through
the combinatorial choices of interventions. Using case stud-
ies with SEIR and agent-based EpiCast models, we demon-
strated the efficacy of our greedy algorithm in determining
non-trivial policies (high reward) that satisfy the constraint
on the number of infections. This can be used by policy
makers and epidemiologists to gain critical insights into the
interplay between different NPIs and current state of the
epidemic.
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